Abstract

Metal-insulator-metal-based plasmonic metamaterial absorbers (MIM-PMAs) generate strong localized surface plasmon resonance (LSPR) on their surfaces. Therefore, MIM-PMAs are expected to enhance the absorption of graphene coated on their surfaces. Graphene-coated MIM-PMAs (GMIM-PMAs) were developed and their optical properties were investigated both experimentally and numerically at infrared wavelengths. Significant modification of the absorption of GMIM-PMAs was achieved only in the main LSPR wavelength region, where the insulator is lossless. The enhancement of the absorption of graphene could be maximized by the optimization of the insulator thickness of the MIM-PMAs. The results obtained here are expected to contribute to the development of high-responsivity graphene-based photodetectors and optoelectronic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Significantly enhanced infrared absorption of graphene photodetector under surface-plasmonic coupling and polariton interference

Ye Zhang, Dejia Meng, Xiao Li, Honghao Yu, Jianjun Lai, Zhaoyang Fan, and Changhong Chen
Opt. Express 26(23) 30862-30872 (2018)

Enhanced near-infrared absorption in graphene with multilayer metal-dielectric-metal nanostructure

Lei Zhang, Linlong Tang, Wei Wei, Xinlu Cheng, Wei Wang, and Hong Zhang
Opt. Express 24(18) 20002-20009 (2016)

Surface lattice resonances based on parallel coupling in metal-insulator-metal stacks

Aisheng Yu, Wei Li, Yuelin Wang, and Tie Li
Opt. Express 26(16) 20695-20707 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  4. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
    [Crossref]
  5. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
    [Crossref] [PubMed]
  6. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping,” Nano Lett. 12(6), 2745–2750 (2012).
    [Crossref] [PubMed]
  7. M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
    [Crossref] [PubMed]
  8. X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6(1), 7767 (2015).
    [Crossref] [PubMed]
  9. J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
    [Crossref] [PubMed]
  10. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
    [Crossref] [PubMed]
  11. J.-H. Ahn and B. H. Hong, “Graphene for displays that bend,” Nat. Nanotechnol. 9(10), 737–738 (2014).
    [Crossref] [PubMed]
  12. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  13. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  14. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
    [Crossref] [PubMed]
  15. S. Ogawa, D. Fujisawa, and M. Ueno, “Effect of graphene on plasmonic metasurfaces at infrared wavelengths,” AIP Adv. 3(11), 112127 (2013).
    [Crossref]
  16. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
    [Crossref] [PubMed]
  17. Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection,” Nano Lett. 14(7), 3749–3754 (2014).
    [Crossref] [PubMed]
  18. J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
    [Crossref]
  19. N. Reckinger, A. Vlad, S. Melinte, J.-F. Colomer, and M. Sarrazin, “Graphene-coated holey metal films: Tunable molecular sensing by surface plasmon resonance,” Appl. Phys. Lett. 102(21), 211108 (2013).
    [Crossref]
  20. B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
    [Crossref]
  21. Y. S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, and S. Q. Qin, “Monolayer-graphene-based perfect absorption structures in the near infrared,” Opt. Express 25(12), 13079–13086 (2017).
    [Crossref] [PubMed]
  22. Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
    [Crossref]
  23. N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010).
    [Crossref] [PubMed]
  24. Y. Zou, P. Tassin, T. Koschny, and C. M. Soukoulis, “Interaction between graphene and metamaterials: split rings vs. wire pairs,” Opt. Express 20(11), 12198–12204 (2012).
    [Crossref] [PubMed]
  25. Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
    [Crossref]
  26. W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
    [Crossref]
  27. S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Graphene on plasmonic metamaterials for infrared detection,” Proc. SPIE 9819, 98191S (2016).
  28. S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Effect of insulator layer in graphene plasmonic metamaterials for infrared detection,” Proc. SPIE 10177, 101772 (2017).
    [Crossref]
  29. Q. Pan, J. Hong, G. Zhang, Y. Shuai, and H. Tan, “Graphene plasmonics for surface enhancement near-infrared absorptivity,” Opt. Express 25(14), 16400–16408 (2017).
    [Crossref] [PubMed]
  30. N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
    [Crossref] [PubMed]
  31. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
    [Crossref]
  32. X. Su, Z. Wei, C. Wu, Y. Long, and H. Li, “Negative reflection from metal/graphene plasmonic gratings,” Opt. Lett. 41(2), 348–351 (2016).
    [Crossref] [PubMed]
  33. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  34. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  35. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
    [PubMed]
  36. Y. P. Lee, J. Y. Rhee, Y. J. Yoo, and K. W. Kim, Metamaterials for Perfect Absorption (Springer Singapore, 2016).
  37. Y. B. Chen and F. C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
    [Crossref] [PubMed]
  38. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  39. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  40. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  41. J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
    [Crossref] [PubMed]
  42. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  43. Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29(6), 1490–1496 (2012).
    [Crossref]
  44. M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Giant Dirac point shift of graphene phototransistors by doped silicon substrate current,” AIP Adv. 6(3), 035113 (2016).
    [Crossref]
  45. M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Photocurrent enhancement of graphene phototransistors using p–n junction formed by conventional photolithography process,” Jpn. J. Appl. Phys. 55(11), 110307 (2016).
    [Crossref]

