Abstract

We explore theoretically the optomechanical interaction between a light field and a mechanical mode mediated by a Kerr nonlinear medium inside a Fabry-Perot cavity. When the system is driven by a strong and fast amplitude-modulated light field, i.e., in the so-called temporal rocking region, the cavity field and the mechanical oscillator show the characteristics of multistability. The rocking breaks down the continuous phase symmetry of the cavity field to a bistable case of two equivalent states with exact π phase difference. In addition, the rocking can significantly enhance the optomechanical coupling between the light field and the mechanical oscillator, which can be used as a new handle to control the normal mode splitting of the mechanical spectrum. Moreover, the optomechanical cooling rate can be greatly modified by the rocking. With the optimized rocking parameters, the mechanical oscillator can be cooled down to its ground state more efficiently. Such a temporal rocking optomechanical system has potential applications in all-optical switching and enhancement of quantum effects.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical bistability and dynamics in an optomechanical system with a two-level atom

Cheng Jiang, Xintian Bian, Yuanshun Cui, and Guibin Chen
J. Opt. Soc. Am. B 33(10) 2099-2104 (2016)

Noise-induced temporal regularity and signal amplification in an optomechanical system with parametric instability

Danying Yu, Min Xie, Yanbei Cheng, and Bixuan Fan
Opt. Express 26(25) 32433-32441 (2018)

Directional amplifiers in a hybrid optomechanical system

Wen-An Li, Guang-Yao Huang, and Yuan Chen
J. Opt. Soc. Am. B 36(2) 306-311 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
    [Crossref] [PubMed]
  2. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
    [Crossref]
  3. G. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D 34, 470 (1986).
    [Crossref]
  4. K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today 58(7), 36 (2005).
    [Crossref]
  5. M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
    [Crossref] [PubMed]
  6. C. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981).
    [Crossref]
  7. M. Metcalfe, “Applications of cavity optomechanics,” Applied Physics Reviews 1, 031105 (2014).
    [Crossref]
  8. A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
    [Crossref]
  9. T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
    [Crossref] [PubMed]
  10. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref] [PubMed]
  11. J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref] [PubMed]
  12. T. Purdy, R. Peterson, and C. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science 339(6121), 801–804 (2013).
    [Crossref] [PubMed]
  13. A. Safavi-Naeini, S. Groblacher, J. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
    [Crossref] [PubMed]
  14. T. Purdy, P. Li, R. Peterson, N. Kampel, and C. Regel, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2012).
  15. K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
    [Crossref] [PubMed]
  16. Y. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
    [Crossref] [PubMed]
  17. S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hansch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
    [Crossref] [PubMed]
  18. Y. Chang, T. Shi, Y. Liu, C. P. Sun, and F. Nori, “Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities,” Phys. Rev. A 83, 063826 (2011).
    [Crossref]
  19. C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
    [Crossref]
  20. C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).
    [Crossref]
  21. X. Chen, Y. Liu, P. Peng, Y. Zhi, and Y. Xiao, “Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems,” Phys. Rev. A 92, 033841 (2015).
    [Crossref]
  22. A. Sanz-Mora, A. Eisfeld, S. Wuster, and J.-M. Rost, “Coupling of a nanomechanical oscillator and an atomic three-level medium,” Phys. Rev. A 93, 023816 (2016).
    [Crossref]
  23. Z. Yi, G. Li, S. Wu, and Y. Yang, “Ground-state cooling of an oscillator in a hybrid atom-optomechanical system,” Optics Express 22(17), 20060–20075 (2014).
    [Crossref] [PubMed]
  24. H. Wu and M. Xiao, “Strong coupling of an optomechanical system to an anomalously dispersive atomic medium,” Laser Physics Letters 11, 126003 (2014).
    [Crossref]
  25. K. Murch, K. Moore, S. gupta, and D. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
    [Crossref]
  26. M. Asjad, “Optomechanically dark state in hybrid BEC-optomechanical systems,” J. Russian Laser Res. 34(3), 278–287 (2013).
    [Crossref]
  27. S. Singh, H. Jing, E. M. Wright, and P. Meystre, “Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror,” Phys. Rev. A 86, 021801 (2012).
    [Crossref]
  28. Y. Chen, H. Zhai, and Z. Yu, “Superradiant phase transition of Fermi gases in a cavity across a Feshbach resonance,” Phys. Rev. A 91, 021602 (2015).
    [Crossref]
  29. R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
    [Crossref] [PubMed]
  30. J. Keeling, M. J. Bhaseen, and B. D. Simons, “Fermionic superradiance in a transversely pumped optical cavity,” Phys. Rev. Lett. 112, 143002 (2014).
    [Crossref] [PubMed]
  31. S. Huang and G. S. Agarwal, “Enhancement of cavity cooling of a micromechanical mirror using parametric interactions,” Phys. Rev. A 79, 013821 (2009).
    [Crossref]
  32. T. Kumar and A. B. Bhattacherjee, and ManMohan, “Dynamics of a movable micromirror in a nonlinear optical cavity,” Phys. Rev. A 81, 013835 (2010).
    [Crossref]
  33. A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009).
    [Crossref]
  34. M. Bienert and P. Barberis-Blostein, “Optomechanical laser cooling with mechanical modulations,” Phys. Rev. A 91, 023818 (2015).
    [Crossref]
  35. A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86,013820 (2012).
    [Crossref]
  36. G. de Valcarcel and K. Staliunas, “Excitation of phase patterns and spatial solitons via two-frequency forcing of a 1:1 resonance,” Phys. Rev. E 67, 026604 (2003).
    [Crossref]
  37. A. Esteban-Martin, M. Martinez-Quesada, V. B. Taranenko, E. Roldan, and G. de Valcarcel, “Bistable phase locking of a nonlinear optical cavity via rocking: transmuting vortices into phase patterns,” Phys. Rev. Lett. 97, 093903 (2006).
    [Crossref] [PubMed]
  38. K. Staliunas, G. de Valcarcel, J. M. Buldu, and J. Garcia-Ojalvo, “Noise-induced phase bistability via stochastic rocking,” Phys. Rev. Lett. 102, 010601 (2009).
    [Crossref] [PubMed]
  39. J. M. Buldu, K. Staliunas, J. A. Casals, and J. Garcia-Ojalvo, “Bistable phase control via rocking in a nonlinear electronic oscillator,” Chaos 16, 043126 (2006).
    [Crossref]
  40. G. de Valcarcel and K. Staliunas, “Phase-bistable Kerr cavity solitons and patterns,” Phys. Rev. A 87, 043802 (2013).
    [Crossref]
  41. J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
    [Crossref] [PubMed]
  42. L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223 (1998).
    [Crossref]

