Abstract

Supercontinuum generation using photonic crystal fibers is a useful technique to generate light spanning a broad wavelength range, using femtosecond laser pulses. For some applications, one may desire higher power density at specific wavelengths. Increasing the pump power results primarily in further broadening of the output spectrum and is not particularly useful for this purpose. In this paper we demonstrate that by applying a periodic spectral phase modulation to the input pulse using a pulse shaper, the spectral energy density of the output supercontinuum can be enhanced by nearly an order of magnitude at specific wavelengths, which are tunable.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers

Xiaohong Hu, Yishan Wang, Wei Zhao, Zhi Yang, Wei Zhang, Cheng Li, and Hushan Wang
Appl. Opt. 49(26) 4984-4989 (2010)

Supercontinuum pulse shaping in the few-cycle regime

Franz Hagemann, Oliver Gause, Ludger Wöste, and Torsten Siebert
Opt. Express 21(5) 5536-5549 (2013)

Two-octave supercontinuum generation in a water-filled photonic crystal fiber

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann
Opt. Express 18(6) 6230-6240 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
    [Crossref]
  2. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
    [Crossref]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier Science, 2013).
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  5. P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  6. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  7. K. Tada and N. Karasawa, “Broadband coherent anti-Stokes Raman scattering spectroscopy using pulse-phaper-controlled variable-vavelength soliton pulses from a photonic crystal fiber,” Jpn. J. Appl. Phys. 47(12R), 8825–8828 (2008).
    [Crossref]
  8. K. Tada and N. Karasawa, “Broadband coherent anti-Stokes Raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber,” Opt. Commun. 282(19), 3948–3952 (2009).
    [Crossref]
  9. K. Tada and N. Karasawa, “Single-beam coherent anti-Stokes Raman scattering spectroscopy using both pump and soliton Stokes pulses from a photonic crystal fiber,” Appl. Phys. Express 4(9), 092701 (2011).
    [Crossref]
  10. X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
    [Crossref] [PubMed]
  11. J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
    [Crossref] [PubMed]
  12. D. R. Austin, J. A. Bolger, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Narrowband supercontinuum control using phase shaping,” Opt. Express 14(26), 13142–13150 (2006).
    [Crossref] [PubMed]
  13. E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Nonlinear pulse shaping by coherent addition of multiple redshifted solitons,” J. Opt. Soc. Am. B 28(7), 1716–1723 (2011).
    [Crossref]
  14. E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
    [Crossref] [PubMed]
  15. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [Crossref] [PubMed]
  16. I. Zeylikovich, V. Kartazaev, and R. R. Alfano, “Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber,” J. Opt. Soc. Am. B 22(7), 1453–1460 (2005).
    [Crossref]
  17. C. Corsi, A. Tortora, and M. Bellini, “Mutual coherence of supercontinuum pulses collinearly generated in bulk media,” Appl. Phys. B 77(2–3), 285–290 (2003).
    [Crossref]
  18. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
    [Crossref]
  19. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref]
  20. A. Tortora, C. Corsi, and M. Bellini, “Comb-like supercontinuum generation in bulk media,” Appl. Phys. Lett. 85(7), 1113–1115 (2004).
    [Crossref]
  21. D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 15(5), 1615–1619 (1998).
    [Crossref]

2018 (1)

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

2015 (1)

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

2011 (3)

2009 (2)

K. Tada and N. Karasawa, “Broadband coherent anti-Stokes Raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber,” Opt. Commun. 282(19), 3948–3952 (2009).
[Crossref]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[Crossref]

2008 (1)

K. Tada and N. Karasawa, “Broadband coherent anti-Stokes Raman scattering spectroscopy using pulse-phaper-controlled variable-vavelength soliton pulses from a photonic crystal fiber,” Jpn. J. Appl. Phys. 47(12R), 8825–8828 (2008).
[Crossref]

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

D. R. Austin, J. A. Bolger, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Narrowband supercontinuum control using phase shaping,” Opt. Express 14(26), 13142–13150 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

A. Tortora, C. Corsi, and M. Bellini, “Comb-like supercontinuum generation in bulk media,” Appl. Phys. Lett. 85(7), 1113–1115 (2004).
[Crossref]

2003 (2)

C. Corsi, A. Tortora, and M. Bellini, “Mutual coherence of supercontinuum pulses collinearly generated in bulk media,” Appl. Phys. B 77(2–3), 285–290 (2003).
[Crossref]

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

2002 (2)

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

1998 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier Science, 2013).

