Abstract

In this paper we present two resource allocations techniques in a visible light communication network with overlapping coverage areas due to the use of access points. Particularly, the first approach exploits the rate maximization criteria, and then aims at maximizing the network rate under constraints on minimum and maximum rates, while the other procedure focuses on achieving fairness in the rate of each user accessing the network. The proposed system relays on optical code division multiple access mechanism, and resource allocation is intended in terms of codes assigned to a given user. Simulation results have been addressed in terms of achievable data rates, outage probability and percentage of accessing users.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of indoor VLC network downlink scheduling and resource allocation

Yan Chen, Anthony E. Kelly, and John H. Marsh
Opt. Express 24(23) 26838-26850 (2016)

User-centric quality of experience optimized resource allocation algorithm in VLC network with multi-color LED

Xu Bao, Xinxin Gu, and Wence Zhang
Opt. Express 26(21) 27826-27841 (2018)

Adaptive WHTS-Assisted SDMA-OFDM Scheme for Fair Resource Allocation in Multi-User Visible Light Communications

Oswaldo González, Marcos F. Guerra-Medina, Inocencio R. Martín, Francisco Delgado, and Rafael Pérez-Jiménez
J. Opt. Commun. Netw. 8(6) 427-440 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
    [Crossref]
  2. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
    [Crossref]
  3. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50, 100–107 (2004).
    [Crossref]
  4. V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.
  5. S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi(Cambridge University, 2015).
    [Crossref]
  6. J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light leds,” ECOC 2007 (2007).
  7. M. Biagi, T. Borogovac, and T. D. Little, “Adaptive receiver for indoor visible light communications,” J. Lightwave Technol. 31, 3676–3686 (2013).
    [Crossref]
  8. S. K. Wilson and J. Holliday, “Scheduling methods for multi-user optical wireless asymmetrically-clipped OFDM,” J. Commun. Netw. 13, 655–663 (2011).
    [Crossref]
  9. D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol. 32, 1594–1600 (2014).
    [Crossref]
  10. R. K. Mondal, N. Saha, N.-T. Le, and Y. M. Jang, “SINR-constrained joint scheduling and optimal resource allocation in VLC based WPAN system,” Wireless Personal Commun. 78, 1935–1951 (2014).
    [Crossref]
  11. B. Ghimire and H. Haas, “Self-organising interference coordination in optical wireless networks,” EURASIP J. Wireless Commun. Netw. 2012, 1–15 (2012).
    [Crossref]
  12. C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightwave Technol. 33, 3986–4000 (2015).
    [Crossref]
  13. L. Chen, W. Wang, and C. Zhang, “Coalition formation for interference management in visible light communication networks,” IEEE Transactions on Vehicular Technology 66(8, 7278–7285 (2017).
  14. P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tutorials 17, 2047–2077 (2015).
    [Crossref]
  15. S. D. Lausnay, L. D. Strycker, J. P. Goemaere, N. Stevens, and B. Nauwelaers, “Optical cdma codes for an indoor localization system using vlc,” in “2014 3rd International Workshop in Optical Wireless Communications (IWOW),” (2014), pp. 50–54.
  16. C. He, L. liang Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” in “2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD),” (2015), pp. 27–32.
  17. M. F. Guerra-Medina, B. Rojas-Guillama, O. Gonzalez, J. A. Martin-Gonzalez, E. Poves, and F. J. Lopez-Hernandez, “Experimental optical code-division multiple access system for visible light communications,” in “2011 Wireless Telecommunications Symposium (WTS),” (2011), pp. 1–6.
  18. Y. A. Chen, Y. T. Chang, Y. C. Tseng, and W. T. Chen, “A framework for simultaneous message broadcasting using cdma-based visible light communications,” IEEE Sensors J. 15, 6819–6827 (2015).
    [Crossref]
  19. Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” in “2016 IEEE 6th International Conference on Photonics (ICP),” (2016), pp. 1–3.
  20. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
    [Crossref]
  21. S. Rajagopal, R. D. Roberts, and S. K. Lim, “Ieee 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50, 72–82 (2012).
    [Crossref]
  22. M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier cdma for indoor visible light communications,” IEEE/OSA J. Opt. Commun. Netw. 7, 554–562 (2015).
    [Crossref]
  23. H. Qian, S. C. Dai, S. Zhao, S. Z. Cai, and H. Zhang, “A robust cdma vlc system against front-end nonlinearity,” IEEE Photonics J. 7, 1–9 (2015).
  24. S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photonics J. 6, 1–6 (2014).
    [Crossref]
  25. M. Hammouda, J. Peissig, and A. M. Vegni, “Design of a cognitive VLC network with illumination and handover requirements,” arXiv preprint arXiv:1702.07109 (2017).
  26. “4-Wavelength high-power LED head,” https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=3836 .
  27. A. K. Jain, Fundamentals of digital image processing(Prentice-Hall, Inc., 1989).
  28. Hamamatsu, “46-element Si photodiode array for UV to NIR (Accessed June 2017),”.
  29. P. M. Butala, J. C. Chau, and T. D. Little, “Metameric modulation for diffuse visible light communications with constant ambient lighting,” in “Proc. IEEE Int. Workshop Optic. Wireless Commun. (IWOW),” (2012), pp. 1–3.
  30. M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications,” J. Opt. Commun. Netw. 7, 554–562 (2015).
    [Crossref]
  31. D. Tse and P. Viswanath, Fundamentals of Wireless Communication (Cambridge University, 2005).
    [Crossref]
  32. Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” IEEE J. Lightwave Technol. 33, 4671–4682 (2015).
    [Crossref]
  33. J. A. Salehi, “Code division multiple-access techniques in optical fiber networks. i. fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).
    [Crossref]
  34. R. Ghaffar, D. Toumpakaris, and J. Lee, “Achievable rates for transmission of discrete constellations over the gaussian mac channel,” in “ICT Convergence (ICTC), 2011 International Conference on,” (IEEE, 2011), pp. 6–11.
  35. X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and wifi,” IEEE J. Commun. 63, 1319–1329 (2015).
  36. J. R. Barry, J. M. Kahn, W. J. Krause, E. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
    [Crossref]
  37. S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid WiFi-VLC internet access system,” in “Proc. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems (MASS),” (2014), pp. 569–574.
  38. X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63, 1770–1778 (2014).
    [Crossref]
  39. M. Dehghani Soltani, X. Wu, M. Safari, and H. Haas, “On limited feedback resource allocation for visible light communication networks,” in “Proceedings of the 2nd International Workshop on Visible Light Communications Systems,” (ACM, 2015), pp. 27–32.
  40. E. Baccarelli and M. Biagi, “Optimal integer bit-loading for multicarrier adsl systems subject to spectral-compatibility limits,” Signal Processing 84, 729–741 (2004).
    [Crossref]
  41. M. Biagi, S. Rinauro, S. Colonnese, G. Scarano, and R. Cusani, “Wivcora: Wigner–ville cognitive radio access for secondary nodes,” IEEE Trans. Vehicular Technol. 63, 4248–4264 (2014).
    [Crossref]

