Abstract

We describe a 1.5 μm, narrow linewidth, high output power wavelength tunable LD that employs a self-optical feedback circuit. By incorporating an optical circulator-based feedback circuit in a DFB LD array, we have successfully reduced the oscillation linewidth from several MHz to less than 8 kHz over the full C-band range. A high output power of approximately 50 mW and a low relative intensity noise of less than −130 dB/Hz were simultaneously achieved. Furthermore, by employing a partial reflection mirror as a self-optical feedback circuit, we have also realized a full C-band wavelength tunable LD with a linewidth of less than 11 kHz and a simple laser configuration.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
1.5μm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of −130 dB/Hz and its extension to the L-band

Keisuke Kasai, Masataka Nakazawa, Yasunori Tomomatsu, and Takashi Endo
Opt. Express 25(18) 22113-22124 (2017)

High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology

Shinsuke Tanaka, Seok-Hwan Jeong, Shigeaki Sekiguchi, Teruo Kurahashi, Yu Tanaka, and Ken Morito
Opt. Express 20(27) 28057-28069 (2012)

Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication

Hang Guan, Ari Novack, Tal Galfsky, Yangjin Ma, Saeed Fathololoumi, Alexandre Horth, Tam N. Huynh, Jose Roman, Ruizhi Shi, Michael Caverley, Yang Liu, Thomas Baehr-Jones, Keren Bergman, and Michael Hochberg
Opt. Express 26(7) 7920-7933 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2008), paper OtuM2.
    [Crossref]
  2. T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3-Tbit/s, 18-Gbaud 64QAM WDM coherent transmission of 160 km over full C-band using an injection locking technique with a spectral efficiency of 9 bit/s/Hz,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th3F.5.
    [Crossref]
  3. S. Bennetts, G. D. McDonald, K. S. Hardman, J. E. Debs, C. C. Kuhn, J. D. Close, and N. P. Robins, “External cavity diode lasers with 5kHz linewidth and 200nm tuning range at 1.55μm and methods for linewidth measurement,” Opt. Express 22(9), 10642–10654 (2014).
    [Crossref] [PubMed]
  4. M. C. Larson, A. Bhardwaj, W. Xiong, Y. Feng, X. D. Huang, K. P. Petrov, M. Moewe, H. Y. Ji, A. Semakov, C. W. Lv, S. Kutty, A. Patwardhan, N. Liu, Z. M. Li, Y. J. Bao, Z. H. Shen, S. Bajwa, F. H. Zhou, and P. C. Koh, “Narrow linewidth sampled-grating distributed Bragg reflector laser with enhanced side-mode suppression,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2015), paper M2D.1.
    [Crossref]
  5. N. Kobayashi, K. Sato, M. Namiwaka, K. Yamamoto, S. Watanabe, T. Kita, H. Yamada, and H. Yamazaki, “Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers,” J. Lightwave Technol. 33(6), 1241–1246 (2015).
    [Crossref]
  6. H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
    [Crossref]
  7. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  8. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
    [Crossref]
  9. L. Coldren, S. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012), Chap. 5.
  10. K. Kasai, M. Nakazawa, M. Ishikawa, and H. Ishii, “An 8 kHz linewidth, 50 mW output wavelength tunable DFB LD array over the C-band with self optical feedback,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW4M.2.
    [Crossref]
  11. H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, and Y. Miyamoto, “Narrow linewidth operation (<10 kHz) in self-injection-locked tunable DFB LD array (SIL-TLA) integrated with optical feedback planar lightwave circuit (PLC),” in Proceedings of European Conference on Optical Communication (IEEE, 2016), paper Tu.2.E.5.
  12. M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S. Arai, “The temperature dependence of the threshold current of GaInAsP/InP DH lasers,” IEEE J. Quantum Electron. 17(5), 611–619 (1981).
    [Crossref]
  13. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [Crossref]
  14. K. Kasai, M. Yoshida, and M. Nakazawa, “295 mW output, frequency-stabilized erbium silica fiber laser with a linewidth of 5 kHz and a RIN of -120 dB/Hz,” Opt. Express 24(3), 2737–2748 (2016).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (1)

2009 (1)

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

1995 (1)

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

1981 (1)

M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S. Arai, “The temperature dependence of the threshold current of GaInAsP/InP DH lasers,” IEEE J. Quantum Electron. 17(5), 611–619 (1981).
[Crossref]

1980 (2)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Adams, A. R.

M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S. Arai, “The temperature dependence of the threshold current of GaInAsP/InP DH lasers,” IEEE J. Quantum Electron. 17(5), 611–619 (1981).
[Crossref]

Arai, S.

M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S. Arai, “The temperature dependence of the threshold current of GaInAsP/InP DH lasers,” IEEE J. Quantum Electron. 17(5), 611–619 (1981).
[Crossref]

Asada, M.

