Abstract

We propose a new technique to fabricate a highly specialized optical element, a hybrid planar Grating/Fresnel lens (G-Fresnel), which is particularly useful to improve or enable more-affordable miniature/portable spectrometers. Both the Fresnel and the grating surface are fabricated simultaneously by sandwiching soft PDMS between a hard grating and a pre-replicated negative Fresnel surface. Several adhesion reduction techniques are also investigated that help improve both fabrication and cost efficiency (by reducing the solidification time) as well as the lifetime of the mold. Alignment errors are systematically analyzed, and their effects on the G-Fresnel lens evaluated. A compact fabrication platform was built, which is smaller than a volume of 160☓140☓106 mm3 to fit into a conventional vacuum drying oven, for the fabrication of a G-Fresnel lens with a diameter of 25.4 mm, an equivalent focal length of 25 mm, and a blazed grating pattern with 600 lines/mm spacing. The solidification time was reduced to 2 hours thanks to the improved adhesion reduction technique that permits a PDMS drying-temperature as high as 65 °C. The fabricated G-Fresnel lens was evaluated with regard to both geometrical fabrication precision and optical performance. The measured results, using a step gauge and atomic force microscopy, confirm that this replication technique produces high-quality replicates of the master surface-profile. Furthermore, a prototype spectrometer that uses a G-Fresnel lens was built and evaluated. The spectrometer fits within a volume of about 100 mm☓50 mm☓30 mm, and it operates across a wide wavelength spectrum (450 nm to 650 nm). Both the calculation based on the optical software ZEMAX and the experimental measurements are consistent and confirm that the spectrometer with the G-Fresnel lens can provide a spectral resolution of better than 1.2nm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device

Chuan Yang, Kebin Shi, Perry Edwards, and Zhiwen Liu
Opt. Express 18(23) 23529-23534 (2010)

Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method

Xinghui Li, Kai Ni, Qian Zhou, Xiaohao Wang, Rui Tian, and Jinchao Pang
Opt. Express 24(10) 10759-10766 (2016)

Design of a variable-line-spacing grating pattern for spectrometers based on a grating Fresnel device

Xinghui Li, Jinchao Zhang, Qian Zhou, Kai Ni, Jinchao Pang, and Rui Tian
Opt. Lett. 41(7) 1470-1473 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, M. J. Deen, Q. Fang, and P. R. Selvaganapathy, “Design of a flat field concave-grating-based micro-Raman spectrometer for environmental applications,” Appl. Opt. 51(28), 6855–6863 (2012).
    [Crossref] [PubMed]
  2. R. Brunner, M. Burkhardt, K. Rudolf, and N. Correns, “Microspectrometer based on holographically recorded diffractive elements using supplementary holograms,” Opt. Express 16(16), 12239–12250 (2008).
    [Crossref] [PubMed]
  3. M. M. Mariani, P. J. R. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr. Biol. 2(2-3), 94–101 (2010).
    [Crossref] [PubMed]
  4. Q. Zhou, J. Pang, X. Li, K. Ni, and R. Tian, “Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones,” Appl. Opt. 54(32), 9450–9455 (2015).
    [Crossref] [PubMed]
  5. X. Li, K. Ni, Q. Zhou, X. Wang, R. Tian, and J. Pang, “Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method,” Opt. Express 24(10), 10759–10766 (2016).
    [Crossref] [PubMed]
  6. H. Noda, T. Namioka, and M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64(8), 1031–1036 (1974).
    [Crossref]
  7. E. Sokolova, “Simulation of mechanically ruled concave diffraction gratings by use of an original geometric theory,” Appl. Opt. 43(1), 20–28 (2004).
    [Crossref] [PubMed]
  8. M. Duban, G. R. Lemaitre, and R. F. Malina, “Recording method for obtaining high-resolution holographic gratings through use of multimode deformable plane mirrors,” Appl. Opt. 37(16), 3438–3439 (1998).
    [Crossref] [PubMed]
  9. C. Palmer, “Theory of second-generation holographic diffraction gratings,” J. Opt. Soc. Am. A 6(8), 1175–1188 (1989).
    [Crossref]
  10. E. Sokolova, “Holographic diffraction gratings for flat-field spectrometers,” J. Mod. Opt. 47(13), 2377–2389 (2000).
    [Crossref]
  11. C. Yang, P. Edwards, K. Shi, and Z. Liu, “Proposal and demonstration of a spectrometer using a diffractive optical element with dual dispersion and focusing functionality,” Opt. Lett. 36(11), 2023–2025 (2011).
    [Crossref] [PubMed]
  12. C. Yang, K. Shi, P. Edwards, and Z. Liu, “Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device,” Opt. Express 18(23), 23529–23534 (2010).
    [Crossref] [PubMed]
  13. Y. Chen, W. Pei, R. Tang, S. Chen, and H. Chen, “Conformal coating of parylene for surface anti-adhesion in polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 189, 143–150 (2013).
    [Crossref]
  14. L. Gitlin, P. Schulze, and D. Belder, “Rapid replication of master structures by double casting with PDMS,” Lab Chip 9(20), 3000–3002 (2009).
    [Crossref] [PubMed]
  15. G. Shao, J. Wu, Z. Cai, and W. Wang, “Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 178, 230–236 (2012).
    [Crossref]
  16. U. Srinivasan, M. R. Houston, R. T. Howe, and R. Maboudian, “Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines,” J. Microelectromech. Syst. 7(2), 252–260 (1998).
    [Crossref]
  17. R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema, “Chemically patterned flat stamps for microcontact printing,” J. Am. Chem. Soc. 127(29), 10344–10349 (2005).
    [Crossref] [PubMed]
  18. W. R. Ashurst, C. Carraro, and R. Maboudian, “Vapor phase anti-stiction coatings for MEMS,” IEEE Trans. Device Mater. Reliab. 3(4), 173–178 (2003).
    [Crossref]
  19. X. Li, K. Ni, Q. Zhou, P. Yan, J. Pang, and X. Wang, “Improved master-replica separation process for fabrication of a blazed concave grating by using a combination-type convex grating,” Appl. Opt. 56(2), 298–302 (2017).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

