Abstract

A periodic array of plasmonic nanocylinders can sustain both surface plasmon polaritons (SPPs) and optical diffraction in the plane of the array. Thus the optical energy can be efficiently trapped in the plane of the array, providing a good platform for controlling light. Plasmonic arrays have been investigated in the visible range, while studies in the ultraviolet (UV) range have been limited due to material-related restrictions and higher precision required for optical diffraction in the UV compared to that in the visible range. In this study, we fabricated periodic arrays of Al nanocylinders with periods comparable to optical wavelengths in the UV for simultaneous excitation of both SPPs and optical diffraction in the UV spectral region. We deposited UV-absorbing and highly luminous dielectric films on the arrays, observed enhanced photoluminescence of the film under UV laser excitation, and demonstrated that such periodic arrays can trap the UV light energy. Our findings show that periodic arrays of Al nanocylinders are useful for controlling UV light.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Confinement of ultraviolet light using lattice modes in Al and Si nanocylinder arrays

Shunsuke Murai, Yuki Kawachiya, and Katsuhisa Tanaka
Opt. Mater. Express 9(8) 3310-3324 (2019)

Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: effect of layer thickness

Yuki Kawachiya, Shunsuke Murai, Motoharu Saito, Koji Fujita, and Katsuhisa Tanaka
J. Opt. Soc. Am. B 36(7) E1-E8 (2019)

Temperature sensing of a plasmonic nanocylinder array by a polymer film containing chameleon complex

Shunsuke Murai, Motoharu Saito, Yuki Kawachiya, Satoshi Ishii, Takayuki Nakanishi, and Katsuhisa Tanaka
J. Opt. Soc. Am. B 36(7) E15-E20 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [Crossref] [PubMed]
  2. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
    [Crossref] [PubMed]
  3. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [Crossref]
  4. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  5. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
    [Crossref] [PubMed]
  6. K. T. Carron, H. W. Lehmann, W. Fluhr, M. Meier, and A. Wokaun, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B 3(3), 430 (1986).
    [Crossref]
  7. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
    [Crossref] [PubMed]
  8. G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
    [Crossref]
  9. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
    [Crossref] [PubMed]
  10. R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
    [Crossref]
  11. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
    [Crossref] [PubMed]
  12. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [Crossref] [PubMed]
  13. B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R. F. Aroca, B.-W. Mao, and Z.-Q. Tian, “Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes,” J. Am. Chem. Soc. 125(32), 9598–9599 (2003).
    [Crossref] [PubMed]
  14. S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
    [Crossref] [PubMed]
  15. Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance Raman scattering,” ACS Photonics 1(7), 598–603 (2014).
    [Crossref]
  16. T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
    [Crossref] [PubMed]
  17. R. González-Campuzano, J. M. Saniger, and D. Mendoza, “Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range,” Nanotechnology 28(46), 465704 (2017).
    [Crossref] [PubMed]
  18. N. Mattiucci, G. D’Aguanno, H. O. Everitt, J. V. Foreman, J. M. Callahan, M. C. Buncick, and M. J. Bloemer, “Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating,” Opt. Express 20(2), 1868–1877 (2012).
    [Crossref] [PubMed]
  19. C. Uhrenfeldt, T. F. Villesen, A. Têtu, B. Johansen, and A. N. Larsen, “Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front,” Opt. Express 23(11), A525–A538 (2015).
    [Crossref] [PubMed]
  20. Y. Zhang, B. Cai, and B. Jia, “Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells,” Nanomaterials (Basel) 6(6), 95 (2016).
    [PubMed]
  21. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  22. K. Diest, V. Liberman, D. M. Lennon, P. B. Welander, and M. Rothschild, “Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry,” Opt. Express 21(23), 28638–28650 (2013).
    [Crossref] [PubMed]
  23. J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14(10), 5517–5523 (2014).
    [Crossref] [PubMed]
  24. X. Jiao and S. Blair, “Optical antenna design for fluorescence enhancement in the ultraviolet,” Opt. Express 20(28), 29909–29922 (2012).
    [Crossref] [PubMed]
  25. G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
    [Crossref] [PubMed]
  26. Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
    [Crossref]
  27. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
    [Crossref] [PubMed]
  28. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
    [Crossref] [PubMed]
  29. A. Kannegulla, Y. Liu, B. Wu, and L.-J. Cheng, “Aluminum ultraviolet–visible plasmonic arrays for broadband and wavelength-selective enhancements of quantum dot emission,” Appl. Phys. Lett. 111(8), 081106 (2017).
    [Crossref]
  30. M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
    [Crossref] [PubMed]
  31. Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda, and T. Nagamura, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2013).
    [Crossref]
  32. Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
    [Crossref]
  33. Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, and S. Yanagida, “Molecular design of luminescent Eu(III) complexes as lanthanide lasing material and their optical properties,” J. Alloys Compd. 408–412, 669–674 (2006).
    [Crossref]
  34. K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516(9), 2376–2381 (2008).
    [Crossref]
  35. K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
    [Crossref] [PubMed]
  36. A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, and Y. Hasegawa, “Hyper-stable organo-Eu(III) luminophore under high temperature for photo-industrial application,” Sci. Rep. 6(1), 24458 (2016).
    [Crossref] [PubMed]
  37. S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
    [Crossref]
  38. M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
    [Crossref]
  39. M. A. Verschuuren and H. Van Sprang, “3D photonic structures by sol-gel imprint lithography,” MRS Proc. 1002, N03–N05 (2007).

