Abstract

A new approach to sub-phonon lifetime pulse compression by stimulated Brillouin scattering (SBS) is presented. Triangular and step pulse pumps are both used as a pump source in a single-cell SBS compression setup. Compared with a Gaussian pump (shortest compressed pulse is the phonon lifetime with the highest energy conversion, approximately 60% under the same conditions), the compression ratio is significantly improved in the case of triangular and step pulse pumps, and there is some improvement in the energy conversion when a step pulse pump is used. A pulse as short as a quarter of a phonon lifetime is produced by a triangular pulse pump, with an energy conversion above 30%. The pump pulse shape is identified as the key parameter in achieving sub-phonon lifetime pulse compression. By using a step pulse shape, a 4.5 ns pump pulses with a 60mJ at 1064-nm are compressed down to 292 ps (below semi-phonon-lifetime) in 3M Fluorinert Electronic Liquid FC-770 with an energy conversion above 65%. This work presents a route to reliable generation of sub-semi-phonon-lifetime pulses by SBS compression.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering

Zhaohong Liu, Yulei Wang, Zhenxu Bai, Yirui Wang, Duo Jin, Hongli Wang, Hang Yuan, Dianyang Lin, and Zhiwei Lu
Opt. Express 26(18) 23051-23060 (2018)

Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz

Viliam Kmetik, Henryk Fiedorowicz, Alexander A. Andreev, Klaus J. Witte, Hiroyuki Daido, Hisanori Fujita, Masahiro Nakatsuka, and Tatsuhiko Yamanaka
Appl. Opt. 37(30) 7085-7090 (1998)

Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression

Hang Yuan, Yulei Wang, Zhiwei Lu, Yirui Wang, Zhaohong Liu, Zhenxu Bai, Can Cui, Rui Liu, Hengkang Zhang, and Wuliji Hasi
Opt. Express 25(13) 14378-14388 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19(1), 011003 (2017).
    [Crossref]
  2. D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5(12), 516–518 (1980).
    [Crossref] [PubMed]
  3. Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
    [Crossref]
  4. C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
    [Crossref]
  5. A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
    [Crossref]
  6. H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25(03), 481–488 (2007).
    [Crossref]
  7. M. Matsumoto and G. Miyashita, “Efficiency and stability of pulse compression using SBS in a fiber with frequency shifted loopback,” IEEE Photonics Technol. Lett. 29(1), 3–6 (2017).
    [Crossref]
  8. H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, S. Kitamura, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
    [Crossref] [PubMed]
  9. C. B. Dane, W. A. Neuman, and L. A. Hackel, “Pulse-shape dependence of stimulated-Brillouin-scattering phase-conjugation fidelity for high input energies,” Opt. Lett. 17(18), 1271–1273 (1992).
    [Crossref] [PubMed]
  10. I. Velchev and W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71(4), 043810 (2005).
    [Crossref]
  11. I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(12), 1812–1816 (1999).
    [Crossref]
  12. X. Xu, C. Feng, and J. C. Diels, “Optimizing sub-ns pulse compression for high energy application,” Opt. Express 22(11), 13904–13915 (2014).
    [Crossref] [PubMed]
  13. C. Feng, X. Xu, and J.-C. Diels, “Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm,” Opt. Lett. 39(12), 3367–3370 (2014).
    [Crossref] [PubMed]
  14. C. Feng, X. Xu, and J. C. Diels, “High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids,” Opt. Express 25(11), 12421–12434 (2017).
    [Crossref] [PubMed]
  15. J. K. Hong and H. B. Du, “Prepulse technique for preserving the pulse shape of the stimulated Brillouin scattering,” Proc. SPIE 6454, 64540E (2007).
    [Crossref]
  16. K. Kuwahara, E. Takahashi, Y. Matsumoto, I. Matsushima, I. Okuda, S. Kato, and Y. Owadano, “High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge,” in Proceedings of SPIE (2001), pp. 155–158.
    [Crossref]
  17. Yuan Hang, Y Wang, Z Lu, Yirui Wang, Zhaohong Liu, Zhenxu Bai, Can Cui, Rui Liu, Hengkang Zhang, and Wuliji Hasi, “Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression,” Opt. Express 25, 14378 (2017).
    [Crossref] [PubMed]
  18. Z. Liu, Y. Wang, Y. Wang, H. Yuan, Z. Bai, H. Wang, R. Liu, S. Li, H. Zhang, L. Zhou, T. Tan, W. He, and Z. Lu, “Generation of high-energy 284 ps laser pulse without tail modulation by stimulated Brillouin scattering,” Chin. Opt. Lett. 14(9), 091901 (2016).
    [Crossref]
  19. Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
    [Crossref]
  20. S. F. Guo and Q. Li, “Numerical study for transient SBS process in transparent optical materials,” Wuli Xuebao 53, 99–104 (2004).
  21. H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
    [Crossref]
  22. S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator amplifier setup,” IEEE J. Quantum Electron. 33(3), 358–366 (1997).
    [Crossref]
  23. W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
    [Crossref]
  24. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  25. X. Zhu, Y. Wang, Z. Lu, and H. Zhang, “Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme,” Opt. Express 23(18), 23318–23328 (2015).
    [Crossref] [PubMed]