2017 (3)

2016 (5)

X. Su, Z. Wei, C. Wu, Y. Long, and H. Li, “Negative reflection from metal/graphene plasmonic gratings,” Opt. Lett. 41(2), 348–351 (2016).
[Crossref] [PubMed]

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Graphene on plasmonic metamaterials for infrared detection,” Proc. SPIE 9819, 98191S (2016).

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Giant Dirac point shift of graphene phototransistors by doped silicon substrate current,” AIP Adv. 6(3), 035113 (2016).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Photocurrent enhancement of graphene phototransistors using p–n junction formed by conventional photolithography process,” Jpn. J. Appl. Phys. 55(11), 110307 (2016).
[Crossref]

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

2015 (5)

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6(1), 7767 (2015).
[Crossref] [PubMed]

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

2014 (5)

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

J.-H. Ahn and B. H. Hong, “Graphene for displays that bend,” Nat. Nanotechnol. 9(10), 737–738 (2014).
[Crossref] [PubMed]

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

2013 (4)

N. Reckinger, A. Vlad, S. Melinte, J.-F. Colomer, and M. Sarrazin, “Graphene-coated holey metal films: Tunable molecular sensing by surface plasmon resonance,” Appl. Phys. Lett. 102(21), 211108 (2013).
[Crossref]

S. Ogawa, D. Fujisawa, and M. Ueno, “Effect of graphene on plasmonic metasurfaces at infrared wavelengths,” AIP Adv. 3(11), 112127 (2013).
[Crossref]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Y. B. Chen and F. C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express 21(18), 20771–20785 (2013).
[Crossref] [PubMed]

2012 (5)

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping,” Nano Lett. 12(6), 2745–2750 (2012).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Y. Zou, P. Tassin, T. Koschny, and C. M. Soukoulis, “Interaction between graphene and metamaterials: split rings vs. wire pairs,” Opt. Express 20(11), 12198–12204 (2012).
[Crossref] [PubMed]

Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29(6), 1490–1496 (2012).
[Crossref]

2011 (4)

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

2010 (6)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010).
[Crossref] [PubMed]

2009 (2)

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (1)

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

1998 (1)

1995 (1)

Ahmed, S.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Ahn, J.-H.

J.-H. Ahn and B. H. Hong, “Graphene for displays that bend,” Nat. Nanotechnol. 9(10), 737–738 (2014).
[Crossref] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Ajayan, P. M.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

An, J.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

An, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Appleton, B. R.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping,” Nano Lett. 12(6), 2745–2750 (2012).
[Crossref] [PubMed]

Avouris, P.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Bae, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Balakrishnan, J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Berke, K.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping,” Nano Lett. 12(6), 2745–2750 (2012).
[Crossref] [PubMed]

Bernardi, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Bolotin, K. I.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Boltasseva, A.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Briggs, D. P.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Britnell, L.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Cai, Y.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Capasso, F.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Chadha, A.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Chen, Y. B.

Chen, Y. P.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Chiu, F. C.

Cho, H.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Choi, S.-Y.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Chung, J.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Chung, T.-F.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Colomer, J.-F.

N. Reckinger, A. Vlad, S. Melinte, J.-F. Colomer, and M. Sarrazin, “Graphene-coated holey metal films: Tunable molecular sensing by surface plasmon resonance,” Appl. Phys. Lett. 102(21), 211108 (2013).
[Crossref]

De Angelis, F.

Di Fabrizio, E.

Ding, K.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Djurišic, A. B.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Echtermeyer, T. J.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Elazar, J. M.

Emani, N. K.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Fan, S.

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Fan, Y. S.

Fang, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Ferrari, A. C.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fujisawa, D.