2016 (1)

A. Sanz-Mora, A. Eisfeld, S. Wuster, and J.-M. Rost, “Coupling of a nanomechanical oscillator and an atomic three-level medium,” Phys. Rev. A 93, 023816 (2016).
[Crossref]

2015 (3)

Y. Chen, H. Zhai, and Z. Yu, “Superradiant phase transition of Fermi gases in a cavity across a Feshbach resonance,” Phys. Rev. A 91, 021602 (2015).
[Crossref]

M. Bienert and P. Barberis-Blostein, “Optomechanical laser cooling with mechanical modulations,” Phys. Rev. A 91, 023818 (2015).
[Crossref]

X. Chen, Y. Liu, P. Peng, Y. Zhi, and Y. Xiao, “Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems,” Phys. Rev. A 92, 033841 (2015).
[Crossref]

2014 (5)

J. Keeling, M. J. Bhaseen, and B. D. Simons, “Fermionic superradiance in a transversely pumped optical cavity,” Phys. Rev. Lett. 112, 143002 (2014).
[Crossref] [PubMed]

Z. Yi, G. Li, S. Wu, and Y. Yang, “Ground-state cooling of an oscillator in a hybrid atom-optomechanical system,” Optics Express 22(17), 20060–20075 (2014).
[Crossref] [PubMed]

H. Wu and M. Xiao, “Strong coupling of an optomechanical system to an anomalously dispersive atomic medium,” Laser Physics Letters 11, 126003 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

M. Metcalfe, “Applications of cavity optomechanics,” Applied Physics Reviews 1, 031105 (2014).
[Crossref]

2013 (4)

T. Purdy, R. Peterson, and C. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science 339(6121), 801–804 (2013).
[Crossref] [PubMed]

A. Safavi-Naeini, S. Groblacher, J. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

M. Asjad, “Optomechanically dark state in hybrid BEC-optomechanical systems,” J. Russian Laser Res. 34(3), 278–287 (2013).
[Crossref]