2015 (1)

2013 (1)

Y. Chen, W. Pei, R. Tang, S. Chen, and H. Chen, “Conformal coating of parylene for surface anti-adhesion in polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 189, 143–150 (2013).
[Crossref]

2012 (2)

G. Shao, J. Wu, Z. Cai, and W. Wang, “Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 178, 230–236 (2012).
[Crossref]

Z. Li, M. J. Deen, Q. Fang, and P. R. Selvaganapathy, “Design of a flat field concave-grating-based micro-Raman spectrometer for environmental applications,” Appl. Opt. 51(28), 6855–6863 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

C. Yang, K. Shi, P. Edwards, and Z. Liu, “Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device,” Opt. Express 18(23), 23529–23534 (2010).
[Crossref] [PubMed]

M. M. Mariani, P. J. R. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr. Biol. 2(2-3), 94–101 (2010).
[Crossref] [PubMed]

2009 (1)

L. Gitlin, P. Schulze, and D. Belder, “Rapid replication of master structures by double casting with PDMS,” Lab Chip 9(20), 3000–3002 (2009).
[Crossref] [PubMed]

2008 (1)

2005 (1)

R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema, “Chemically patterned flat stamps for microcontact printing,” J. Am. Chem. Soc. 127(29), 10344–10349 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

W. R. Ashurst, C. Carraro, and R. Maboudian, “Vapor phase anti-stiction coatings for MEMS,” IEEE Trans. Device Mater. Reliab. 3(4), 173–178 (2003).
[Crossref]

2000 (1)

E. Sokolova, “Holographic diffraction gratings for flat-field spectrometers,” J. Mod. Opt. 47(13), 2377–2389 (2000).
[Crossref]

1998 (2)

U. Srinivasan, M. R. Houston, R. T. Howe, and R. Maboudian, “Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines,” J. Microelectromech. Syst. 7(2), 252–260 (1998).
[Crossref]

M. Duban, G. R. Lemaitre, and R. F. Malina, “Recording method for obtaining high-resolution holographic gratings through use of multimode deformable plane mirrors,” Appl. Opt. 37(16), 3438–3439 (1998).
[Crossref] [PubMed]

1989 (1)

1974 (1)

Ashurst, W. R.

W. R. Ashurst, C. Carraro, and R. Maboudian, “Vapor phase anti-stiction coatings for MEMS,” IEEE Trans. Device Mater. Reliab. 3(4), 173–178 (2003).
[Crossref]

Belder, D.

L. Gitlin, P. Schulze, and D. Belder, “Rapid replication of master structures by double casting with PDMS,” Lab Chip 9(20), 3000–3002 (2009).
[Crossref] [PubMed]

Brunner, R.

Burdinski, D.