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Effect of insulator layer in graphene plasmonic metamaterials for infrared detection,” Proc. SPIE 10177, 101772 (2017).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Giant Dirac point shift of graphene phototransistors by doped silicon substrate current,” AIP Adv. 6(3), 035113 (2016).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Photocurrent enhancement of graphene phototransistors using p–n junction formed by conventional photolithography process,” Jpn. J. Appl. Phys. 55(11), 110307 (2016).
[Crossref]

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Graphene on plasmonic metamaterials for infrared detection,” Proc. SPIE 9819, 98191S (2016).

S. Ogawa, D. Fujisawa, and M. Ueno, “Effect of graphene on plasmonic metasurfaces at infrared wavelengths,” AIP Adv. 3(11), 112127 (2013).
[Crossref]

Gaylord, T. K.

Geim, A. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Goldberg, B. B.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Gorbachev, R. V.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Grann, E. B.

Grigorenko, A. N.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Grossman, J. C.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Guo, C. C.

Halas, N. J.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Han, T.-H.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hao, Y.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Hebard, A. F.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping,” Nano Lett. 12(6), 2745–2750 (2012).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hong, B. H.

J.-H. Ahn and B. H. Hong, “Graphene for displays that bend,” Nat. Nanotechnol. 9(10), 737–738 (2014).
[Crossref] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Hong, J.

Iijima, S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Jasnos, P. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Jia, Y.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jonasz, M.

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Jung, D. Y.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Kanai, Y.

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Photocurrent enhancement of graphene phototransistors using p–n junction formed by conventional photolithography process,” Jpn. J. Appl. Phys. 55(11), 110307 (2016).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Giant Dirac point shift of graphene phototransistors by doped silicon substrate current,” AIP Adv. 6(3), 035113 (2016).
[Crossref]

Kildishev, A. V.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Kim, E.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Kim, H.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, H. R.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, K. S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kim, T.-S.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Kim, Y.-J.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Kitamura, R.

Kitt, A.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Klots, A.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Kong, J.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Koschny, T.

Kravchenko, I. I.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Lee, J.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Lee, T.-W.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Lee, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Lei, T.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Li, C.

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6(1), 7767 (2015).
[Crossref] [PubMed]

Li, H.

Li, W.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Li, X.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lin, Y. M.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, Q. H.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Y.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Liu, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lombardo, A.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Loncar, M.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Long, Y.

Lu, Z.

Luo, Z.

Ma, Z.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Magnuson, C. W.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Majewski, M. L.

Matsumoto, K.

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Effect of insulator layer in graphene plasmonic metamaterials for infrared detection,” Proc. SPIE 10177, 101772 (2017).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Photocurrent enhancement of graphene phototransistors using p–n junction formed by conventional photolithography process,” Jpn. J. Appl. Phys. 55(11), 110307 (2016).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Giant Dirac point shift of graphene phototransistors by doped silicon substrate current,” AIP Adv. 6(3), 035113 (2016).
[Crossref]

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Graphene on plasmonic metamaterials for infrared detection,” Proc. SPIE 9819, 98191S (2016).

Melinte, S.

N. Reckinger, A. Vlad, S. Melinte, J.-F. Colomer, and M. Sarrazin, “Graphene-coated holey metal films: Tunable molecular sensing by surface plasmon resonance,” Appl. Phys. Lett. 102(21), 211108 (2013).
[Crossref]

Menon, L.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Miao, X.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping,” Nano Lett. 12(6), 2745–2750 (2012).
[Crossref] [PubMed]

Miao, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Mohammad, M. A.

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6(1), 7767 (2015).
[Crossref] [PubMed]

Moharam, M. G.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mueller, T.

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nikolaenko, A. E.

Nordlander, P.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Novoselov, K. S.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ogawa, S.

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Effect of insulator layer in graphene plasmonic metamaterials for infrared detection,” Proc. SPIE 10177, 101772 (2017).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Photocurrent enhancement of graphene phototransistors using p–n junction formed by conventional photolithography process,” Jpn. J. Appl. Phys. 55(11), 110307 (2016).
[Crossref]

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Graphene on plasmonic metamaterials for infrared detection,” Proc. SPIE 9819, 98191S (2016).

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Giant Dirac point shift of graphene phototransistors by doped silicon substrate current,” AIP Adv. 6(3), 035113 (2016).
[Crossref]

S. Ogawa, D. Fujisawa, and M. Ueno, “Effect of graphene on plasmonic metasurfaces at infrared wavelengths,” AIP Adv. 3(11), 112127 (2013).
[Crossref]

Okuda, S.

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Giant Dirac point shift of graphene phototransistors by doped silicon substrate current,” AIP Adv. 6(3), 035113 (2016).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Photocurrent enhancement of graphene phototransistors using p–n junction formed by conventional photolithography process,” Jpn. J. Appl. Phys. 55(11), 110307 (2016).
[Crossref]

Ono, T.