G. de Valcarcel and K. Staliunas, “Phase-bistable Kerr cavity solitons and patterns,” Phys. Rev. A 87, 043802 (2013).
[Crossref]

2012 (3)

S. Singh, H. Jing, E. M. Wright, and P. Meystre, “Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror,” Phys. Rev. A 86, 021801 (2012).
[Crossref]

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86,013820 (2012).
[Crossref]

T. Purdy, P. Li, R. Peterson, N. Kampel, and C. Regel, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2012).

2011 (7)

S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hansch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Y. Chang, T. Shi, Y. Liu, C. P. Sun, and F. Nori, “Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities,” Phys. Rev. A 83, 063826 (2011).
[Crossref]

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
[Crossref] [PubMed]

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

2010 (3)

T. Kumar and A. B. Bhattacherjee, and ManMohan, “Dynamics of a movable micromirror in a nonlinear optical cavity,” Phys. Rev. A 81, 013835 (2010).
[Crossref]

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[Crossref] [PubMed]

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

2009 (5)

C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).
[Crossref]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

S. Huang and G. S. Agarwal, “Enhancement of cavity cooling of a micromechanical mirror using parametric interactions,” Phys. Rev. A 79, 013821 (2009).
[Crossref]

A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009).
[Crossref]

K. Staliunas, G. de Valcarcel, J. M. Buldu, and J. Garcia-Ojalvo, “Noise-induced phase bistability via stochastic rocking,” Phys. Rev. Lett. 102, 010601 (2009).
[Crossref] [PubMed]

2008 (3)

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref] [PubMed]

K. Murch, K. Moore, S. gupta, and D. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

2006 (3)

Y. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

J. M. Buldu, K. Staliunas, J. A. Casals, and J. Garcia-Ojalvo, “Bistable phase control via rocking in a nonlinear electronic oscillator,” Chaos 16, 043126 (2006).
[Crossref]

A. Esteban-Martin, M. Martinez-Quesada, V. B. Taranenko, E. Roldan, and G. de Valcarcel, “Bistable phase locking of a nonlinear optical cavity via rocking: transmuting vortices into phase patterns,” Phys. Rev. Lett. 97, 093903 (2006).
[Crossref] [PubMed]

2005 (1)

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today 58(7), 36 (2005).
[Crossref]

2003 (1)

G. de Valcarcel and K. Staliunas, “Excitation of phase patterns and spatial solitons via two-frequency forcing of a 1:1 resonance,” Phys. Rev. E 67, 026604 (2003).
[Crossref]

1998 (1)

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223 (1998).
[Crossref]

1986 (1)

G. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D 34, 470 (1986).
[Crossref]

1981 (1)

C. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981).
[Crossref]

abd, J. W.

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Agarwal, G. S.

S. Huang and G. S. Agarwal, “Enhancement of cavity cooling of a micromechanical mirror using parametric interactions,” Phys. Rev. A 79, 013821 (2009).
[Crossref]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

Allman, M.

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Ansmann, M.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Asjad, M.

M. Asjad, “Optomechanically dark state in hybrid BEC-optomechanical systems,” J. Russian Laser Res. 34(3), 278–287 (2013).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

A. Safavi-Naeini, S. Groblacher, J. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
[Crossref] [PubMed]

Barberis-Blostein, P.

M. Bienert and P. Barberis-Blostein, “Optomechanical laser cooling with mechanical modulations,” Phys. Rev. A 91, 023818 (2015).
[Crossref]

Bhaseen, M. J.

J. Keeling, M. J. Bhaseen, and B. D. Simons, “Fermionic superradiance in a transversely pumped optical cavity,” Phys. Rev. Lett. 112, 143002 (2014).
[Crossref] [PubMed]

Bhattacherjee, A. B.

T. Kumar and A. B. Bhattacherjee, and ManMohan, “Dynamics of a movable micromirror in a nonlinear optical cavity,” Phys. Rev. A 81, 013835 (2010).
[Crossref]

Bialczak, R.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Bienert, M.

M. Bienert and P. Barberis-Blostein, “Optomechanical laser cooling with mechanical modulations,” Phys. Rev. A 91, 023818 (2015).
[Crossref]

Brukner, C.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
[Crossref] [PubMed]

Buldu, J. M.