2017 (1)

L. Chen, W. Wang, and C. Zhang, “Coalition formation for interference management in visible light communication networks,” IEEE Transactions on Vehicular Technology 66(8, 7278–7285 (2017).

2015 (8)

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tutorials 17, 2047–2077 (2015).
[Crossref]

Y. A. Chen, Y. T. Chang, Y. C. Tseng, and W. T. Chen, “A framework for simultaneous message broadcasting using cdma-based visible light communications,” IEEE Sensors J. 15, 6819–6827 (2015).
[Crossref]

M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier cdma for indoor visible light communications,” IEEE/OSA J. Opt. Commun. Netw. 7, 554–562 (2015).
[Crossref]

H. Qian, S. C. Dai, S. Zhao, S. Z. Cai, and H. Zhang, “A robust cdma vlc system against front-end nonlinearity,” IEEE Photonics J. 7, 1–9 (2015).

M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications,” J. Opt. Commun. Netw. 7, 554–562 (2015).
[Crossref]

Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” IEEE J. Lightwave Technol. 33, 4671–4682 (2015).
[Crossref]

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightwave Technol. 33, 3986–4000 (2015).
[Crossref]

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and wifi,” IEEE J. Commun. 63, 1319–1329 (2015).

2014 (5)

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63, 1770–1778 (2014).
[Crossref]

M. Biagi, S. Rinauro, S. Colonnese, G. Scarano, and R. Cusani, “Wivcora: Wigner–ville cognitive radio access for secondary nodes,” IEEE Trans. Vehicular Technol. 63, 4248–4264 (2014).
[Crossref]

D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol. 32, 1594–1600 (2014).
[Crossref]

R. K. Mondal, N. Saha, N.-T. Le, and Y. M. Jang, “SINR-constrained joint scheduling and optimal resource allocation in VLC based WPAN system,” Wireless Personal Commun. 78, 1935–1951 (2014).
[Crossref]

S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photonics J. 6, 1–6 (2014).
[Crossref]

2013 (1)

2012 (2)

B. Ghimire and H. Haas, “Self-organising interference coordination in optical wireless networks,” EURASIP J. Wireless Commun. Netw. 2012, 1–15 (2012).
[Crossref]

S. Rajagopal, R. D. Roberts, and S. K. Lim, “Ieee 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50, 72–82 (2012).
[Crossref]

2011 (3)

S. K. Wilson and J. Holliday, “Scheduling methods for multi-user optical wireless asymmetrically-clipped OFDM,” J. Commun. Netw. 13, 655–663 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
[Crossref]

2004 (2)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50, 100–107 (2004).
[Crossref]

E. Baccarelli and M. Biagi, “Optimal integer bit-loading for multicarrier adsl systems subject to spectral-compatibility limits,” Signal Processing 84, 729–741 (2004).
[Crossref]

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

1993 (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

1989 (1)

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks. i. fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).
[Crossref]

Anas, S. B. A.

Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” in “2016 IEEE 6th International Conference on Photonics (ICP),” (2016), pp. 1–3.

Arnon, S.

Ayyash, M.

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid WiFi-VLC internet access system,” in “Proc. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems (MASS),” (2014), pp. 569–574.

Baccarelli, E.

E. Baccarelli and M. Biagi, “Optimal integer bit-loading for multicarrier adsl systems subject to spectral-compatibility limits,” Signal Processing 84, 729–741 (2004).
[Crossref]

Bao, X.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63, 1770–1778 (2014).
[Crossref]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

J. R. Barry, J. M. Kahn, W. J. Krause, E. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

Baykas, T.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Biagi, M.

