Abstract

We demonstrate an enhancement mechanism and thermal model for intra-cavity pumped lasers, where resonance enhancement in intra-cavity pumped Ho laser was achieved by manipulating the wavelength-drift nature of the Tm laser for the first time. Optical conversion efficiency of 37.5% from an absorbed 785 nm diode laser to a Ho laser was obtained with a maximum output power of 7.51 W at 2122 nm, which is comparable to the conversion efficiency in 1.9 μm LD pumped Ho lasers. Meanwhile, more severe thermal effects in the Ho-doped gain medium than the Tm-doped one at high power operation were verified based on the built thermal model. This work benefits the design or evaluation of intra-cavity pumped lasers, and the resonance enhancement originated from the difference in reabsorption loss between stark levels at the lasing manifolds of quasi-three-level rare-earth ions has great interest to improve the existing intra-cavity pumped lasers or explore novel lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient 2122  nm Ho:YAG laser intra-cavity pumped by a narrowband-diode-pumped Tm:YAG laser

Haizhou Huang, Jianhong Huang, Huagang Liu, Jinhui Li, Shutao Dai, Wen Weng, and Wenxiong Lin
Opt. Lett. 41(17) 3952-3955 (2016)

Direct 800 nm diode-pumped Holmium laser with broad pump wavelength range and temperature adaptability

Haizhou Huang, Jing Deng, Yan Ge, Jinhui Li, Jianhong Huang, Wen Weng, Jinming Chen, Zhi Zhang, and Wenxiong Lin
Opt. Express 27(9) 13492-13502 (2019)

Intra-cavity side-pumped Ho:YAG laser

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. C. Terry
Opt. Express 14(22) 10481-10487 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. Cha, K. P. Chan, and D. K. Killinger, “Tunable 2.1-µm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles,” Appl. Opt. 30(27), 3938–3943 (1991).
    [Crossref] [PubMed]
  2. M. F. Dillingham, J. M. Price, and G. S. Fanton, “Holmium laser surgery,” Orthopedics 16(5), 563–566 (1993).
    [PubMed]
  3. P. G. Schunemann, “New Nonlinear Crystals for the Mid-Infrared,” in Nonlinear Optics, OSA Technical Digest 2017 (Optical Society of America, 2017), paper NTu2A.1.
  4. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
    [Crossref] [PubMed]
  5. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  6. G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996).
    [Crossref]
  7. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
    [Crossref]
  8. T. Zhao, Y. Wang, D. Shen, J. Zhang, D. Tang, and H. Chen, “Continuous-wave and Q-switched operation of a resonantly pumped polycrystalline ceramic Ho:LuAG laser,” Opt. Express 22(16), 19014–19020 (2014).
    [Crossref] [PubMed]
  9. E. Ji, Q. Liu, M. Nie, X. Cao, X. Fu, and M. Gong, “High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode,” Opt. Lett. 41(6), 1237–1240 (2016).
    [Crossref] [PubMed]
  10. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett. 37(4), 515–517 (2012).
    [Crossref] [PubMed]
  11. A. Berrou, T. Ibach, and M. Eichhorn, “High-energy resonantly diode-pumped Q-switched Ho3+: YAG laser,” Appl. Phys. B 120(1), 105–110 (2015).
    [Crossref]
  12. R. A. Hayward, W. A. Clarkson, and D. C. Hanna, “High-Power Diode-Pumped Room-Temperature Tm:YAG and Intracavity-Pumped Ho:YAG Lasers,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MB8.
  13. M. Schellhorn, A. Hirth, and C. Kieleck, “Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser,” Opt. Lett. 28(20), 1933–1935 (2003).
    [Crossref] [PubMed]
  14. G. L. Zhu, X. D. He, B. Q. Yao, and Y. Z. Wang, “Ho:YAP laser intra-cavity pumped by a diode-pumped Tm:YLF laser,” Laser Phys. 23(1), 015002 (2013).
    [Crossref]
  15. J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
    [Crossref]
  16. X. T. Yang, E. Z. Song, and W. Q. Xie, “Compact resonantly intra-cavity pumped tunable Ho: Sc2SiO5 laser,” Infrared Phys. Technol. 85, 154–156 (2017).
    [Crossref]
  17. H. Huang, J. Huang, H. Liu, J. Li, S. Dai, W. Weng, and W. Lin, “Efficient 2122 nm Ho:YAG laser intra-cavity pumped by a narrowband-diode-pumped Tm:YAG laser,” Opt. Lett. 41(17), 3952–3955 (2016).
    [Crossref] [PubMed]
  18. J. Kong, D. Y. Tang, J. Lu, and K. Ueda, “Random-wavelength solid-state laser,” Opt. Lett. 29(1), 65–67 (2004).
    [Crossref] [PubMed]
  19. H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
    [Crossref]
  20. C. Li, J. Song, D. Shen, N. S. Kim, K. Ueda, Y. Huo, S. He, and Y. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4(1), 12–18 (1999).
    [Crossref] [PubMed]
  21. D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
    [Crossref]
  22. H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
    [Crossref]
  23. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
    [Crossref]
  24. D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 36(4A), A954–A957 (1964).
    [Crossref]
  25. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  26. C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
    [Crossref]