2017 (6)

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

R. González-Campuzano, J. M. Saniger, and D. Mendoza, “Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range,” Nanotechnology 28(46), 465704 (2017).
[Crossref] [PubMed]

A. Kannegulla, Y. Liu, B. Wu, and L.-J. Cheng, “Aluminum ultraviolet–visible plasmonic arrays for broadband and wavelength-selective enhancements of quantum dot emission,” Appl. Phys. Lett. 111(8), 081106 (2017).
[Crossref]

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

2016 (2)

A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, and Y. Hasegawa, “Hyper-stable organo-Eu(III) luminophore under high temperature for photo-industrial application,” Sci. Rep. 6(1), 24458 (2016).
[Crossref] [PubMed]

Y. Zhang, B. Cai, and B. Jia, “Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells,” Nanomaterials (Basel) 6(6), 95 (2016).
[PubMed]

2015 (1)

2014 (4)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14(10), 5517–5523 (2014).
[Crossref] [PubMed]

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance Raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref] [PubMed]

2013 (5)

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

K. Diest, V. Liberman, D. M. Lennon, P. B. Welander, and M. Rothschild, “Aluminum plasmonics: optimization of plasmonic properties using liquid-prism-coupled ellipsometry,” Opt. Express 21(23), 28638–28650 (2013).
[Crossref] [PubMed]

Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda, and T. Nagamura, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2013).
[Crossref]

2012 (4)

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

X. Jiao and S. Blair, “Optical antenna design for fluorescence enhancement in the ultraviolet,” Opt. Express 20(28), 29909–29922 (2012).
[Crossref] [PubMed]

N. Mattiucci, G. D’Aguanno, H. O. Everitt, J. V. Foreman, J. M. Callahan, M. C. Buncick, and M. J. Bloemer, “Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating,” Opt. Express 20(2), 1868–1877 (2012).
[Crossref] [PubMed]

2011 (2)

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

2009 (1)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

2008 (7)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[Crossref]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516(9), 2376–2381 (2008).
[Crossref]

2007 (2)

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

M. A. Verschuuren and H. Van Sprang, “3D photonic structures by sol-gel imprint lithography,” MRS Proc. 1002, N03–N05 (2007).

2006 (1)

Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, and S. Yanagida, “Molecular design of luminescent Eu(III) complexes as lanthanide lasing material and their optical properties,” J. Alloys Compd. 408–412, 669–674 (2006).
[Crossref]

2004 (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

2003 (2)

B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R. F. Aroca, B.-W. Mao, and Z.-Q. Tian, “Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes,” J. Am. Chem. Soc. 125(32), 9598–9599 (2003).
[Crossref] [PubMed]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

1986 (1)

Agio, M.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Ahmed, Z.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Anghinolfi, L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Aroca, R. F.