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Photocurrent enhancement of graphene phototransistors using p–n junction formed by conventional photolithography process,” Jpn. J. Appl. Phys. 55(11), 110307 (2016).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Giant Dirac point shift of graphene phototransistors by doped silicon substrate current,” AIP Adv. 6(3), 035113 (2016).
[Crossref]

Ozyilmaz, B.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Palummo, M.

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Pan, Q.

Papasimakis, N.

Park, J.-S.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Park, M.-H.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Petterson, M. K.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping,” Nano Lett. 12(6), 2745–2750 (2012).
[Crossref] [PubMed]

Pilon, L.

Piper, J. R.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Pommet, D. A.

Qin, S. Q.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Rakic, A. D.

Rauter, P.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Reckinger, N.

N. Reckinger, A. Vlad, S. Melinte, J.-F. Colomer, and M. Sarrazin, “Graphene-coated holey metal films: Tunable molecular sensing by surface plasmon resonance,” Appl. Phys. Lett. 102(21), 211108 (2013).
[Crossref]

Ren, T.-L.

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6(1), 7767 (2015).
[Crossref] [PubMed]

Rinzler, A. G.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping,” Nano Lett. 12(6), 2745–2750 (2012).
[Crossref] [PubMed]

Ruoff, R. S.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Sarrazin, M.

N. Reckinger, A. Vlad, S. Melinte, J.-F. Colomer, and M. Sarrazin, “Graphene-coated holey metal films: Tunable molecular sensing by surface plasmon resonance,” Appl. Phys. Lett. 102(21), 211108 (2013).
[Crossref]

Seo, H.-K.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Seo, J.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Shalaev, V. M.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Shankar, R.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Shen, Z. X.

Shimatani, M.

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Effect of insulator layer in graphene plasmonic metamaterials for infrared detection,” Proc. SPIE 10177, 101772 (2017).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Giant Dirac point shift of graphene phototransistors by doped silicon substrate current,” AIP Adv. 6(3), 035113 (2016).
[Crossref]

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Photocurrent enhancement of graphene phototransistors using p–n junction formed by conventional photolithography process,” Jpn. J. Appl. Phys. 55(11), 110307 (2016).
[Crossref]

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Graphene on plasmonic metamaterials for infrared detection,” Proc. SPIE 9819, 98191S (2016).

Shuai, Y.

Q. Pan, J. Hong, G. Zhang, Y. Shuai, and H. Tan, “Graphene plasmonics for surface enhancement near-infrared absorptivity,” Opt. Express 25(14), 16400–16408 (2017).
[Crossref] [PubMed]

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Song, Y.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Song, Y. I.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

Su, X.

Suk, J. W.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Swan, A. K.

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

Tan, H.

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Tassin, P.

Tian, H.

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6(1), 7767 (2015).
[Crossref] [PubMed]

Tongay, S.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping,” Nano Lett. 12(6), 2745–2750 (2012).
[Crossref] [PubMed]

Ueno, M.

S. Ogawa, D. Fujisawa, and M. Ueno, “Effect of graphene on plasmonic metasurfaces at infrared wavelengths,” AIP Adv. 3(11), 112127 (2013).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Valentine, J.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Vlad, A.

N. Reckinger, A. Vlad, S. Melinte, J.-F. Colomer, and M. Sarrazin, “Graphene-coated holey metal films: Tunable molecular sensing by surface plasmon resonance,” Appl. Phys. Lett. 102(21), 211108 (2013).
[Crossref]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, W.

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Wang, X.

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6(1), 7767 (2015).
[Crossref] [PubMed]

Wang, Y.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Wei, Z.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wu, C.

X. Su, Z. Wei, C. Wu, Y. Long, and H. Li, “Negative reflection from metal/graphene plasmonic gratings,” Opt. Lett. 41(2), 348–351 (2016).
[Crossref] [PubMed]

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6(1), 7767 (2015).
[Crossref] [PubMed]

Wu, F.

Wu, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Xia, F.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

Xu, W.

Xu, X.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Yang, H.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Yang, Y.

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6(1), 7767 (2015).
[Crossref] [PubMed]

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

Yao, Y.

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoo, S.

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

Yuan, X. D.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, G.

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

Zhao, B.

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

Zhao, D.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zhao, W.

Zheludev, N. I.

Zheng, Y.

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

Zhou, L.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, W.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zhu, J.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Zhu, Z. H.

Zou, Y.