2018 (1)

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

2017 (1)

X. T. Yang, E. Z. Song, and W. Q. Xie, “Compact resonantly intra-cavity pumped tunable Ho: Sc2SiO5 laser,” Infrared Phys. Technol. 85, 154–156 (2017).
[Crossref]

2016 (3)

2015 (2)

A. Berrou, T. Ibach, and M. Eichhorn, “High-energy resonantly diode-pumped Q-switched Ho3+: YAG laser,” Appl. Phys. B 120(1), 105–110 (2015).
[Crossref]

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

2014 (1)

2013 (1)

G. L. Zhu, X. D. He, B. Q. Yao, and Y. Z. Wang, “Ho:YAP laser intra-cavity pumped by a diode-pumped Tm:YLF laser,” Laser Phys. 23(1), 015002 (2013).
[Crossref]

2012 (2)

2011 (1)

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

2008 (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

2004 (1)

2003 (1)

2000 (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

1999 (1)

1998 (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref] [PubMed]

1996 (1)

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996).
[Crossref]

1994 (1)

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

1993 (1)

M. F. Dillingham, J. M. Price, and G. S. Fanton, “Holmium laser surgery,” Orthopedics 16(5), 563–566 (1993).
[PubMed]

1991 (1)

1964 (1)

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 36(4A), A954–A957 (1964).
[Crossref]

Aguiló, M.

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref] [PubMed]

Berrou, A.

A. Berrou, T. Ibach, and M. Eichhorn, “High-energy resonantly diode-pumped Q-switched Ho3+: YAG laser,” Appl. Phys. B 120(1), 105–110 (2015).
[Crossref]

Bo, Y.

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

Budni, P. A.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Cao, D.

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

Cao, X.

Cao, Y.

Cha, S.

Chan, K. P.

Chen, H.

Chicklis, E. P.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Cui, D.

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

Dai, S.

Dai, S. T.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

Deng, J.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

Díaz, F.

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

Dillingham, M. F.

M. F. Dillingham, J. M. Price, and G. S. Fanton, “Holmium laser surgery,” Orthopedics 16(5), 563–566 (1993).
[PubMed]

Du, S.

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

Eichhorn, M.

A. Berrou, T. Ibach, and M. Eichhorn, “High-energy resonantly diode-pumped Q-switched Ho3+: YAG laser,” Appl. Phys. B 120(1), 105–110 (2015).
[Crossref]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

Fanton, G. S.

M. F. Dillingham, J. M. Price, and G. S. Fanton, “Holmium laser surgery,” Orthopedics 16(5), 563–566 (1993).
[PubMed]

Fu, X.

Fuhrberg, P.

Gao, P.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

Ge, Y.

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

Gong, M.

Griebner, U.

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

Gruber, R.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

Guo, Y.

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

He, S.

He, X. D.