K. Staliunas, G. de Valcarcel, J. M. Buldu, and J. Garcia-Ojalvo, “Noise-induced phase bistability via stochastic rocking,” Phys. Rev. Lett. 102, 010601 (2009).
[Crossref] [PubMed]

J. M. Buldu, K. Staliunas, J. A. Casals, and J. Garcia-Ojalvo, “Bistable phase control via rocking in a nonlinear electronic oscillator,” Chaos 16, 043126 (2006).
[Crossref]

Camerer, S.

S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hansch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Casals, J. A.

J. M. Buldu, K. Staliunas, J. A. Casals, and J. Garcia-Ojalvo, “Bistable phase control via rocking in a nonlinear electronic oscillator,” Chaos 16, 043126 (2006).
[Crossref]

Caves, C.

C. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981).
[Crossref]

Chan, J.

A. Safavi-Naeini, S. Groblacher, J. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Chang, Y.

Y. Chang, T. Shi, Y. Liu, C. P. Sun, and F. Nori, “Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities,” Phys. Rev. A 83, 063826 (2011).
[Crossref]

Chen, X.

X. Chen, Y. Liu, P. Peng, Y. Zhi, and Y. Xiao, “Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems,” Phys. Rev. A 92, 033841 (2015).
[Crossref]

Chen, Y.

Y. Chen, H. Zhai, and Z. Yu, “Superradiant phase transition of Fermi gases in a cavity across a Feshbach resonance,” Phys. Rev. A 91, 021602 (2015).
[Crossref]

Cicak, K.

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Cleland, A. N.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Cole, G. D.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
[Crossref] [PubMed]

Connell, A.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Dantan, A.

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

de Valcarcel, G.

G. de Valcarcel and K. Staliunas, “Phase-bistable Kerr cavity solitons and patterns,” Phys. Rev. A 87, 043802 (2013).
[Crossref]

K. Staliunas, G. de Valcarcel, J. M. Buldu, and J. Garcia-Ojalvo, “Noise-induced phase bistability via stochastic rocking,” Phys. Rev. Lett. 102, 010601 (2009).
[Crossref] [PubMed]

A. Esteban-Martin, M. Martinez-Quesada, V. B. Taranenko, E. Roldan, and G. de Valcarcel, “Bistable phase locking of a nonlinear optical cavity via rocking: transmuting vortices into phase patterns,” Phys. Rev. Lett. 97, 093903 (2006).
[Crossref] [PubMed]

G. de Valcarcel and K. Staliunas, “Excitation of phase patterns and spatial solitons via two-frequency forcing of a 1:1 resonance,” Phys. Rev. E 67, 026604 (2003).
[Crossref]

donner, T.

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Drewsen, M.

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

Eardley, M.

Y. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Eisert, J.

A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009).
[Crossref]

Eisfeld, A.

A. Sanz-Mora, A. Eisfeld, S. Wuster, and J.-M. Rost, “Coupling of a nanomechanical oscillator and an atomic three-level medium,” Phys. Rev. A 93, 023816 (2016).
[Crossref]

Esteban-Martin, A.

A. Esteban-Martin, M. Martinez-Quesada, V. B. Taranenko, E. Roldan, and G. de Valcarcel, “Bistable phase locking of a nonlinear optical cavity via rocking: transmuting vortices into phase patterns,” Phys. Rev. Lett. 97, 093903 (2006).
[Crossref] [PubMed]

Farace, A.

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86,013820 (2012).
[Crossref]

Gammaitoni, L.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223 (1998).
[Crossref]

Garcia-Ojalvo, J.

K. Staliunas, G. de Valcarcel, J. M. Buldu, and J. Garcia-Ojalvo, “Noise-induced phase bistability via stochastic rocking,” Phys. Rev. Lett. 102, 010601 (2009).
[Crossref] [PubMed]

J. M. Buldu, K. Staliunas, J. A. Casals, and J. Garcia-Ojalvo, “Bistable phase control via rocking in a nonlinear electronic oscillator,” Chaos 16, 043126 (2006).
[Crossref]

Genes, C.

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).
[Crossref]

Ghirardi, G.

G. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D 34, 470 (1986).
[Crossref]

Giovannetti, V.

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86,013820 (2012).
[Crossref]

Girvin, S.

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref] [PubMed]

Groblacher, S.