M. Biagi, S. Rinauro, S. Colonnese, G. Scarano, and R. Cusani, “Wivcora: Wigner–ville cognitive radio access for secondary nodes,” IEEE Trans. Vehicular Technol. 63, 4248–4264 (2014).
[Crossref]

M. Biagi, T. Borogovac, and T. D. Little, “Adaptive receiver for indoor visible light communications,” J. Lightwave Technol. 31, 3676–3686 (2013).
[Crossref]

E. Baccarelli and M. Biagi, “Optimal integer bit-loading for multicarrier adsl systems subject to spectral-compatibility limits,” Signal Processing 84, 729–741 (2004).
[Crossref]

Borogovac, T.

Butala, P. M.

P. M. Butala, J. C. Chau, and T. D. Little, “Metameric modulation for diffuse visible light communications with constant ambient lighting,” in “Proc. IEEE Int. Workshop Optic. Wireless Commun. (IWOW),” (2012), pp. 1–3.

Bykhovsky, D.

Cai, S. Z.

H. Qian, S. C. Dai, S. Zhao, S. Z. Cai, and H. Zhang, “A robust cdma vlc system against front-end nonlinearity,” IEEE Photonics J. 7, 1–9 (2015).

Chang, Y. T.

Y. A. Chen, Y. T. Chang, Y. C. Tseng, and W. T. Chen, “A framework for simultaneous message broadcasting using cdma-based visible light communications,” IEEE Sensors J. 15, 6819–6827 (2015).
[Crossref]

Chau, J. C.

P. M. Butala, J. C. Chau, and T. D. Little, “Metameric modulation for diffuse visible light communications with constant ambient lighting,” in “Proc. IEEE Int. Workshop Optic. Wireless Commun. (IWOW),” (2012), pp. 1–3.

Chen, C.

Chen, L.

L. Chen, W. Wang, and C. Zhang, “Coalition formation for interference management in visible light communication networks,” IEEE Transactions on Vehicular Technology 66(8, 7278–7285 (2017).

Chen, S. H.

S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photonics J. 6, 1–6 (2014).
[Crossref]

Chen, W. T.

Y. A. Chen, Y. T. Chang, Y. C. Tseng, and W. T. Chen, “A framework for simultaneous message broadcasting using cdma-based visible light communications,” IEEE Sensors J. 15, 6819–6827 (2015).
[Crossref]

Chen, Y. A.

Y. A. Chen, Y. T. Chang, Y. C. Tseng, and W. T. Chen, “A framework for simultaneous message broadcasting using cdma-based visible light communications,” IEEE Sensors J. 15, 6819–6827 (2015).
[Crossref]

Chow, C. W.

S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photonics J. 6, 1–6 (2014).
[Crossref]

Ciaramella, E.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Colonnese, S.

M. Biagi, S. Rinauro, S. Colonnese, G. Scarano, and R. Cusani, “Wivcora: Wigner–ville cognitive radio access for secondary nodes,” IEEE Trans. Vehicular Technol. 63, 4248–4264 (2014).
[Crossref]

Cusani, R.

M. Biagi, S. Rinauro, S. Colonnese, G. Scarano, and R. Cusani, “Wivcora: Wigner–ville cognitive radio access for secondary nodes,” IEEE Trans. Vehicular Technol. 63, 4248–4264 (2014).
[Crossref]

Dai, S. C.

H. Qian, S. C. Dai, S. Zhao, S. Z. Cai, and H. Zhang, “A robust cdma vlc system against front-end nonlinearity,” IEEE Photonics J. 7, 1–9 (2015).

Dehghani Soltani, M.

M. Dehghani Soltani, X. Wu, M. Safari, and H. Haas, “On limited feedback resource allocation for visible light communication networks,” in “Proceedings of the 2nd International Workshop on Visible Light Communications Systems,” (ACM, 2015), pp. 27–32.

Dimitrov, S.

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi(Cambridge University, 2015).
[Crossref]

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
[Crossref]

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid WiFi-VLC internet access system,” in “Proc. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems (MASS),” (2014), pp. 569–574.

Fallahpour, A.

M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier cdma for indoor visible light communications,” IEEE/OSA J. Opt. Commun. Netw. 7, 554–562 (2015).
[Crossref]

M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications,” J. Opt. Commun. Netw. 7, 554–562 (2015).
[Crossref]

Feng, X.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tutorials 17, 2047–2077 (2015).
[Crossref]

Ghaffar, R.

R. Ghaffar, D. Toumpakaris, and J. Lee, “Achievable rates for transmission of discrete constellations over the gaussian mac channel,” in “ICT Convergence (ICTC), 2011 International Conference on,” (IEEE, 2011), pp. 6–11.

Ghassemlooy, Z.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Ghimire, B.

B. Ghimire and H. Haas, “Self-organising interference coordination in optical wireless networks,” EURASIP J. Wireless Commun. Netw. 2012, 1–15 (2012).
[Crossref]

Goemaere, J. P.

S. D. Lausnay, L. D. Strycker, J. P. Goemaere, N. Stevens, and B. Nauwelaers, “Optical cdma codes for an indoor localization system using vlc,” in “2014 3rd International Workshop in Optical Wireless Communications (IWOW),” (2014), pp. 50–54.

Gonzalez, O.

M. F. Guerra-Medina, B. Rojas-Guillama, O. Gonzalez, J. A. Martin-Gonzalez, E. Poves, and F. J. Lopez-Hernandez, “Experimental optical code-division multiple access system for visible light communications,” in “2011 Wireless Telecommunications Symposium (WTS),” (2011), pp. 1–6.