G. L. Zhu, X. D. He, B. Q. Yao, and Y. Z. Wang, “Ho:YAP laser intra-cavity pumped by a diode-pumped Tm:YLF laser,” Laser Phys. 23(1), 015002 (2013).
[Crossref]

Hirth, A.

Huang, H.

Huang, H. Z.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

Huang, J.

Huang, J. H.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

Huo, Y.

Ibach, T.

A. Berrou, T. Ibach, and M. Eichhorn, “High-energy resonantly diode-pumped Q-switched Ho3+: YAG laser,” Appl. Phys. B 120(1), 105–110 (2015).
[Crossref]

Ji, E.

Kieleck, C.

Killinger, D. K.

Kim, N. S.

Kong, J.

Koopmann, P.

Kuleshov, N. V.

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

Lamrini, S.

Lemons, M. L.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Li, C.

Li, J.

Li, J. H.

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

Lin, W.

Lin, W. X.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

Lin, Z. X.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

Liu, H.

Liu, H. G.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

Liu, Q.

Loiko, P. A.

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

Lu, J.

Mateos, X.

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 36(4A), A954–A957 (1964).
[Crossref]

Merazzi, S.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

Mosto, J. R.

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Nie, M.

Peng, Q.

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

Petrov, V.

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

Pfistner, C.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Price, J. M.

M. F. Dillingham, J. M. Price, and G. S. Fanton, “Holmium laser surgery,” Orthopedics 16(5), 563–566 (1993).
[PubMed]

Ruan, K. M.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

Rustad, G.

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996).
[Crossref]

Schäfer, M.

Schellhorn, M.

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Scholle, K.

Serres, J. M.

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

Shen, D.

Song, E. Z.

X. T. Yang, E. Z. Song, and W. Q. Xie, “Compact resonantly intra-cavity pumped tunable Ho: Sc2SiO5 laser,” Infrared Phys. Technol. 85, 154–156 (2017).
[Crossref]

Song, J.

Stenersen, K.

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996).
[Crossref]

Tang, D.

Tang, D. Y.

Ueda, K.

Wang, J.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

Wang, Y.

Wang, Y. Z.

G. L. Zhu, X. D. He, B. Q. Yao, and Y. Z. Wang, “Ho:YAP laser intra-cavity pumped by a diode-pumped Tm:YLF laser,” Laser Phys. 23(1), 015002 (2013).
[Crossref]

Weber, H. P.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

Weber, R.

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

Weng, W.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

H. Huang, J. Huang, H. Liu, J. Li, S. Dai, W. Weng, and W. Lin, “Efficient 2122 nm Ho:YAG laser intra-cavity pumped by a narrowband-diode-pumped Tm:YAG laser,” Opt. Lett. 41(17), 3952–3955 (2016).
[Crossref] [PubMed]

Xie, W. Q.

X. T. Yang, E. Z. Song, and W. Q. Xie, “Compact resonantly intra-cavity pumped tunable Ho: Sc2SiO5 laser,” Infrared Phys. Technol. 85, 154–156 (2017).
[Crossref]

Xu, J.

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

Xu, Z.

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

Yang, J.

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

Yang, X. T.

X. T. Yang, E. Z. Song, and W. Q. Xie, “Compact resonantly intra-cavity pumped tunable Ho: Sc2SiO5 laser,” Infrared Phys. Technol. 85, 154–156 (2017).
[Crossref]

Yao, B. Q.

G. L. Zhu, X. D. He, B. Q. Yao, and Y. Z. Wang, “Ho:YAP laser intra-cavity pumped by a diode-pumped Tm:YLF laser,” Laser Phys. 23(1), 015002 (2013).
[Crossref]

Yumashev, K. V.

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

Zhang, J.

T. Zhao, Y. Wang, D. Shen, J. Zhang, D. Tang, and H. Chen, “Continuous-wave and Q-switched operation of a resonantly pumped polycrystalline ceramic Ho:LuAG laser,” Opt. Express 22(16), 19014–19020 (2014).
[Crossref] [PubMed]

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

Zhao, T.

Zheng, H.

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

Zhu, G. L.