A. Safavi-Naeini, S. Groblacher, J. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

gupta, S.

K. Murch, K. Moore, S. gupta, and D. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

Hammerer, K.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
[Crossref] [PubMed]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Hanggi, P.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223 (1998).
[Crossref]

Hansch, T. W.

S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hansch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Harlow, J.

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Harris, J. G. E.

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref] [PubMed]

Hill, J.

A. Safavi-Naeini, S. Groblacher, J. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

Hill, J. T.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Hofheinz, M.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Hollberg, L.

Y. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Huang, S.

S. Huang and G. S. Agarwal, “Enhancement of cavity cooling of a micromechanical mirror using parametric interactions,” Phys. Rev. A 79, 013821 (2009).
[Crossref]

Hunger, D.

S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hansch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Jayich, A.

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref] [PubMed]

Jing, H.

S. Singh, H. Jing, E. M. Wright, and P. Meystre, “Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror,” Phys. Rev. A 86, 021801 (2012).
[Crossref]

Jockel, A.

S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hansch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Jung, P.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223 (1998).
[Crossref]

Kampel, N.

T. Purdy, P. Li, R. Peterson, N. Kampel, and C. Regel, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2012).

Kanamoto, R.

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[Crossref] [PubMed]

Keeling, J.

J. Keeling, M. J. Bhaseen, and B. D. Simons, “Fermionic superradiance in a transversely pumped optical cavity,” Phys. Rev. Lett. 112, 143002 (2014).
[Crossref] [PubMed]

Kim, M. S.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
[Crossref] [PubMed]

Kimble, H. J.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

Kitching, J.

Y. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Knappe, S.

Y. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Korppi, M.

S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hansch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Krause, A.

J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

Kumar, T.

T. Kumar and A. B. Bhattacherjee, and ManMohan, “Dynamics of a movable micromirror in a nonlinear optical cavity,” Phys. Rev. A 81, 013835 (2010).
[Crossref]

Lehert, K.

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Lenander, M.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Li, D.

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Li, G.

Z. Yi, G. Li, S. Wu, and Y. Yang, “Ground-state cooling of an oscillator in a hybrid atom-optomechanical system,” Optics Express 22(17), 20060–20075 (2014).
[Crossref] [PubMed]

Li, P.

T. Purdy, P. Li, R. Peterson, N. Kampel, and C. Regel, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2012).

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Liu, Y.

X. Chen, Y. Liu, P. Peng, Y. Zhi, and Y. Xiao, “Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems,” Phys. Rev. A 92, 033841 (2015).
[Crossref]

Y. Chang, T. Shi, Y. Liu, C. P. Sun, and F. Nori, “Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities,” Phys. Rev. A 83, 063826 (2011).
[Crossref]

Lucero, E.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Ludwig, M.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Marchesoni, F.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223 (1998).
[Crossref]

Mari, A.

A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref] [PubMed]

Martinez-Quesada, M.

A. Esteban-Martin, M. Martinez-Quesada, V. B. Taranenko, E. Roldan, and G. de Valcarcel, “Bistable phase locking of a nonlinear optical cavity via rocking: transmuting vortices into phase patterns,” Phys. Rev. Lett. 97, 093903 (2006).
[Crossref] [PubMed]

Martinis, J. M.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Metcalfe, M.

M. Metcalfe, “Applications of cavity optomechanics,” Applied Physics Reviews 1, 031105 (2014).
[Crossref]

Meystre, P.

S. Singh, H. Jing, E. M. Wright, and P. Meystre, “Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror,” Phys. Rev. A 86, 021801 (2012).
[Crossref]

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[Crossref] [PubMed]

Milburn, G. J.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
[Crossref] [PubMed]

Moore, K.

K. Murch, K. Moore, S. gupta, and D. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

Moreland, J.

Y. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Murch, K.

K. Murch, K. Moore, S. gupta, and D. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

Neeley, M.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Nori, F.

Y. Chang, T. Shi, Y. Liu, C. P. Sun, and F. Nori, “Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities,” Phys. Rev. A 83, 063826 (2011).
[Crossref]

Painter, O.

A. Safavi-Naeini, S. Groblacher, J. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Peng, P.

X. Chen, Y. Liu, P. Peng, Y. Zhi, and Y. Xiao, “Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems,” Phys. Rev. A 92, 033841 (2015).
[Crossref]

Peterson, R.