2017 (4)

2016 (2)

Z. Liu, Y. Wang, Y. Wang, H. Yuan, Z. Bai, H. Wang, R. Liu, S. Li, H. Zhang, L. Zhou, T. Tan, W. He, and Z. Lu, “Generation of high-energy 284 ps laser pulse without tail modulation by stimulated Brillouin scattering,” Chin. Opt. Lett. 14(9), 091901 (2016).
[Crossref]

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

2015 (1)

2014 (2)

2012 (1)

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

2009 (1)

2007 (2)

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25(03), 481–488 (2007).
[Crossref]

J. K. Hong and H. B. Du, “Prepulse technique for preserving the pulse shape of the stimulated Brillouin scattering,” Proc. SPIE 6454, 64540E (2007).
[Crossref]

2006 (2)

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

2005 (1)

I. Velchev and W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71(4), 043810 (2005).
[Crossref]

2004 (1)

S. F. Guo and Q. Li, “Numerical study for transient SBS process in transparent optical materials,” Wuli Xuebao 53, 99–104 (2004).

1999 (1)

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

1997 (1)

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator amplifier setup,” IEEE J. Quantum Electron. 33(3), 358–366 (1997).
[Crossref]

1994 (2)

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

1992 (1)

1980 (1)

Bai, Z.

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

Z. Liu, Y. Wang, Y. Wang, H. Yuan, Z. Bai, H. Wang, R. Liu, S. Li, H. Zhang, L. Zhou, T. Tan, W. He, and Z. Lu, “Generation of high-energy 284 ps laser pulse without tail modulation by stimulated Brillouin scattering,” Chin. Opt. Lett. 14(9), 091901 (2016).
[Crossref]

Bai, Zhenxu

Brown, B.

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

Cui, Can

Dane, C.

C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

Dane, C. B.

Diels, J. C.

Diels, J.-C.

Du, H. B.

J. K. Hong and H. B. Du, “Prepulse technique for preserving the pulse shape of the stimulated Brillouin scattering,” Proc. SPIE 6454, 64540E (2007).
[Crossref]

Fan, R.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

Fan, R. Q.

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

Feng, C.

Fujinoki, A.

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25(03), 481–488 (2007).
[Crossref]

Fujita, H.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, S. Kitamura, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
[Crossref] [PubMed]

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25(03), 481–488 (2007).
[Crossref]

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

Garmire, E.

E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19(1), 011003 (2017).
[Crossref]

Guo, S. F.

S. F. Guo and Q. Li, “Numerical study for transient SBS process in transparent optical materials,” Wuli Xuebao 53, 99–104 (2004).

Guo, X.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

Hackel, L.

C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

Hackel, L. A.

Hang, Yuan

Hasi, W.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

Hasi, Wuliji

Hatae, T.

He, W.

Z. Liu, Y. Wang, Y. Wang, H. Yuan, Z. Bai, H. Wang, R. Liu, S. Li, H. Zhang, L. Zhou, T. Tan, W. He, and Z. Lu, “Generation of high-energy 284 ps laser pulse without tail modulation by stimulated Brillouin scattering,” Chin. Opt. Lett. 14(9), 091901 (2016).
[Crossref]

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

He, W. M.

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

Hogervorst, W.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator amplifier setup,” IEEE J. Quantum Electron. 33(3), 358–366 (1997).
[Crossref]

Hon, D. T.

Hong, J. K.

J. K. Hong and H. B. Du, “Prepulse technique for preserving the pulse shape of the stimulated Brillouin scattering,” Proc. SPIE 6454, 64540E (2007).
[Crossref]

Kato, S.

K. Kuwahara, E. Takahashi, Y. Matsumoto, I. Matsushima, I. Okuda, S. Kato, and Y. Owadano, “High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge,” in Proceedings of SPIE (2001), pp. 155–158.
[Crossref]

Kitamura, S.