B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R. F. Aroca, B.-W. Mao, and Z.-Q. Tian, “Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes,” J. Am. Chem. Soc. 125(32), 9598–9599 (2003).
[Crossref] [PubMed]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Baumberg, J. J.

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref] [PubMed]

Bisio, F.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Blair, S.

Bloemer, M. J.

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Brown, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Buncick, M. C.

Cai, B.

Y. Zhang, B. Cai, and B. Jia, “Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells,” Nanomaterials (Basel) 6(6), 95 (2016).
[PubMed]

Callahan, J. M.

Canepa, M.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Carron, K. T.

Cheng, L.-J.

A. Kannegulla, Y. Liu, B. Wu, and L.-J. Cheng, “Aluminum ultraviolet–visible plasmonic arrays for broadband and wavelength-selective enhancements of quantum dot emission,” Appl. Phys. Lett. 111(8), 081106 (2017).
[Crossref]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

D’Aguanno, G.

Dai, H.-L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Diest, K.

Ding, T.

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref] [PubMed]

Ekinci, Y.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[Crossref]

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

N. Mattiucci, G. D’Aguanno, H. O. Everitt, J. V. Foreman, J. M. Callahan, M. C. Buncick, and M. J. Bloemer, “Ultraviolet surface-enhanced Raman scattering at the plasmonic band edge of a metallic grating,” Opt. Express 20(2), 1868–1877 (2012).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

Fluhr, W.

Foreman, J. V.

Fujita, K.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

Fushimi, K.

A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, and Y. Hasegawa, “Hyper-stable organo-Eu(III) luminophore under high temperature for photo-industrial application,” Sci. Rep. 6(1), 24458 (2016).
[Crossref] [PubMed]

Gérard, D.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14(10), 5517–5523 (2014).
[Crossref] [PubMed]

Giannini, V.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

Giglia, A.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Gómez Rivas, J.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

Gonella, G.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

González-Campuzano, R.

R. González-Campuzano, J. M. Saniger, and D. Mendoza, “Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range,” Nanotechnology 28(46), 465704 (2017).
[Crossref] [PubMed]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Halas, N. J.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Hasegawa, Y.

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, and Y. Hasegawa, “Hyper-stable organo-Eu(III) luminophore under high temperature for photo-industrial application,” Sci. Rep. 6(1), 24458 (2016).
[Crossref] [PubMed]

Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda, and T. Nagamura, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2013).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516(9), 2376–2381 (2008).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, and S. Yanagida, “Molecular design of luminescent Eu(III) complexes as lanthanide lasing material and their optical properties,” J. Alloys Compd. 408–412, 669–674 (2006).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Herrmann, L. O.

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref] [PubMed]

Honda, M.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance Raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Ishii, S.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

Ito, H.

A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, and Y. Hasegawa, “Hyper-stable organo-Eu(III) luminophore under high temperature for photo-industrial application,” Sci. Rep. 6(1), 24458 (2016).
[Crossref] [PubMed]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Jha, S. K.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Jia, B.

Y. Zhang, B. Cai, and B. Jia, “Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells,” Nanomaterials (Basel) 6(6), 95 (2016).
[PubMed]

Jiao, X.

Johansen, B.

Kai, Y.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Kamakura, R.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Kanehisa, N.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Kannegulla, A.

A. Kannegulla, Y. Liu, B. Wu, and L.-J. Cheng, “Aluminum ultraviolet–visible plasmonic arrays for broadband and wavelength-selective enhancements of quantum dot emission,” Appl. Phys. Lett. 111(8), 081106 (2017).
[Crossref]

Kasemo, B.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Kawai, H.

Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda, and T. Nagamura, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2013).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516(9), 2376–2381 (2008).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, and S. Yanagida, “Molecular design of luminescent Eu(III) complexes as lanthanide lasing material and their optical properties,” J. Alloys Compd. 408–412, 669–674 (2006).
[Crossref]

Kawata, S.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance Raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Kitagawa, Y.