ACS Nano (1)

J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates,” ACS Nano 5(9), 6916–6924 (2011).
[Crossref] [PubMed]

ACS Photonics (2)

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

J. R. Piper and S. Fan, “Total Absorption in a Graphene Monolayer in the Optical Regime by Critical Coupling with a Photonic Crystal Guided Resonance,” ACS Photonics 1(4), 347–353 (2014).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

AIP Adv. (2)

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Giant Dirac point shift of graphene phototransistors by doped silicon substrate current,” AIP Adv. 6(3), 035113 (2016).
[Crossref]

S. Ogawa, D. Fujisawa, and M. Ueno, “Effect of graphene on plasmonic metasurfaces at infrared wavelengths,” AIP Adv. 3(11), 112127 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. Reckinger, A. Vlad, S. Melinte, J.-F. Colomer, and M. Sarrazin, “Graphene-coated holey metal films: Tunable molecular sensing by surface plasmon resonance,” Appl. Phys. Lett. 102(21), 211108 (2013).
[Crossref]

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

W. Wang, A. Klots, Y. Yang, W. Li, I. I. Kravchenko, D. P. Briggs, K. I. Bolotin, and J. Valentine, “Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals,” Appl. Phys. Lett. 106(18), 181104 (2015).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

M. Shimatani, S. Ogawa, D. Fujisawa, S. Okuda, Y. Kanai, T. Ono, and K. Matsumoto, “Photocurrent enhancement of graphene phototransistors using p–n junction formed by conventional photolithography process,” Jpn. J. Appl. Phys. 55(11), 110307 (2016).
[Crossref]

Nano Lett. (6)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application As Plasmonic Sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12(7), 3808–3813 (2012).
[Crossref] [PubMed]

Y. Yao, R. Shankar, P. Rauter, Y. Song, J. Kong, M. Loncar, and F. Capasso, “High-Responsivity Mid-Infrared Graphene Detectors with Antenna-Enhanced Photocarrier Generation and Collection,” Nano Lett. 14(7), 3749–3754 (2014).
[Crossref] [PubMed]

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, “High Efficiency Graphene Solar Cells by Chemical Doping,” Nano Lett. 12(6), 2745–2750 (2012).
[Crossref] [PubMed]

M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett. 13(8), 3664–3670 (2013).
[Crossref] [PubMed]

Nat. Commun. (3)

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T.-L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6(1), 7767 (2015).
[Crossref] [PubMed]

J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, and S. Yoo, “Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes,” Nat. Commun. 7, 11791 (2016).
[Crossref] [PubMed]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4(12), 839–843 (2009).
[Crossref] [PubMed]

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol. 5(8), 574–578 (2010).
[Crossref] [PubMed]

J.-H. Ahn and B. H. Hong, “Graphene for displays that bend,” Nat. Nanotechnol. 9(10), 737–738 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. X (1)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely Tunable Terahertz Phase Modulation with Gate-Controlled Graphene Metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Proc. SPIE (2)

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Graphene on plasmonic metamaterials for infrared detection,” Proc. SPIE 9819, 98191S (2016).

S. Ogawa, D. Fujisawa, M. Shimatani, and K. Matsumoto, “Effect of insulator layer in graphene plasmonic metamaterials for infrared detection,” Proc. SPIE 10177, 101772 (2017).
[Crossref]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Other (1)

Y. P. Lee, J. Y. Rhee, Y. J. Yoo, and K. W. Kim, Metamaterials for Perfect Absorption (Springer Singapore, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic illustration of an MIM-PMA on a Si substrate, and absorbance calculated as a function of wavelength for (b) w and (b) t. The color map is defined by the absorbance scale on the right.
Fig. 2
Fig. 2 (a) Reflectance spectrum of the MIM-PMA with w = 2.6 μm, p = 5.0 μm and t = 200 nm. The inset shows an SEM image of the developed MIM-PMA. (b) Absorption wavelength of the MIM-PMA for modes 1 and 2.
Fig. 3
Fig. 3 Schematic illustration of (a) the graphene transfer onto the MIM-PMA and (b) cross-sectional schematic of the GMIM-PMA. (c) Optical micrograph of the GMIM-PMA and (d) Raman spectra of the components of the GMIM-PMA.
Fig. 4
Fig. 4 Reflectance ratios of (a) GMIM-A and MIM-A with t = 100 nm, and (b) GMIM-B and MIM-B with t = 200 nm.
Fig. 5
Fig. 5 Calculated reflectance ratios between MIM-PMAs with and without graphene for various chemical potentials: MIM-PMAs with t = (a) 100 and (b) 200 nm. The dotted lines represent a reflectance ratio of 1 for each spectrum.
Fig. 6
Fig. 6 Calculated reflectance ratios as a function of t.

Metrics