Green, R.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Grubor, J.

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light leds,” ECOC 2007 (2007).

Guerra-Medina, M. F.

M. F. Guerra-Medina, B. Rojas-Guillama, O. Gonzalez, J. A. Martin-Gonzalez, E. Poves, and F. J. Lopez-Hernandez, “Experimental optical code-division multiple access system for visible light communications,” in “2011 Wireless Telecommunications Symposium (WTS),” (2011), pp. 1–6.

Haas, H.

Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” IEEE J. Lightwave Technol. 33, 4671–4682 (2015).
[Crossref]

C. Chen, S. Videv, D. Tsonev, and H. Haas, “Fractional frequency reuse in DCO-OFDM-based optical attocell networks,” J. Lightwave Technol. 33, 3986–4000 (2015).
[Crossref]

B. Ghimire and H. Haas, “Self-organising interference coordination in optical wireless networks,” EURASIP J. Wireless Commun. Netw. 2012, 1–15 (2012).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
[Crossref]

M. Dehghani Soltani, X. Wu, M. Safari, and H. Haas, “On limited feedback resource allocation for visible light communication networks,” in “Proceedings of the 2nd International Workshop on Visible Light Communications Systems,” (ACM, 2015), pp. 27–32.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi(Cambridge University, 2015).
[Crossref]

Haigh, P. A.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Hammouda, M.

M. Hammouda, J. Peissig, and A. M. Vegni, “Design of a cognitive VLC network with illumination and handover requirements,” arXiv preprint arXiv:1702.07109 (2017).

Hanzo, L.

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and wifi,” IEEE J. Commun. 63, 1319–1329 (2015).

He, C.

C. He, L. liang Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” in “2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD),” (2015), pp. 27–32.

Hitam, S.

Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” in “2016 IEEE 6th International Conference on Photonics (ICP),” (2016), pp. 1–3.

Holliday, J.

S. K. Wilson and J. Holliday, “Scheduling methods for multi-user optical wireless asymmetrically-clipped OFDM,” J. Commun. Netw. 13, 655–663 (2011).
[Crossref]

Hu, P.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tutorials 17, 2047–2077 (2015).
[Crossref]

Idriss, Y.

Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” in “2016 IEEE 6th International Conference on Photonics (ICP),” (2016), pp. 1–3.

Imran, M. A.

C. He, L. liang Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” in “2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD),” (2015), pp. 27–32.

Jain, A. K.

A. K. Jain, Fundamentals of digital image processing(Prentice-Hall, Inc., 1989).

Jang, Y. M.

R. K. Mondal, N. Saha, N.-T. Le, and Y. M. Jang, “SINR-constrained joint scheduling and optimal resource allocation in VLC based WPAN system,” Wireless Personal Commun. 78, 1935–1951 (2014).
[Crossref]

Jiménez, V. P. G.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Jungnickel, V.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

J. R. Barry, J. M. Kahn, W. J. Krause, E. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

Khreishah, A.

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid WiFi-VLC internet access system,” in “Proc. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems (MASS),” (2014), pp. 569–574.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50, 100–107 (2004).
[Crossref]

Koonen, T.

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light leds,” ECOC 2007 (2007).

Krause, W. J.

J. R. Barry, J. M. Kahn, W. J. Krause, E. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

Langer, K.-D.

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light leds,” ECOC 2007 (2007).

Lausnay, S. D.

S. D. Lausnay, L. D. Strycker, J. P. Goemaere, N. Stevens, and B. Nauwelaers, “Optical cdma codes for an indoor localization system using vlc,” in “2014 3rd International Workshop in Optical Wireless Communications (IWOW),” (2014), pp. 50–54.

Le, N.-T.

R. K. Mondal, N. Saha, N.-T. Le, and Y. M. Jang, “SINR-constrained joint scheduling and optimal resource allocation in VLC based WPAN system,” Wireless Personal Commun. 78, 1935–1951 (2014).
[Crossref]

Lee, E.

J. R. Barry, J. M. Kahn, W. J. Krause, E. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

Lee, J.

R. Ghaffar, D. Toumpakaris, and J. Lee, “Achievable rates for transmission of discrete constellations over the gaussian mac channel,” in “ICT Convergence (ICTC), 2011 International Conference on,” (IEEE, 2011), pp. 6–11.

Lee, S. C. J.

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light leds,” ECOC 2007 (2007).

Li, X.

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and wifi,” IEEE J. Commun. 63, 1319–1329 (2015).

liang Yang, L.

C. He, L. liang Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” in “2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD),” (2015), pp. 27–32.

Lim, S. K.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “Ieee 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50, 72–82 (2012).
[Crossref]

Little, T. D.

M. Biagi, T. Borogovac, and T. D. Little, “Adaptive receiver for indoor visible light communications,” J. Lightwave Technol. 31, 3676–3686 (2013).
[Crossref]

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid WiFi-VLC internet access system,” in “Proc. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems (MASS),” (2014), pp. 569–574.

P. M. Butala, J. C. Chau, and T. D. Little, “Metameric modulation for diffuse visible light communications with constant ambient lighting,” in “Proc. IEEE Int. Workshop Optic. Wireless Commun. (IWOW),” (2012), pp. 1–3.

Lopez-Hernandez, F. J.