A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, and Y. Hasegawa, “Hyper-stable organo-Eu(III) luminophore under high temperature for photo-industrial application,” Sci. Rep. 6(1), 24458 (2016).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Kociak, M.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14(10), 5517–5523 (2014).
[Crossref] [PubMed]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Kumamoto, Y.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance Raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Langhammer, C.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Larsen, A. N.

Lehmann, H. W.

Lennon, D. M.

Liberman, V.

Lin, X.-F.

B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R. F. Aroca, B.-W. Mao, and Z.-Q. Tian, “Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes,” J. Am. Chem. Soc. 125(32), 9598–9599 (2003).
[Crossref] [PubMed]

Liu, G.-K.

B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R. F. Aroca, B.-W. Mao, and Z.-Q. Tian, “Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes,” J. Am. Chem. Soc. 125(32), 9598–9599 (2003).
[Crossref] [PubMed]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Liu, Y.

A. Kannegulla, Y. Liu, B. Wu, and L.-J. Cheng, “Aluminum ultraviolet–visible plasmonic arrays for broadband and wavelength-selective enhancements of quantum dot emission,” Appl. Phys. Lett. 111(8), 081106 (2017).
[Crossref]

Loffler, J. F.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[Crossref]

Löffler, J. F.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref] [PubMed]

Mahfoud, Z.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14(10), 5517–5523 (2014).
[Crossref] [PubMed]

Maidecchi, G.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Mao, B.-W.

B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R. F. Aroca, B.-W. Mao, and Z.-Q. Tian, “Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes,” J. Am. Chem. Soc. 125(32), 9598–9599 (2003).
[Crossref] [PubMed]

Martin, J.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14(10), 5517–5523 (2014).
[Crossref] [PubMed]

Mattera, L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Mattiucci, N.

Meier, M.

Mendoza, D.

R. González-Campuzano, J. M. Saniger, and D. Mendoza, “Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range,” Nanotechnology 28(46), 465704 (2017).
[Crossref] [PubMed]

Moroni, R.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Mukherjee, S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Murai, S.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref] [PubMed]

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Nagamura, T.

Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda, and T. Nagamura, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2013).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

Nagao, T.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

Nakajima, A.

A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, and Y. Hasegawa, “Hyper-stable organo-Eu(III) luminophore under high temperature for photo-industrial application,” Sci. Rep. 6(1), 24458 (2016).
[Crossref] [PubMed]

Nakamura, K.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516(9), 2376–2381 (2008).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, and S. Yanagida, “Molecular design of luminescent Eu(III) complexes as lanthanide lasing material and their optical properties,” J. Alloys Compd. 408–412, 669–674 (2006).
[Crossref]

Nakanishi, T.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, and Y. Hasegawa, “Hyper-stable organo-Eu(III) luminophore under high temperature for photo-industrial application,” Sci. Rep. 6(1), 24458 (2016).
[Crossref] [PubMed]

Nannarone, S.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Nordlander, P.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Odom, T. W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

Pirruccio, G.

Plain, J.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14(10), 5517–5523 (2014).
[Crossref] [PubMed]

Proietti Zaccaria, R.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Proust, J.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14(10), 5517–5523 (2014).
[Crossref] [PubMed]

Ren, B.

B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R. F. Aroca, B.-W. Mao, and Z.-Q. Tian, “Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes,” J. Am. Chem. Soc. 125(32), 9598–9599 (2003).
[Crossref] [PubMed]

Rivas, J. G.

Rodriguez, S. R. K.

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref] [PubMed]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Rodríguez, S. R. K.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Rothschild, M.

Saito, M.

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Saito, Y.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance Raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Sakamoto, H.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

Saniger, J. M.

R. González-Campuzano, J. M. Saniger, and D. Mendoza, “Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range,” Nanotechnology 28(46), 465704 (2017).
[Crossref] [PubMed]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Seki, T.