Kuwahara, K.

K. Kuwahara, E. Takahashi, Y. Matsumoto, I. Matsushima, I. Okuda, S. Kato, and Y. Owadano, “High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge,” in Proceedings of SPIE (2001), pp. 155–158.
[Crossref]

Li, Q.

S. F. Guo and Q. Li, “Numerical study for transient SBS process in transparent optical materials,” Wuli Xuebao 53, 99–104 (2004).

Li, S.

Li, S. S.

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

Li, X.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

Lim, C.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

Lin, D.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

Liu, R.

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

Z. Liu, Y. Wang, Y. Wang, H. Yuan, Z. Bai, H. Wang, R. Liu, S. Li, H. Zhang, L. Zhou, T. Tan, W. He, and Z. Lu, “Generation of high-energy 284 ps laser pulse without tail modulation by stimulated Brillouin scattering,” Chin. Opt. Lett. 14(9), 091901 (2016).
[Crossref]

Liu, Rui

Liu, Z.

Liu, Z. H.

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

Liu, Zhaohong

Lu, Z

Lu, Z.

Lu, Z. W.

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

Lü, Z.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

Mamin, A.

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

Matsumoto, M.

M. Matsumoto and G. Miyashita, “Efficiency and stability of pulse compression using SBS in a fiber with frequency shifted loopback,” IEEE Photonics Technol. Lett. 29(1), 3–6 (2017).
[Crossref]

Matsumoto, Y.

K. Kuwahara, E. Takahashi, Y. Matsumoto, I. Matsushima, I. Okuda, S. Kato, and Y. Owadano, “High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge,” in Proceedings of SPIE (2001), pp. 155–158.
[Crossref]

Matsushima, I.

K. Kuwahara, E. Takahashi, Y. Matsumoto, I. Matsushima, I. Okuda, S. Kato, and Y. Owadano, “High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge,” in Proceedings of SPIE (2001), pp. 155–158.
[Crossref]

Mitra, A.

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

Miyashita, G.

M. Matsumoto and G. Miyashita, “Efficiency and stability of pulse compression using SBS in a fiber with frequency shifted loopback,” IEEE Photonics Technol. Lett. 29(1), 3–6 (2017).
[Crossref]

Nakatsuka, M.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, S. Kitamura, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
[Crossref] [PubMed]

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25(03), 481–488 (2007).
[Crossref]

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

Neshev, D.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

Neuman, W.

C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

Neuman, W. A.

Nielsen, P.

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

Nizienko, Y.

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

Okuda, I.

K. Kuwahara, E. Takahashi, Y. Matsumoto, I. Matsushima, I. Okuda, S. Kato, and Y. Owadano, “High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge,” in Proceedings of SPIE (2001), pp. 155–158.
[Crossref]

Owadano, Y.

K. Kuwahara, E. Takahashi, Y. Matsumoto, I. Matsushima, I. Okuda, S. Kato, and Y. Owadano, “High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge,” in Proceedings of SPIE (2001), pp. 155–158.
[Crossref]

Park, H.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

Qiao, Z.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

Schiemann, S.

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator amplifier setup,” IEEE J. Quantum Electron. 33(3), 358–366 (1997).
[Crossref]

Takahashi, E.

K. Kuwahara, E. Takahashi, Y. Matsumoto, I. Matsushima, I. Okuda, S. Kato, and Y. Owadano, “High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge,” in Proceedings of SPIE (2001), pp. 155–158.
[Crossref]

Tan, T.

Ubachs, W.

I. Velchev and W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71(4), 043810 (2005).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator amplifier setup,” IEEE J. Quantum Electron. 33(3), 358–366 (1997).
[Crossref]

Ueda, T.

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25(03), 481–488 (2007).
[Crossref]

Velchev, I.

I. Velchev and W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71(4), 043810 (2005).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

Wang, H.

Wang, H. L.

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

Wang, Y

Wang, Y.

Wang, Y. L.

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

Wang, Yirui

Xu, X.

Yoshida, H.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, S. Kitamura, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
[Crossref] [PubMed]

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25(03), 481–488 (2007).
[Crossref]

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

Yuan, H.

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

Z. Liu, Y. Wang, Y. Wang, H. Yuan, Z. Bai, H. Wang, R. Liu, S. Li, H. Zhang, L. Zhou, T. Tan, W. He, and Z. Lu, “Generation of high-energy 284 ps laser pulse without tail modulation by stimulated Brillouin scattering,” Chin. Opt. Lett. 14(9), 091901 (2016).
[Crossref]

Zhang, H.