G. L. Zhu, X. D. He, B. Q. Yao, and Y. Z. Wang, “Ho:YAP laser intra-cavity pumped by a diode-pumped Tm:YLF laser,” Laser Phys. 23(1), 015002 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (4)

A. Berrou, T. Ibach, and M. Eichhorn, “High-energy resonantly diode-pumped Q-switched Ho3+: YAG laser,” Appl. Phys. B 120(1), 105–110 (2015).
[Crossref]

J. M. Serres, P. A. Loiko, X. Mateos, K. V. Yumashev, N. V. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser,” Appl. Phys. B 120(1), 123–128 (2015).
[Crossref]

D. Cao, Q. Peng, S. Du, J. Xu, Y. Guo, J. Yang, Y. Bo, J. Zhang, D. Cui, and Z. Xu, “A 200 W diode-side-pumped CW 2 μm Tm:YAG laser with water cooling at 8°C,” Appl. Phys. B 103(1), 83–88 (2011).
[Crossref]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Pfistner, R. Weber, H. P. Weber, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994).
[Crossref]

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32(9), 1645–1656 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, “High-power/high-brightness diode-pumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers,” IEEE J. Sel. Top. Quantum Electron. 6(4), 629–635 (2000).
[Crossref]

Infrared Phys. Technol. (1)

X. T. Yang, E. Z. Song, and W. Q. Xie, “Compact resonantly intra-cavity pumped tunable Ho: Sc2SiO5 laser,” Infrared Phys. Technol. 85, 154–156 (2017).
[Crossref]

Laser Phys. (1)

G. L. Zhu, X. D. He, B. Q. Yao, and Y. Z. Wang, “Ho:YAP laser intra-cavity pumped by a diode-pumped Tm:YLF laser,” Laser Phys. 23(1), 015002 (2013).
[Crossref]

Laser Phys. Lett. (1)

H. Z. Huang, J. H. Huang, H. G. Liu, S. T. Dai, W. Weng, H. Zheng, Y. Ge, J. H. Li, J. Deng, and W. X. Lin, “High-efficiency Tm-doped yttrium aluminum garnet laser pumped with a wavelength-locked laser diode,” Laser Phys. Lett. 13(9), 095001 (2016).
[Crossref]

Meas. Sci. Technol. (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Orthopedics (1)

M. F. Dillingham, J. M. Price, and G. S. Fanton, “Holmium laser surgery,” Orthopedics 16(5), 563–566 (1993).
[PubMed]

Phys. Rev. (1)

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 36(4A), A954–A957 (1964).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

H. Z. Huang, P. Gao, H. G. Liu, J. H. Huang, J. Wang, K. M. Ruan, W. Weng, H. Zheng, S. T. Dai, Z. X. Lin, J. Deng, and W. X. Lin, “Validation of spectrum method for improving efficiency of continuous-wave & Q-switched Tm-doped yttrium aluminum garnet laser,” Sci. China Phys. Mech. Astron. 60(3), 034221 (2018).
[Crossref]

Other (3)

R. A. Hayward, W. A. Clarkson, and D. C. Hanna, “High-Power Diode-Pumped Room-Temperature Tm:YAG and Intracavity-Pumped Ho:YAG Lasers,” in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000), paper MB8.

P. G. Schunemann, “New Nonlinear Crystals for the Mid-Infrared,” in Nonlinear Optics, OSA Technical Digest 2017 (Optical Society of America, 2017), paper NTu2A.1.