A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, and Y. Hasegawa, “Hyper-stable organo-Eu(III) luminophore under high temperature for photo-industrial application,” Sci. Rep. 6(1), 24458 (2016).
[Crossref] [PubMed]

Semmlinger, M.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

Sigle, D. O.

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref] [PubMed]

Solak, H. H.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[Crossref]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

Taguchi, A.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance Raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Tanaka, K.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

Têtu, A.

Tian, Z.-Q.

B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R. F. Aroca, B.-W. Mao, and Z.-Q. Tian, “Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes,” J. Am. Chem. Soc. 125(32), 9598–9599 (2003).
[Crossref] [PubMed]

Tseng, M. L.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

Tsukahara, Y.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516(9), 2376–2381 (2008).
[Crossref]

Uhrenfeldt, C.

Van Sprang, H.

M. A. Verschuuren and H. Van Sprang, “3D photonic structures by sol-gel imprint lithography,” MRS Proc. 1002, N03–N05 (2007).

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

Verschuuren, M. A.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref] [PubMed]

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

M. A. Verschuuren and H. Van Sprang, “3D photonic structures by sol-gel imprint lithography,” MRS Proc. 1002, N03–N05 (2007).

Villesen, T. F.

Wada, Y.

Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda, and T. Nagamura, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2013).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516(9), 2376–2381 (2008).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, and S. Yanagida, “Molecular design of luminescent Eu(III) complexes as lanthanide lasing material and their optical properties,” J. Alloys Compd. 408–412, 669–674 (2006).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Wang, Y.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Watanabe, K.

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance Raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

Welander, P. B.

Wokaun, A.

Wolverson, D.

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref] [PubMed]

Wu, B.

A. Kannegulla, Y. Liu, B. Wu, and L.-J. Cheng, “Aluminum ultraviolet–visible plasmonic arrays for broadband and wavelength-selective enhancements of quantum dot emission,” Appl. Phys. Lett. 111(8), 081106 (2017).
[Crossref]

Yamamoto, M.

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Yamamuro, M.

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Yanagida, S.

Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda, and T. Nagamura, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2013).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, and S. Yanagida, “Molecular design of luminescent Eu(III) complexes as lanthanide lasing material and their optical properties,” J. Alloys Compd. 408–412, 669–674 (2006).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Yang, J.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Yang, Z.-L.

B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R. F. Aroca, B.-W. Mao, and Z.-Q. Tian, “Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes,” J. Am. Chem. Soc. 125(32), 9598–9599 (2003).
[Crossref] [PubMed]

Yasuda, N.

Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda, and T. Nagamura, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2013).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516(9), 2376–2381 (2008).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, and S. Yanagida, “Molecular design of luminescent Eu(III) complexes as lanthanide lasing material and their optical properties,” J. Alloys Compd. 408–412, 669–674 (2006).
[Crossref]

Zhang, C.

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, B. Cai, and B. Jia, “Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells,” Nanomaterials (Basel) 6(6), 95 (2016).
[PubMed]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

Zhou, W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

Zoric, I.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref] [PubMed]

ACS Nano (3)

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5(6), 5151–5157 (2011).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

Y. Kumamoto, A. Taguchi, M. Honda, K. Watanabe, Y. Saito, and S. Kawata, “Indium for deep-ultraviolet surface-enhanced resonance Raman scattering,” ACS Photonics 1(7), 598–603 (2014).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

APL Photonics (1)

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. A. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Appl. Phys. Lett. (3)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

A. Kannegulla, Y. Liu, B. Wu, and L.-J. Cheng, “Aluminum ultraviolet–visible plasmonic arrays for broadband and wavelength-selective enhancements of quantum dot emission,” Appl. Phys. Lett. 111(8), 081106 (2017).
[Crossref]

Y. Hasegawa, Y. Wada, S. Yanagida, H. Kawai, N. Yasuda, and T. Nagamura, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2013).
[Crossref]

J. Alloys Compd. (1)

Y. Hasegawa, H. Kawai, K. Nakamura, N. Yasuda, Y. Wada, and S. Yanagida, “Molecular design of luminescent Eu(III) complexes as lanthanide lasing material and their optical properties,” J. Alloys Compd. 408–412, 669–674 (2006).
[Crossref]