Alfano, R. R.

Andresen, E. R.

Austin, D. R.

Bellini, M.

A. Tortora, C. Corsi, and M. Bellini, “Comb-like supercontinuum generation in bulk media,” Appl. Phys. Lett. 85(7), 1113–1115 (2004).
[Crossref]

C. Corsi, A. Tortora, and M. Bellini, “Mutual coherence of supercontinuum pulses collinearly generated in bulk media,” Appl. Phys. B 77(2–3), 285–290 (2003).
[Crossref]

Bolger, J. A.

Brown, T. G.

Chen, Y.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref]

Corsi, C.

A. Tortora, C. Corsi, and M. Bellini, “Comb-like supercontinuum generation in bulk media,” Appl. Phys. Lett. 85(7), 1113–1115 (2004).
[Crossref]

C. Corsi, A. Tortora, and M. Bellini, “Mutual coherence of supercontinuum pulses collinearly generated in bulk media,” Appl. Phys. B 77(2–3), 285–290 (2003).
[Crossref]

de Sterke, C. M.

Dudley, J. M.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Eda, G.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Eggleton, B. J.

Finot, C.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ghosh, S.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Jia, Y.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Jin, C.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Jones, A. M.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Karasawa, N.

K. Tada and N. Karasawa, “Single-beam coherent anti-Stokes Raman scattering spectroscopy using both pump and soliton Stokes pulses from a photonic crystal fiber,” Appl. Phys. Express 4(9), 092701 (2011).
[Crossref]

K. Tada and N. Karasawa, “Broadband coherent anti-Stokes Raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber,” Opt. Commun. 282(19), 3948–3952 (2009).
[Crossref]

K. Tada and N. Karasawa, “Broadband coherent anti-Stokes Raman scattering spectroscopy using pulse-phaper-controlled variable-vavelength soliton pulses from a photonic crystal fiber,” Jpn. J. Appl. Phys. 47(12R), 8825–8828 (2008).
[Crossref]

Kartazaev, V.

Kim, J.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Lin, D.-Y.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Meshulach, D.

Oron, D.

Park, J.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Park, T.-E.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Rigneault, H.

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Saigal, N.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Seyler, K. L.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 15(5), 1615–1619 (1998).
[Crossref]

Suh, J.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Tada, K.

K. Tada and N. Karasawa, “Single-beam coherent anti-Stokes Raman scattering spectroscopy using both pump and soliton Stokes pulses from a photonic crystal fiber,” Appl. Phys. Express 4(9), 092701 (2011).
[Crossref]

K. Tada and N. Karasawa, “Broadband coherent anti-Stokes Raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber,” Opt. Commun. 282(19), 3948–3952 (2009).
[Crossref]

K. Tada and N. Karasawa, “Broadband coherent anti-Stokes Raman scattering spectroscopy using pulse-phaper-controlled variable-vavelength soliton pulses from a photonic crystal fiber,” Jpn. J. Appl. Phys. 47(12R), 8825–8828 (2008).
[Crossref]

Tan, T. L.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[Crossref]

Tortora, A.

A. Tortora, C. Corsi, and M. Bellini, “Comb-like supercontinuum generation in bulk media,” Appl. Phys. Lett. 85(7), 1113–1115 (2004).
[Crossref]

C. Corsi, A. Tortora, and M. Bellini, “Mutual coherence of supercontinuum pulses collinearly generated in bulk media,” Appl. Phys. B 77(2–3), 285–290 (2003).
[Crossref]

Tran, V.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Walukiewicz, W.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Wang, F.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Wang, H.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Wang, X.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

A. M. Weiner, Ultrafast Optics (Wiley, 2009).
[Crossref]

Wong, Z. M.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Wu, J.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Xia, F.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Xu, X.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Yang, L.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Yelin, D.

Zeylikovich, I.

Zhao, H.

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Zhao, W.