M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S. Arai, “The temperature dependence of the threshold current of GaInAsP/InP DH lasers,” IEEE J. Quantum Electron. 17(5), 611–619 (1981).
[Crossref]

Bennetts, S.

Close, J. D.

Debs, J. E.

Hardman, K. S.

Ishii, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Itaya, Y.

M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S. Arai, “The temperature dependence of the threshold current of GaInAsP/InP DH lasers,” IEEE J. Quantum Electron. 17(5), 611–619 (1981).
[Crossref]

Kasai, K.

Kasaya, K.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Kita, T.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Kobayashi, N.

Kuhn, C. C.

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

McDonald, G. D.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Nakazawa, M.

Namiwaka, M.

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Oohashi, H.

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

Petermann, K.

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

Robins, N. P.

Sato, K.

Stubkjaer, K. E.

M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S. Arai, “The temperature dependence of the threshold current of GaInAsP/InP DH lasers,” IEEE J. Quantum Electron. 17(5), 611–619 (1981).
[Crossref]

Suematsu, Y.

M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S. Arai, “The temperature dependence of the threshold current of GaInAsP/InP DH lasers,” IEEE J. Quantum Electron. 17(5), 611–619 (1981).
[Crossref]

Watanabe, S.

Yamada, H.

Yamamoto, K.

Yamazaki, H.

Yoshida, M.

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

M. Asada, A. R. Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, and S. Arai, “The temperature dependence of the threshold current of GaInAsP/InP DH lasers,” IEEE J. Quantum Electron. 17(5), 611–619 (1981).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Ishii, K. Kasaya, and H. Oohashi, “Spectral linewidth reduction in widely wavelength tunable DFB laser array,” IEEE J. Sel. Top. Quantum Electron. 15(3), 514–520 (2009).
[Crossref]

K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Other (6)

L. Coldren, S. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012), Chap. 5.

K. Kasai, M. Nakazawa, M. Ishikawa, and H. Ishii, “An 8 kHz linewidth, 50 mW output wavelength tunable DFB LD array over the C-band with self optical feedback,” in Proceedings of Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SW4M.2.
[Crossref]

H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, and Y. Miyamoto, “Narrow linewidth operation (<10 kHz) in self-injection-locked tunable DFB LD array (SIL-TLA) integrated with optical feedback planar lightwave circuit (PLC),” in Proceedings of European Conference on Optical Communication (IEEE, 2016), paper Tu.2.E.5.

M. Seimetz, “Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2008), paper OtuM2.
[Crossref]

T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3-Tbit/s, 18-Gbaud 64QAM WDM coherent transmission of 160 km over full C-band using an injection locking technique with a spectral efficiency of 9 bit/s/Hz,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th3F.5.
[Crossref]

M. C. Larson, A. Bhardwaj, W. Xiong, Y. Feng, X. D. Huang, K. P. Petrov, M. Moewe, H. Y. Ji, A. Semakov, C. W. Lv, S. Kutty, A. Patwardhan, N. Liu, Z. M. Li, Y. J. Bao, Z. H. Shen, S. Bajwa, F. H. Zhou, and P. C. Koh, “Narrow linewidth sampled-grating distributed Bragg reflector laser with enhanced side-mode suppression,” in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2015), paper M2D.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Configuration of tunable DFB LD array with circulator-based self-optical feedback circuit, (b) Photograph of DFB LD array chip.
Fig. 2
Fig. 2 (a) Output power characteristics of 12-DFB LDs as a function of SOA current, (b) chip temperature dependence of laser output power.
Fig. 3
Fig. 3 Continuous wavelength tuning characteristics of DFB LD array.
Fig. 4
Fig. 4 (a) Delayed self-heterodyne spectrum of LD 9, (b) relationship between the linewidth of LD 9 and self-optical feedback power for different chip temperature.
Fig. 5
Fig. 5 Linewidth dependence on oscillation wavelength.
Fig. 6
Fig. 6 Optical spectrum of LD 9 with optical feedback (0.01 nm resolution).
Fig. 7
Fig. 7 (a) OSNR dependence on oscillation wavelength, (b) SMSR dependence on oscillation wavelength.
Fig. 8
Fig. 8 Heterodyne beat spectrum between DFB LD 9 and another CW LD.
Fig. 9
Fig. 9 Frequency fluctuation of heterodyne beat signal between DFB LD 9 and frequency-stabilized CW laser.
Fig. 10
Fig. 10 (a) RIN spectra of LD 9 with and without optical feedback, (b) RIN peak dependence on oscillation wavelength.
Fig. 11
Fig. 11 Configuration of tunable DFB LD array with partial reflection mirror-based self-optical feedback circuit.
Fig. 12
Fig. 12 (a) Delayed self-heterodyne spectrum of LD 9, (b) Relationship between LD 9 linewidth and SOA current.
Fig. 13
Fig. 13 Linewidth dependence on oscillation wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δν= Δ ν 0 ( 1+C ) 2
C=κ n ext L ext n LD L LD

Metrics