J. Am. Chem. Soc. (2)

B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R. F. Aroca, B.-W. Mao, and Z.-Q. Tian, “Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes,” J. Am. Chem. Soc. 125(32), 9598–9599 (2003).
[Crossref] [PubMed]

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[Crossref]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (2)

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref] [PubMed]

Light Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

MRS Advances (1)

M. Saito, S. Murai, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, Y. Hasegawa, and K. Tanaka, “Effect of cylinder height on directional photoluminescence from highly luminous thin films on periodic plasmonic arrays,” MRS Advances 2(03), 173–177 (2017).
[Crossref]

MRS Proc. (1)

M. A. Verschuuren and H. Van Sprang, “3D photonic structures by sol-gel imprint lithography,” MRS Proc. 1002, N03–N05 (2007).

Nano Lett. (5)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[Crossref] [PubMed]

M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. 17(10), 6034–6039 (2017).
[Crossref] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum Nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gérard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14(10), 5517–5523 (2014).
[Crossref] [PubMed]

Nanomaterials (Basel) (1)

Y. Zhang, B. Cai, and B. Jia, “Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells,” Nanomaterials (Basel) 6(6), 95 (2016).
[PubMed]

Nanotechnology (1)

R. González-Campuzano, J. M. Saniger, and D. Mendoza, “Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range,” Nanotechnology 28(46), 465704 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6(7), 423–427 (2011).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Rev. Lett. (3)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102(14), 146807 (2009).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Nakajima, T. Nakanishi, Y. Kitagawa, T. Seki, H. Ito, K. Fushimi, and Y. Hasegawa, “Hyper-stable organo-Eu(III) luminophore under high temperature for photo-industrial application,” Sci. Rep. 6(1), 24458 (2016).
[Crossref] [PubMed]

Thin Solid Films (1)