R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema, “Chemically patterned flat stamps for microcontact printing,” J. Am. Chem. Soc. 127(29), 10344–10349 (2005).
[Crossref] [PubMed]

Burkhardt, M.

Cai, Z.

G. Shao, J. Wu, Z. Cai, and W. Wang, “Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 178, 230–236 (2012).
[Crossref]

Carraro, C.

W. R. Ashurst, C. Carraro, and R. Maboudian, “Vapor phase anti-stiction coatings for MEMS,” IEEE Trans. Device Mater. Reliab. 3(4), 173–178 (2003).
[Crossref]

Chen, H.

Y. Chen, W. Pei, R. Tang, S. Chen, and H. Chen, “Conformal coating of parylene for surface anti-adhesion in polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 189, 143–150 (2013).
[Crossref]

Chen, S.

Y. Chen, W. Pei, R. Tang, S. Chen, and H. Chen, “Conformal coating of parylene for surface anti-adhesion in polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 189, 143–150 (2013).
[Crossref]

Chen, Y.

Y. Chen, W. Pei, R. Tang, S. Chen, and H. Chen, “Conformal coating of parylene for surface anti-adhesion in polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 189, 143–150 (2013).
[Crossref]

Correns, N.

Day, P. J. R.

M. M. Mariani, P. J. R. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr. Biol. 2(2-3), 94–101 (2010).
[Crossref] [PubMed]

Deckert, V.

M. M. Mariani, P. J. R. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr. Biol. 2(2-3), 94–101 (2010).
[Crossref] [PubMed]

Deen, M. J.

Duban, M.

Edwards, P.

Fang, Q.

Gitlin, L.

L. Gitlin, P. Schulze, and D. Belder, “Rapid replication of master structures by double casting with PDMS,” Lab Chip 9(20), 3000–3002 (2009).
[Crossref] [PubMed]

Houston, M. R.

U. Srinivasan, M. R. Houston, R. T. Howe, and R. Maboudian, “Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines,” J. Microelectromech. Syst. 7(2), 252–260 (1998).
[Crossref]

Howe, R. T.

U. Srinivasan, M. R. Houston, R. T. Howe, and R. Maboudian, “Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines,” J. Microelectromech. Syst. 7(2), 252–260 (1998).
[Crossref]

Huskens, J.

R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema, “Chemically patterned flat stamps for microcontact printing,” J. Am. Chem. Soc. 127(29), 10344–10349 (2005).
[Crossref] [PubMed]

Lemaitre, G. R.

Li, X.

Li, Z.

Liu, Z.

Maboudian, R.

W. R. Ashurst, C. Carraro, and R. Maboudian, “Vapor phase anti-stiction coatings for MEMS,” IEEE Trans. Device Mater. Reliab. 3(4), 173–178 (2003).
[Crossref]

U. Srinivasan, M. R. Houston, R. T. Howe, and R. Maboudian, “Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines,” J. Microelectromech. Syst. 7(2), 252–260 (1998).
[Crossref]

Malina, R. F.

Mariani, M. M.

M. M. Mariani, P. J. R. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr. Biol. 2(2-3), 94–101 (2010).
[Crossref] [PubMed]

Namioka, T.

Ni, K.

Noda, H.

Palmer, C.

Pang, J.

Pei, W.

Y. Chen, W. Pei, R. Tang, S. Chen, and H. Chen, “Conformal coating of parylene for surface anti-adhesion in polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 189, 143–150 (2013).
[Crossref]

Poelsema, B.

R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema, “Chemically patterned flat stamps for microcontact printing,” J. Am. Chem. Soc. 127(29), 10344–10349 (2005).
[Crossref] [PubMed]

Reinhoudt, D. N.

R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema, “Chemically patterned flat stamps for microcontact printing,” J. Am. Chem. Soc. 127(29), 10344–10349 (2005).
[Crossref] [PubMed]

Rudolf, K.

Schulze, P.

L. Gitlin, P. Schulze, and D. Belder, “Rapid replication of master structures by double casting with PDMS,” Lab Chip 9(20), 3000–3002 (2009).
[Crossref] [PubMed]

Selvaganapathy, P. R.

Seya, M.

Shao, G.

G. Shao, J. Wu, Z. Cai, and W. Wang, “Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 178, 230–236 (2012).
[Crossref]

Sharpe, R. B. A.

R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema, “Chemically patterned flat stamps for microcontact printing,” J. Am. Chem. Soc. 127(29), 10344–10349 (2005).
[Crossref] [PubMed]

Shi, K.