M. F. Guerra-Medina, B. Rojas-Guillama, O. Gonzalez, J. A. Martin-Gonzalez, E. Poves, and F. J. Lopez-Hernandez, “Experimental optical code-division multiple access system for visible light communications,” in “2011 Wireless Telecommunications Symposium (WTS),” (2011), pp. 1–6.

Martin-Gonzalez, J. A.

M. F. Guerra-Medina, B. Rojas-Guillama, O. Gonzalez, J. A. Martin-Gonzalez, E. Poves, and F. J. Lopez-Hernandez, “Experimental optical code-division multiple access system for visible light communications,” in “2011 Wireless Telecommunications Symposium (WTS),” (2011), pp. 1–6.

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
[Crossref]

Messerschmitt, D. G.

J. R. Barry, J. M. Kahn, W. J. Krause, E. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

Miramirkhani, F.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Mohapatra, P.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tutorials 17, 2047–2077 (2015).
[Crossref]

Mondal, R. K.

R. K. Mondal, N. Saha, N.-T. Le, and Y. M. Jang, “SINR-constrained joint scheduling and optimal resource allocation in VLC based WPAN system,” Wireless Personal Commun. 78, 1935–1951 (2014).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50, 100–107 (2004).
[Crossref]

Nauwelaers, B.

S. D. Lausnay, L. D. Strycker, J. P. Goemaere, N. Stevens, and B. Nauwelaers, “Optical cdma codes for an indoor localization system using vlc,” in “2014 3rd International Workshop in Optical Wireless Communications (IWOW),” (2014), pp. 50–54.

O’Brien, D.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Ou, Y.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63, 1770–1778 (2014).
[Crossref]

Pathak, P. H.

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tutorials 17, 2047–2077 (2015).
[Crossref]

Peissig, J.

M. Hammouda, J. Peissig, and A. M. Vegni, “Design of a cognitive VLC network with illumination and handover requirements,” arXiv preprint arXiv:1702.07109 (2017).

Poves, E.

M. F. Guerra-Medina, B. Rojas-Guillama, O. Gonzalez, J. A. Martin-Gonzalez, E. Poves, and F. J. Lopez-Hernandez, “Experimental optical code-division multiple access system for visible light communications,” in “2011 Wireless Telecommunications Symposium (WTS),” (2011), pp. 1–6.

Qian, H.

H. Qian, S. C. Dai, S. Zhao, S. Z. Cai, and H. Zhang, “A robust cdma vlc system against front-end nonlinearity,” IEEE Photonics J. 7, 1–9 (2015).

Rahaim, M. B.

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid WiFi-VLC internet access system,” in “Proc. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems (MASS),” (2014), pp. 569–574.

Rajagopal, S.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “Ieee 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50, 72–82 (2012).
[Crossref]

Rinauro, S.

M. Biagi, S. Rinauro, S. Colonnese, G. Scarano, and R. Cusani, “Wivcora: Wigner–ville cognitive radio access for secondary nodes,” IEEE Trans. Vehicular Technol. 63, 4248–4264 (2014).
[Crossref]

Roberts, R. D.

S. Rajagopal, R. D. Roberts, and S. K. Lim, “Ieee 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50, 72–82 (2012).
[Crossref]

Rojas-Guillama, B.

M. F. Guerra-Medina, B. Rojas-Guillama, O. Gonzalez, J. A. Martin-Gonzalez, E. Poves, and F. J. Lopez-Hernandez, “Experimental optical code-division multiple access system for visible light communications,” in “2011 Wireless Telecommunications Symposium (WTS),” (2011), pp. 1–6.

Safari, M.

M. Dehghani Soltani, X. Wu, M. Safari, and H. Haas, “On limited feedback resource allocation for visible light communication networks,” in “Proceedings of the 2nd International Workshop on Visible Light Communications Systems,” (ACM, 2015), pp. 27–32.

Saha, N.

R. K. Mondal, N. Saha, N.-T. Le, and Y. M. Jang, “SINR-constrained joint scheduling and optimal resource allocation in VLC based WPAN system,” Wireless Personal Commun. 78, 1935–1951 (2014).
[Crossref]

Sahbudin, R. K.

Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” in “2016 IEEE 6th International Conference on Photonics (ICP),” (2016), pp. 1–3.

Salehi, J. A.

M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier cdma for indoor visible light communications,” IEEE/OSA J. Opt. Commun. Netw. 7, 554–562 (2015).
[Crossref]

M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications,” J. Opt. Commun. Netw. 7, 554–562 (2015).
[Crossref]

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks. i. fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).
[Crossref]

Scarano, G.

M. Biagi, S. Rinauro, S. Colonnese, G. Scarano, and R. Cusani, “Wivcora: Wigner–ville cognitive radio access for secondary nodes,” IEEE Trans. Vehicular Technol. 63, 4248–4264 (2014).
[Crossref]

Serafimovski, N.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Shao, S.

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid WiFi-VLC internet access system,” in “Proc. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems (MASS),” (2014), pp. 569–574.

Shoreh, M. H.

M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier cdma for indoor visible light communications,” IEEE/OSA J. Opt. Commun. Netw. 7, 554–562 (2015).
[Crossref]

M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications,” J. Opt. Commun. Netw. 7, 554–562 (2015).
[Crossref]

Song, T.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63, 1770–1778 (2014).
[Crossref]

Stevens, N.