Zhang, Hengkang

Zhong, Z.

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

Zhou, L.

Zhu, X.

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (3)

C. Dane, W. Neuman, and L. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator amplifier setup,” IEEE J. Quantum Electron. 33(3), 358–366 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Matsumoto and G. Miyashita, “Efficiency and stability of pulse compression using SBS in a fiber with frequency shifted loopback,” IEEE Photonics Technol. Lett. 29(1), 3–6 (2017).
[Crossref]

Jpn. J. Appl. Phys. (2)

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

Laser Part. Beams (2)

H. Yoshida, H. Fujita, M. Nakatsuka, T. Ueda, and A. Fujinoki, “Temporal compression by stimulated Brillouin scattering of q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength,” Laser Part. Beams 25(03), 481–488 (2007).
[Crossref]

Z. H. Liu, Y. L. Wang, H. L. Wang, H. Yuan, R. Liu, S. S. Li, Z. Bai, R. Q. Fan, W. M. He, and Z. W. Lu, “Tail modulation suppression in the process of high-energy stimulated Brillouin scattering pulse compression,” Laser Part. Beams 34(03), 513–518 (2016).
[Crossref]

New J. Phys. (1)

E. Garmire, “Perspectives on stimulated Brillouin scattering,” New J. Phys. 19(1), 011003 (2017).
[Crossref]

Opt. Commun. (1)

W. Hasi, Z. Zhong, Z. Qiao, X. Guo, X. Li, D. Lin, W. He, R. Fan, and Z. Lü, “The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering,” Opt. Commun. 285(16), 3541–3544 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (1)

I. Velchev and W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71(4), 043810 (2005).
[Crossref]

Proc. SPIE (1)

J. K. Hong and H. B. Du, “Prepulse technique for preserving the pulse shape of the stimulated Brillouin scattering,” Proc. SPIE 6454, 64540E (2007).
[Crossref]

Rev. Sci. Instrum. (1)

Y. Nizienko, A. Mamin, P. Nielsen, and B. Brown, “300 ps ruby laser using stimulated Brillouin scattering pulse compression,” Rev. Sci. Instrum. 65(8), 2460–2463 (1994).
[Crossref]

Wuli Xuebao (1)

S. F. Guo and Q. Li, “Numerical study for transient SBS process in transparent optical materials,” Wuli Xuebao 53, 99–104 (2004).

Other (2)

K. Kuwahara, E. Takahashi, Y. Matsumoto, I. Matsushima, I. Okuda, S. Kato, and Y. Owadano, “High-intensity pulse generation by saturated amplification of Stokes pulse with steep leading edge,” in Proceedings of SPIE (2001), pp. 155–158.
[Crossref]

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Oscilloscope trace of (a) Gaussian pump (b) Output triangular pulse generated by the FC-770 (c) Output step pulse generated by FC-70
Fig. 2
Fig. 2 Schematic of experimental setup for (a) special waveform generator and (b) single-pass SBS compressor.
Fig. 3
Fig. 3 Gaussian pump in FC-770 using a single-cell setup. (a) Typical measured temporal waveforms of output pulse, and (b) SBS energy conversion.
Fig. 4
Fig. 4 (a) Pulse duration evolution of compressed pulses across the entire beam with respect to input energy in the case of a triangular pump in FC-770 using single-cell setup. Solid circles denote measurements of output duration. Error bar shows the maximum deviation of pulse duration from the mean value. Three insets show typical compressed pulse shapes for corresponding input energy. (b) Shape of 165-ps output pulse sampled at the beam center with 12-mJ input energy.
Fig. 5
Fig. 5 Experimentally measured dependence of system energy efficiency on pump energy of triangular pump.
Fig. 6
Fig. 6 Experimentally measured dependence of system energy efficiency on pump energy of step pulse pump.
Fig. 7
Fig. 7 SBS pulse compression of nanosecond step pulses in FC-770 at 1064 nm. (a) Experimentally measured dependence of compressed pulse duration on the input pulse energy; the inset shows the detail view. Compressed pulse shape when the pump energy (b) just enters gain saturation region [27 mJ in (a)], (c) is fully into gain saturation region [43 mJ in (a)], and (d) is deep into gain saturation region [62 mJ in (a)].

Tables (1)

Tables Icon

Table 1 Parameters of SBS medium used in experiments.

Metrics