W. Koechner, Solid State Laser Engineering (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Layout of the intra-cavity resonant Ho laser (FS: focus system; OSA: optical spectrum analyzer; BA: beam quality analyzer). (b) Energy transition of Tm3+ and Ho3+ ions during the resonance process (RA: resonance absorption), where Tm laser wavelength drifts from 2013 nm toward 2020 nm with the increased re-absorption loss at lower stark levels.
Fig. 2
Fig. 2 Output power curves with slope efficiency fitting for Tm lasers and the corresponding intra-cavity pumped Ho lasers (SE: slope efficiency): (a)Using the composite Tm:YAG with gain medium length of 6 mm; (b) Using the non-composite 10 mm long crystal.
Fig. 3
Fig. 3 (a-d) Emission spectra of Tm lasers and Ho lasers at different output powers: (a) Composite Tm:YAG laser with gain medium length of 6 mm (drifting from 2013.08 nm to 2014.55 nm); (b) Ho laser using the 6 mm long Tm:YAG crystal (stabling at 2122.2 nm ± 0.2 nm); (c) Tm:YAG laser with crystal length of 10 mm (drifting from 2014.01 nm to 2016.9 nm); (d) Ho laser using the 10 mm long Tm:YAG crystal (stabling at 2122.2 nm ± 0.2 nm). (e, f) Gain cross section of the 3.5at.% Tm:YAG and 0.6at.% Ho:YAG respectively, where β denotes the proportion of doped ions (Tm3+ or Ho3+) that occupy the upper lasing manifolds.
Fig. 4
Fig. 4 (a) Absorption spectra of Tm:YAG and Ho:YAG crystals and wavelength drift bands for Tm lasers with different gain medium lengths. (b) Calculated efficient absorption coefficients for Ho:YAG due to the spectral overlap between Tm laser spectrum and absorption band of Ho:YAG.
Fig. 5
Fig. 5 (a) The fluorescence lifetime signals at excitation wavelength from 2010 nm to 2020 nm. (b) Excitation spectrum of Ho:YAG (Inset: view of the excitation side band with emission spectra of Tm lasers at each maximum output power Pmax.). (c) Relative excitation efficiencies for Ho:YAG with Tm doped gain medium lengths of 6 mm and 10 mm respectively.
Fig. 6
Fig. 6 (a) Original cavity and the equivalent cavity, where evolution in intensity of the confined Tm laser is depicted; (b) Calculated Tm laser cavity mode waist ω0 [mm] with the changes of thermal focus lengths in Tm:YAG and Ho:YAG crystals, where the blue area denotes the unstable zone, red star (14.9 m−1, 23.86 m−1) and red circle (17.43 m−1, 29.41 m−1) denote ω0 at the maximum Ho laser output powers when using the 6 mm long and 10 mm long Tm doped gain media respectively. ω0 was obtained by matching the equivalent cavity results in thermal lenses with that from the thermal model, and thermal lens parameters presented here is reciprocal of the thermal focus length with unit of 1/m.
Fig. 7
Fig. 7 Evolution in beam quality at different output powers and cavity temperature distribution at the maximum output power of intra-cavity resonant Ho lasers. (a) and (c): with the 6 mm long Tm doped gain medium; (b) and (d): with the 10 mm long one, where the combined thermal focus lengths are 28 mm in (c) and 23.5 mm in (d), respectively.

Tables (1)

Tables Icon

Table 1 Tm Laser Pump Parameters at Maximum Ho Laser Output Powers

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ g ( λ ) = β σ e ( λ ) ( 1 β ) σ a ( λ ) .
σ e ( λ ) = σ a ( λ ) exp ( h c K B T e ( 1 λ 1 λ μ ) ) .
α Ho, e f f ( λ Tm ) = Δ λ Tm α Ho ( λ ) e Tm ( λ ) d λ Δ λ Tm e Tm ( λ ) d λ .
η e ( λ Tm , Δ λ Tm ) = A Δ λ Tm E Ho ( λ ) e Tm ( λ ) d λ Δ λ Tm e Tm ( λ ) d λ .
f C = f T m f H o f T m + f H o ( L 2 + h 2 + h 1 ) .
h 3 = h 1 + ( L 2 + h 1 + h 2 ) f T m f T m + f H o ( L 2 + h 2 + h 1 ) .
h 3 ' = h 2 + ( L 2 + h 1 + h 2 ) f H o f T m + f H o ( L 2 + h 2 + h 1 ) .
P int r a Ho = P o u t Ho ( 2 T ) T .
P int r a Tm η a η s η e + ( P int r a Tm P int r a Tm η a ) R 2 Tm η a η s η e = P int r a Ho .

Metrics