S. D. Lausnay, L. D. Strycker, J. P. Goemaere, N. Stevens, and B. Nauwelaers, “Optical cdma codes for an indoor localization system using vlc,” in “2014 3rd International Workshop in Optical Wireless Communications (IWOW),” (2014), pp. 50–54.

Strycker, L. D.

S. D. Lausnay, L. D. Strycker, J. P. Goemaere, N. Stevens, and B. Nauwelaers, “Optical cdma codes for an indoor localization system using vlc,” in “2014 3rd International Workshop in Optical Wireless Communications (IWOW),” (2014), pp. 50–54.

Toumpakaris, D.

R. Ghaffar, D. Toumpakaris, and J. Lee, “Achievable rates for transmission of discrete constellations over the gaussian mac channel,” in “ICT Convergence (ICTC), 2011 International Conference on,” (IEEE, 2011), pp. 6–11.

Tse, D.

D. Tse and P. Viswanath, Fundamentals of Wireless Communication (Cambridge University, 2005).
[Crossref]

Tseng, Y. C.

Y. A. Chen, Y. T. Chang, Y. C. Tseng, and W. T. Chen, “A framework for simultaneous message broadcasting using cdma-based visible light communications,” IEEE Sensors J. 15, 6819–6827 (2015).
[Crossref]

Tsonev, D.

Uysal, M.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Vegni, A. M.

M. Hammouda, J. Peissig, and A. M. Vegni, “Design of a cognitive VLC network with illumination and handover requirements,” arXiv preprint arXiv:1702.07109 (2017).

Videv, S.

Viswanath, P.

D. Tse and P. Viswanath, Fundamentals of Wireless Communication (Cambridge University, 2005).
[Crossref]

Walewski, J. W.

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light leds,” ECOC 2007 (2007).

Wang, W.

L. Chen, W. Wang, and C. Zhang, “Coalition formation for interference management in visible light communication networks,” IEEE Transactions on Vehicular Technology 66(8, 7278–7285 (2017).

Wang, Y.

Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” IEEE J. Lightwave Technol. 33, 4671–4682 (2015).
[Crossref]

Wilson, S. K.

S. K. Wilson and J. Holliday, “Scheduling methods for multi-user optical wireless asymmetrically-clipped OFDM,” J. Commun. Netw. 13, 655–663 (2011).
[Crossref]

Wolf, M.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

Wu, J.

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid WiFi-VLC internet access system,” in “Proc. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems (MASS),” (2014), pp. 569–574.

Wu, X.

M. Dehghani Soltani, X. Wu, M. Safari, and H. Haas, “On limited feedback resource allocation for visible light communication networks,” in “Proceedings of the 2nd International Workshop on Visible Light Communications Systems,” (ACM, 2015), pp. 27–32.

Xiao, P.

C. He, L. liang Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” in “2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD),” (2015), pp. 27–32.

Zhang, C.

L. Chen, W. Wang, and C. Zhang, “Coalition formation for interference management in visible light communication networks,” IEEE Transactions on Vehicular Technology 66(8, 7278–7285 (2017).

Zhang, H.

H. Qian, S. C. Dai, S. Zhao, S. Z. Cai, and H. Zhang, “A robust cdma vlc system against front-end nonlinearity,” IEEE Photonics J. 7, 1–9 (2015).

Zhang, R.

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and wifi,” IEEE J. Commun. 63, 1319–1329 (2015).

Zhao, S.

H. Qian, S. C. Dai, S. Zhao, S. Z. Cai, and H. Zhang, “A robust cdma vlc system against front-end nonlinearity,” IEEE Photonics J. 7, 1–9 (2015).

Zhu, X.

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63, 1770–1778 (2014).
[Crossref]

Zvanovec, S.

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

EURASIP J. Wireless Commun. Netw. (1)

B. Ghimire and H. Haas, “Self-organising interference coordination in optical wireless networks,” EURASIP J. Wireless Commun. Netw. 2012, 1–15 (2012).
[Crossref]

IEEE Commun. Mag. (3)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49, 56–62 (2011).
[Crossref]

S. Rajagopal, R. D. Roberts, and S. K. Lim, “Ieee 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50, 72–82 (2012).
[Crossref]

IEEE Commun. Surveys Tutorials (1)

P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tutorials 17, 2047–2077 (2015).
[Crossref]

IEEE J. Commun. (1)

X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and wifi,” IEEE J. Commun. 63, 1319–1329 (2015).

IEEE J. Lightwave Technol. (1)

Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” IEEE J. Lightwave Technol. 33, 4671–4682 (2015).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[Crossref]

IEEE Photonics J. (2)

H. Qian, S. C. Dai, S. Zhao, S. Z. Cai, and H. Zhang, “A robust cdma vlc system against front-end nonlinearity,” IEEE Photonics J. 7, 1–9 (2015).

S. H. Chen and C. W. Chow, “Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera,” IEEE Photonics J. 6, 1–6 (2014).
[Crossref]

IEEE Sensors J. (1)

Y. A. Chen, Y. T. Chang, Y. C. Tseng, and W. T. Chen, “A framework for simultaneous message broadcasting using cdma-based visible light communications,” IEEE Sensors J. 15, 6819–6827 (2015).
[Crossref]

IEEE Trans. Commun. (1)

J. A. Salehi, “Code division multiple-access techniques in optical fiber networks. i. fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).
[Crossref]

IEEE Trans. Consumer Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50, 100–107 (2004).
[Crossref]

IEEE Trans. Vehicular Technol. (2)

X. Bao, X. Zhu, T. Song, and Y. Ou, “Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems,” IEEE Trans. Vehicular Technol. 63, 1770–1778 (2014).
[Crossref]

M. Biagi, S. Rinauro, S. Colonnese, G. Scarano, and R. Cusani, “Wivcora: Wigner–ville cognitive radio access for secondary nodes,” IEEE Trans. Vehicular Technol. 63, 4248–4264 (2014).
[Crossref]

IEEE Transactions on Vehicular Technology (1)

L. Chen, W. Wang, and C. Zhang, “Coalition formation for interference management in visible light communication networks,” IEEE Transactions on Vehicular Technology 66(8, 7278–7285 (2017).