Sokolova, E.

E. Sokolova, “Simulation of mechanically ruled concave diffraction gratings by use of an original geometric theory,” Appl. Opt. 43(1), 20–28 (2004).
[Crossref] [PubMed]

E. Sokolova, “Holographic diffraction gratings for flat-field spectrometers,” J. Mod. Opt. 47(13), 2377–2389 (2000).
[Crossref]

Srinivasan, U.

U. Srinivasan, M. R. Houston, R. T. Howe, and R. Maboudian, “Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines,” J. Microelectromech. Syst. 7(2), 252–260 (1998).
[Crossref]

Tang, R.

Y. Chen, W. Pei, R. Tang, S. Chen, and H. Chen, “Conformal coating of parylene for surface anti-adhesion in polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 189, 143–150 (2013).
[Crossref]

Tian, R.

Wang, W.

G. Shao, J. Wu, Z. Cai, and W. Wang, “Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 178, 230–236 (2012).
[Crossref]

Wang, X.

Wu, J.

G. Shao, J. Wu, Z. Cai, and W. Wang, “Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 178, 230–236 (2012).
[Crossref]

Yan, P.

Yang, C.

Zandvliet, H. J. W.

R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema, “Chemically patterned flat stamps for microcontact printing,” J. Am. Chem. Soc. 127(29), 10344–10349 (2005).
[Crossref] [PubMed]

Zhou, Q.

Appl. Opt. (5)

IEEE Trans. Device Mater. Reliab. (1)

W. R. Ashurst, C. Carraro, and R. Maboudian, “Vapor phase anti-stiction coatings for MEMS,” IEEE Trans. Device Mater. Reliab. 3(4), 173–178 (2003).
[Crossref]

Integr. Biol. (1)

M. M. Mariani, P. J. R. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integr. Biol. 2(2-3), 94–101 (2010).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

R. B. A. Sharpe, D. Burdinski, J. Huskens, H. J. W. Zandvliet, D. N. Reinhoudt, and B. Poelsema, “Chemically patterned flat stamps for microcontact printing,” J. Am. Chem. Soc. 127(29), 10344–10349 (2005).
[Crossref] [PubMed]

J. Microelectromech. Syst. (1)

U. Srinivasan, M. R. Houston, R. T. Howe, and R. Maboudian, “Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines,” J. Microelectromech. Syst. 7(2), 252–260 (1998).
[Crossref]

J. Mod. Opt. (1)

E. Sokolova, “Holographic diffraction gratings for flat-field spectrometers,” J. Mod. Opt. 47(13), 2377–2389 (2000).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Lab Chip (1)

L. Gitlin, P. Schulze, and D. Belder, “Rapid replication of master structures by double casting with PDMS,” Lab Chip 9(20), 3000–3002 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Sens. Actuators A Phys. (2)

Y. Chen, W. Pei, R. Tang, S. Chen, and H. Chen, “Conformal coating of parylene for surface anti-adhesion in polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 189, 143–150 (2013).
[Crossref]

G. Shao, J. Wu, Z. Cai, and W. Wang, “Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique,” Sens. Actuators A Phys. 178, 230–236 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of a G-Fresnel based spectrometer.
Fig. 2
Fig. 2 Flow of dual-casting process for fabrication of the G-Fresnel lens.
Fig. 3
Fig. 3 Spectrometer layout and simulated resolution results.
Fig. 4
Fig. 4 Influence of fabrication mechanism errors on resolution variation.
Fig. 5
Fig. 5 3D model and picture of the experimental setup.
Fig. 6
Fig. 6 Two anti-adhesion technologies.
Fig. 7
Fig. 7 Photos of Fresnel lens mold (a) and fabricated G-Fresnel lens (b).
Fig. 8
Fig. 8 Typical surface profiles of a Fresnel lens and the Fresnel side of a G-Fresnel measured by step gauge.
Fig. 9
Fig. 9 AFM images and cross-sectional shapes of the master grating (a) and the grating surface of fabricated G-Fresnel (b).
Fig. 10
Fig. 10 Experimental setup for evaluation of the fabrication G-Fresnel in spectrometry (a) generation of co-axis three light sources and (b) the configuration of the spectrometry system.
Fig. 11
Fig. 11 Spectrum measurement results of three laser sources.

Tables (1)

Tables Icon

Table 1 Comparison of experimental and simulated resolutions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y i =0.00004381 x i 2 +0.3079 x i +227.7
y i ' =0.00008762 x i +0.3079

Metrics