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. Corsi, A. Tortora, and M. Bellini, “Mutual coherence of supercontinuum pulses collinearly generated in bulk media,” Appl. Phys. B 77(2–3), 285–290 (2003).
[Crossref]

Appl. Phys. Express (1)

K. Tada and N. Karasawa, “Single-beam coherent anti-Stokes Raman scattering spectroscopy using both pump and soliton Stokes pulses from a photonic crystal fiber,” Appl. Phys. Express 4(9), 092701 (2011).
[Crossref]

Appl. Phys. Lett. (1)

A. Tortora, C. Corsi, and M. Bellini, “Comb-like supercontinuum generation in bulk media,” Appl. Phys. Lett. 85(7), 1113–1115 (2004).
[Crossref]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

K. Tada and N. Karasawa, “Broadband coherent anti-Stokes Raman scattering spectroscopy using pulse-phaper-controlled variable-vavelength soliton pulses from a photonic crystal fiber,” Jpn. J. Appl. Phys. 47(12R), 8825–8828 (2008).
[Crossref]

Nat. Commun. (1)

J. Suh, T. L. Tan, W. Zhao, J. Park, D.-Y. Lin, T.-E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, “Reconfiguring crystal and electronic structures of MoS2 by substitutional doping,” Nat. Commun. 9(1), 199 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nat. Nanotechnol. 10(6), 517–521 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[Crossref]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

K. Tada and N. Karasawa, “Broadband coherent anti-Stokes Raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber,” Opt. Commun. 282(19), 3948–3952 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Science (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (3)

A. M. Weiner, Ultrafast Optics (Wiley, 2009).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier Science, 2013).

J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Temporal pulse shapes of a pulse resulting from splitting input pulse energy into two parts using linear spectral phase gradients (b) Simulated optical supercontinuum spectra from a nonlinear PCF pumped using 220 fs (FWHM) sech pulses with a peak power of 5 KW centred at a wavelength of 835 nm The black curve corresponds to the output in the absence of any spectral phase modulation on the input pulse. The lower pulse powers resulting from dividing the energy results in the narrowing of the supercontinuum. (c) A zoomed in version of the shaded region in (b), clearly indicating the spectral interference fringes. (d) Temporal pulse shapes resulting from sinusoidal spectral phase modulation of the input pulse. (e) Supercontinuum spectra computed using the pulse shapes in (d). (f) Zoomed in version of the shaded region in (e). Note that upon increasing the number of pulses in the train, the interference peaks become more intense and sharper.
Fig. 2
Fig. 2 The figure shows a schematic of the experimental setup. The light from a femtosecond laser oscillator passes through a Faraday isolator, following which it is compressed using a prism compressor (Pr1 and Pr2). The light is then directed to a Fourier transform spectral pulse shaper based on an SLM with two identical liquid crystal pixel arrays, which apply phases ϕA and ϕB respectively. The shaped pulses are then coupled into the highly nonlinear PCF. The output from this fiber is characterized using a grating based optical spectrometer.
Fig. 3
Fig. 3 (a) The variation of the PCF output optical spectrum around wavelength 700 nm as a result of dividing the input pulse into two by applying linear phase gradients. The larger the delay between the two input pulses, the shorter the separation in frequency between adjacent spectral maxima in the output pulse. (b) Spectra shown in (a) for τ = 0 fs, τ = 500 fs and τ = 1000 fs
Fig. 4
Fig. 4 (a) The variation of the output spectrum showing the effect of varying the sinusoidal modulation amplitude. At α ≈ 1.4, corresponding to three pulse copies of approximately equal energy, every alternate spectral maximum is enhanced. At α ≈ 2.6, there are two pairs of pulses. The overlap of the spectra of four pulses can give rise to peak intensities up to 8 times higher than the original supercontinuum intensity. (b) Variation of the position of the peaks in the spectrum for α = 1.4 by varying the modulation period T. The variation of the position of the spectral peaks is linear in T for small variations in T.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E x out ( ω ) = cos ( ϕ A ( ω ) ϕ B ( ω ) 2 ) exp ( i ϕ A ( ω ) + ϕ B ( ω ) 2 ) E x in ( ω )
ϕ A ( ω ) = β ( ω ω 0 ) 2 + ( ω ω 0 ) τ / 2 ϕ B ( ω ) = β ( ω ω 0 ) 2 ( ω ω 0 ) τ / 2
ϕ A ( ω ) = ϕ B ( ω ) = β ( ω ω 0 ) 2 + α cos ( T ( ω ω 0 ) )

Metrics