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, and Y. Wada, “Improvement of lasing properties of europium (III) complexes by increase of emission quantum yield,” Thin Solid Films 516(9), 2376–2381 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 SEM images of Al nanocylinder arrays with periods p of (a) 150, (b) 180, (c) 200, (d) 220, (e) 255, (f) 275, (g) 300, and (h) 330 nm. The coordinate axes used in this study are shown in (a). The scale bars are 500 nm.
Fig. 2
Fig. 2 (a) The zeroth-order transmittance (s-polarization) T(θin, λ) of the Al nanocylinder array with p = 330 nm. (b) Simulated T(θin, λ) of the Al nanocylinder array with p = 330 nm. The Al nanocylinder was modeled as a combination of a cylinder (diameter of 150 nm and height of 115 nm) and a half spheroid (diameters d1 = 150 nm and d2 = 70 nm, thus the height was 35 nm) at the top. (c), (d) Distribution of the optical energy under illumination with a plane wave with (c) λ = 450 nm at θin = 5° and (d) λ = 362 nm at θin = 14°. We simulated the squared magnitude of the electric field normalized to that of the incident field, |E|2/|E0|2, in the z-x and z-y planes intersecting the nanocylinder at the center. The incident light is s-polarized, i.e., the electric field oscillates in the y-direction. Two unit cells are shown for the sake of clarity.
Fig. 3
Fig. 3 (a) Experimental and (b) simulated T(λ) of the Al nanocylinder arrays for variable p at θin = 0° (s-polarization). For the simulation, we used the following parameters for the shape of Al nanocylinders: p = 110 nm to 150 nm: a half prolate spheroid with diameters d1 = 80 nm and d2 = 300 nm, thus the height was 150 nm; p = 180 and 200 nm: a cylinder with a diameter of 90 nm and height of 150 nm; p = 220 nm: a combination of a cylinder body (diameter of 90 nm and height of 115 nm) and a half spheroid top (d1 = 90 nm and d2 = 70 nm, thus the height was 35 nm); p = 255, 275 and 300 nm: a half prolate spheroid with diameters d1 = 90 nm and d2 = 300 nm thus the height of 150 nm; p = 330 nm: a combination of a cylinder body (diameter of 150 nm and height of 115 nm) and a half spheroid top(diameters d1 = 150 nm and d2 = 70 nm, thus the height was 35 nm). (c) Dip positions in T(λ) (symbols) and the conditions of the Rayleigh anomaly (solid lines) for n = 1.46 (silica glass) and 1.0 (air) at θin = 0° as functions of p.
Fig. 4
Fig. 4 (a) Experimentally-obtained T(θin, λ) (s-polarization) of the Al nanocylinder array with p = 220 nm embedded in a Eu(hfa)3(TPPO)2 thin film. The dashed line indicates the Rayleigh anomaly for n = 1.51. (b) Simulated T(θin, λ) of the Al nanocylinder array with p = 220 nm embedded in a Eu(hfa)3(TPPO)2 thin film. (c), (d) The distribution of optical energy under the illumination with a plane wave with (c) λ = 340 nm at θin = 0° and (d) λ = 382 nm at θin = 0°. We simulated |E|2/|E0|2 in the z-x and z-y planes intersecting the nanocylinder at its center. (e) The squared magnitude of the electric field normalized to that of the reference, |Efilm|2/|Efilmref|2 integrated over the film, as a function of λ at θin = 10°. The vertical red line indicates the excitation wavelength of λ = 325 nm. The symbols in (e) denote the wavelengths used for the calculations in (c) and (d). (f) Excitation spectrum of Eu(hfa)3(TPPO)2 thin film measured by detecting λ = 613 nm light.
Fig. 5
Fig. 5 (a) The PL spectrum of the Al nanocylinder array with p = 220 nm embedded in the Eu(hfa)3(TPPO)2 thin film excited at θin = 10° and λ = 325 nm and detected at θem = 20°. The gray area indicates the PL spectrum from the reference film on a flat silica glass substrate. The peaks at 590, 615, and 655 nm are assigned to the 5D07F1, 5D07F2, and 5D07F3 transitions, respectively. (b) PL intensity I at λ = 615 nm from the array sample normalized by that from the reference I0 ( = I/I0) as a function of θem, for the Eu(hfa)3(TPPO)2 thin film on the Al nanocylinder array (p = 220 nm) and that on the Al flat film. (c) The absorption enhancement, defined as the extinction of the film on the array divided by that of the film on a flat substrate for the array with p = 220 nm, as a function of λ at θin = 10°. T(λ) and T0(λ) are obtained by normalizing the transmittance to the transmittance of air. The vertical red line indicates the excitation wavelength of λ = 325 nm. (d) (black square) The squared magnitude of the electric field normalized to that of the reference, |Efilm|2/|Efilmref|2 integrated over the film, at λ = 325 nm and θin = 10°, as a function of the pitch of the array, and (red circle) I/I0 at λ = 615 nm as a function of the pitch.
Fig. 6
Fig. 6 PL decay curves of the Eu(hfa)3(TPPO)2 thin film on the Al flat thin film (black line), on the Al nanocylinder array (p = 220 nm) (red line), and on a flat silica glass substrate (blue line).

Tables (1)

Tables Icon

Table 1 The PL lifetimes obtained by fitting the decay curves in Fig. 6 with Eq. (3), the energy transfer efficiency to Al calculated from Eq. (5), and the PL intensity normalized by the reference intensity at λ = 615 nm and θin = 10°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

b 1 = ( 2 π / a ) ( x ^ + y ^ / 3 ) b 2 = ( 2 π / a ) ( x ^ y ^ / 3 ) ,
k o u t 2 = k i n | | 2 + 2 ( 2 π / a ) ( m 1 + m 2 ) k i n | | + ( 2 π / a ) 2 ( m 1 + m 2 ) 2 + ( 2 π / a ) 2 ( m 1 m 2 ) 2 / 3.
Ι ( t ) = Α exp ( t / τ ) .
k E T = 1 τ 1 1 τ 0 .
η E T = 1 τ 1 τ 0 .

Metrics