IEEE/OSA J. Opt. Commun. Netw. (1)

M. H. Shoreh, A. Fallahpour, and J. A. Salehi, “Design concepts and performance analysis of multicarrier cdma for indoor visible light communications,” IEEE/OSA J. Opt. Commun. Netw. 7, 554–562 (2015).
[Crossref]

J. Commun. Netw. (1)

S. K. Wilson and J. Holliday, “Scheduling methods for multi-user optical wireless asymmetrically-clipped OFDM,” J. Commun. Netw. 13, 655–663 (2011).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[Crossref]

Signal Processing (1)

E. Baccarelli and M. Biagi, “Optimal integer bit-loading for multicarrier adsl systems subject to spectral-compatibility limits,” Signal Processing 84, 729–741 (2004).
[Crossref]

Wireless Personal Commun. (1)

R. K. Mondal, N. Saha, N.-T. Le, and Y. M. Jang, “SINR-constrained joint scheduling and optimal resource allocation in VLC based WPAN system,” Wireless Personal Commun. 78, 1935–1951 (2014).
[Crossref]

Other (16)

V. Jungnickel, M. Uysal, N. Serafimovski, T. Baykas, D. O’Brien, E. Ciaramella, Z. Ghassemlooy, R. Green, H. Haas, P. A. Haigh, V. P. G. Jiménez, F. Miramirkhani, M. Wolf, and S. Zvanovec, “A european view on the next generation optical wireless communication standard,” in “Proc. IEEE Conf. Standards for Commun. and Netw. (CSCN),” (2015), pp. 106–111.

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi(Cambridge University, 2015).
[Crossref]

J. Grubor, S. C. J. Lee, K.-D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light leds,” ECOC 2007 (2007).

S. D. Lausnay, L. D. Strycker, J. P. Goemaere, N. Stevens, and B. Nauwelaers, “Optical cdma codes for an indoor localization system using vlc,” in “2014 3rd International Workshop in Optical Wireless Communications (IWOW),” (2014), pp. 50–54.

C. He, L. liang Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” in “2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD),” (2015), pp. 27–32.

M. F. Guerra-Medina, B. Rojas-Guillama, O. Gonzalez, J. A. Martin-Gonzalez, E. Poves, and F. J. Lopez-Hernandez, “Experimental optical code-division multiple access system for visible light communications,” in “2011 Wireless Telecommunications Symposium (WTS),” (2011), pp. 1–6.

D. Tse and P. Viswanath, Fundamentals of Wireless Communication (Cambridge University, 2005).
[Crossref]

R. Ghaffar, D. Toumpakaris, and J. Lee, “Achievable rates for transmission of discrete constellations over the gaussian mac channel,” in “ICT Convergence (ICTC), 2011 International Conference on,” (IEEE, 2011), pp. 6–11.

M. Dehghani Soltani, X. Wu, M. Safari, and H. Haas, “On limited feedback resource allocation for visible light communication networks,” in “Proceedings of the 2nd International Workshop on Visible Light Communications Systems,” (ACM, 2015), pp. 27–32.

S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid WiFi-VLC internet access system,” in “Proc. IEEE Int. Conf. Mobile Ad Hoc and Sensor Systems (MASS),” (2014), pp. 569–574.

Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” in “2016 IEEE 6th International Conference on Photonics (ICP),” (2016), pp. 1–3.

M. Hammouda, J. Peissig, and A. M. Vegni, “Design of a cognitive VLC network with illumination and handover requirements,” arXiv preprint arXiv:1702.07109 (2017).

“4-Wavelength high-power LED head,” https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=3836 .

A. K. Jain, Fundamentals of digital image processing(Prentice-Hall, Inc., 1989).

Hamamatsu, “46-element Si photodiode array for UV to NIR (Accessed June 2017),”.

P. M. Butala, J. C. Chau, and T. D. Little, “Metameric modulation for diffuse visible light communications with constant ambient lighting,” in “Proc. IEEE Int. Workshop Optic. Wireless Commun. (IWOW),” (2012), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Representation of the deployment of access points A, B, C, and D in a room.
Fig. 2
Fig. 2 The coverage areas of two overlapping access points.
Fig. 3
Fig. 3 Block diagrams of the k-th AP transmitter.
Fig. 4
Fig. 4 Photopic relative luminous efficiency function. The three solid curves, from left to right, correspond to the wavelength ranges over which the blue, green, and red colors are perceived by the human eye, respectively. The dashed curve describes the range of monotonic vision. The peak value of each curve defines the wavelength at which the eye has the peak sensitivity to the corresponding color.
Fig. 5
Fig. 5 Radius of Zone 0 of AP1 as a function of the viewing angle and for different values of the minimum rate and symbols error requirements. Herein, SF = 8 and Rmin is expressed in Mbit/s
Fig. 6
Fig. 6 Average rate achieved in different zones as a function of the number of users. Herein, SF = 12, d12 = 5.6 m, θ = 60°, Rmin = 3 Mbit/s, Rmax = 10 Mbit/s.
Fig. 7
Fig. 7 Average user rate as a function of the user location and considering different allocation algorithms. Herein, d12 = 5.2 m, θ = 60°, Rmin = 1 Mbit/s, Rmax = 5 Mbit/s.
Fig. 8
Fig. 8 Power profile [dBm] for four LEDs deployed in the room.
Fig. 9
Fig. 9 Data rate [Mbit/s] per user in different positions within the room for (i) MR and (ii) MR approach. Stars indicate the APs positions.
Fig. 10
Fig. 10 Outage probability by considering different angles for the LEDs when (a) MF and (b) MR method is used, respectively.
Fig. 11
Fig. 11 Percentage of accessing users by considering by considering different number of users for (a) different minimum rates required when MF method is used, and (b) different maximum rate are required when MR method is used.
Fig. 12
Fig. 12 Power profile for four LEDs within a 10 × 10 × 3 m3 room. A mobile user is moving within the room (white line), while fixed users are laying in known random positions (stars).
Fig. 13
Fig. 13 Data rate [Mbit/s] distribution vs. distance for (a) MR, and (b) MF approaches, for a mobile user and three interfering users in fixed positions. We assumed Rmin = 1 Mbit/s and Rmax = 4 Mbit/s.
Fig. 14
Fig. 14 Data rate [Mbit/s] distribution vs. distance for (a) MR, and (b) MF approaches, for a mobile user and three interfering users in fixed positions. We assumed Rmin = 1 Mbit/s and Rmax = 8 Mbit/s.

Tables (3)

Tables Icon

Algorithm 1 Pseudocode for rate maximization.

Tables Icon

Algorithm 2 Pseudocode for fairness maximization.

Tables Icon

Table 1 Parameters used in the simulations

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

x k ( t ) = k = 1 N k β k ( t ) s k ( t ) ,
y k ( t ) = x k ( t ) * h k ( t ) + n ( t ) ,
r j ( τ ) = y k ( t ) β k ( t + τ ) d t .
z j ( k ) ( τ ) = y k ( t ) f ( k ) ( t + τ ) d t ,
r j ( k ) ( θ ) = z j ( k ) ( τ ) β k ( θ + τ ) d t ,
z k ( t ) = m { B , G , R } ( x m , k ( t ) + I m , k ) g m , k ( t ) ,
E { z k ( t ) } = E { m x m , k ( t ) g m , k ( t ) } + m I m , k ( t ) g m , k ( t ) ,
γ m , k = E { x m , k } + I m , k ,
E { z k ( t ) } = m I m , k ( t ) g m , k ( t ) .
ζ l k , m 0 , 1 = E { | β l k x m , k | 2 } h l k 2 ς σ n 2 + h l k 2 q k , q l N k E { | β q k x m , k | 2 } + n m φ m n , k ,
β l k , β l j = n = 1 C k β l k , n β l j , n = { C k , if k = j 0 , if k j
ζ l , m , div 0 = k K ζ l k , m 0 , 1 ,
R l , m , mux 0 = k K R l k , m 0 , 1 ,
R l k 0 , 1 = m β k l l k R l k , m 0 , 1 ( P e , ζ l k , m 0 , 1 ) ,
R l k , m 0 , 1 ( P e , ζ l k , m 0 , 1 ) = 1 2 log 2 ( 1 + ζ l k , m 0 , 1 Γ ( M , P e ) ) ,
Γ ( M , P e ) = [ Q 1 ( M P e 2 ( M 1 ) ) ] 2 3 ,
Q ( d l k = r 0 , k ) = Q min ,
R min = R ( d l k = r 0 , k ) ,
= 1 2 m log 2 ( 1 + ζ l k , m 0 , 1 Γ ( M , P e ) ) = 1 2 log 2 m ( 1 + ζ l k , m 0 , 1 Γ ( M , P e ) ) ,
1 2 log 2 m ζ l k , m 0 , 1 Γ ( M , P e ) ,
1 2 log 2 m E { | β l k x m , k | 2 } h l k , m 2 ς σ n 2 Γ ( M , P e ) ,
R min = 1 2 log 2 ζ min ,
ζ min = m E { | β l k x m , k | 2 } h l k , m 2 ς σ n 2 Γ ( M , P e ) ,
h l k , m = { ρ m ( b m + 1 ) A m T s g ( ψ m ) d v b m + 1 2 π ( d v + r 0 , k ) b m + 3 2 , if ψ m ψ C , m , 0 , if ψ m > ψ C , m ,
g ( ψ m ) = n 2 sin 2 ( ψ C , m ) ,
r 0 , k = ( m κ m ζ min ) 2 9 + Σ m b m d v : = Λ 0 , k ,
κ m = m E { | β l k x m , k | 2 } ρ m ( b m + 1 ) A m g ( ψ m ) d v b m + 1 ( 2 π ς σ n 2 Γ ( M , P e ) ) 3 .
r 0 , k r k max { r k + r q d k q } q { K } : = Δ 0 , k ,
r 0 , k = min { Λ 0 , k , Δ 0 , k } .
max β l l = 1 U R l
s . t . R min R l R max
F = R min R max .
max F β l
s . t . R min R l R max .

Metrics