T. Purdy, R. Peterson, and C. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science 339(6121), 801–804 (2013).
[Crossref] [PubMed]

T. Purdy, P. Li, R. Peterson, N. Kampel, and C. Regel, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2012).

Pikovski, I.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
[Crossref] [PubMed]

Purdy, T.

T. Purdy, R. Peterson, and C. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science 339(6121), 801–804 (2013).
[Crossref] [PubMed]

T. Purdy, P. Li, R. Peterson, N. Kampel, and C. Regel, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2012).

Regal, C.

T. Purdy, R. Peterson, and C. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science 339(6121), 801–804 (2013).
[Crossref] [PubMed]

Regel, C.

T. Purdy, P. Li, R. Peterson, N. Kampel, and C. Regel, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2012).

Rimini, A.

G. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D 34, 470 (1986).
[Crossref]

Ritsch, H.

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).
[Crossref]

Roldan, E.

A. Esteban-Martin, M. Martinez-Quesada, V. B. Taranenko, E. Roldan, and G. de Valcarcel, “Bistable phase locking of a nonlinear optical cavity via rocking: transmuting vortices into phase patterns,” Phys. Rev. Lett. 97, 093903 (2006).
[Crossref] [PubMed]

Rost, J.-M.

A. Sanz-Mora, A. Eisfeld, S. Wuster, and J.-M. Rost, “Coupling of a nanomechanical oscillator and an atomic three-level medium,” Phys. Rev. A 93, 023816 (2016).
[Crossref]

Roukes, M. L.

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today 58(7), 36 (2005).
[Crossref]

Safavi-Naeini, A.

A. Safavi-Naeini, S. Groblacher, J. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Sank, D.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Sanz-Mora, A.

A. Sanz-Mora, A. Eisfeld, S. Wuster, and J.-M. Rost, “Coupling of a nanomechanical oscillator and an atomic three-level medium,” Phys. Rev. A 93, 023816 (2016).
[Crossref]

Schwab, K. C.

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today 58(7), 36 (2005).
[Crossref]

Shi, T.

Y. Chang, T. Shi, Y. Liu, C. P. Sun, and F. Nori, “Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities,” Phys. Rev. A 83, 063826 (2011).
[Crossref]

Simmonds, R.

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Simons, B. D.

J. Keeling, M. J. Bhaseen, and B. D. Simons, “Fermionic superradiance in a transversely pumped optical cavity,” Phys. Rev. Lett. 112, 143002 (2014).
[Crossref] [PubMed]

Singh, S.

S. Singh, H. Jing, E. M. Wright, and P. Meystre, “Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror,” Phys. Rev. A 86, 021801 (2012).
[Crossref]

Sirois, A.

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Staliunas, K.

G. de Valcarcel and K. Staliunas, “Phase-bistable Kerr cavity solitons and patterns,” Phys. Rev. A 87, 043802 (2013).
[Crossref]

K. Staliunas, G. de Valcarcel, J. M. Buldu, and J. Garcia-Ojalvo, “Noise-induced phase bistability via stochastic rocking,” Phys. Rev. Lett. 102, 010601 (2009).
[Crossref] [PubMed]

J. M. Buldu, K. Staliunas, J. A. Casals, and J. Garcia-Ojalvo, “Bistable phase control via rocking in a nonlinear electronic oscillator,” Chaos 16, 043126 (2006).
[Crossref]

G. de Valcarcel and K. Staliunas, “Excitation of phase patterns and spatial solitons via two-frequency forcing of a 1:1 resonance,” Phys. Rev. E 67, 026604 (2003).
[Crossref]

Stamper-Kurn, D.

K. Murch, K. Moore, S. gupta, and D. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

Sun, C. P.

Y. Chang, T. Shi, Y. Liu, C. P. Sun, and F. Nori, “Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities,” Phys. Rev. A 83, 063826 (2011).
[Crossref]

Taranenko, V. B.

A. Esteban-Martin, M. Martinez-Quesada, V. B. Taranenko, E. Roldan, and G. de Valcarcel, “Bistable phase locking of a nonlinear optical cavity via rocking: transmuting vortices into phase patterns,” Phys. Rev. Lett. 97, 093903 (2006).
[Crossref] [PubMed]

Teufel, T.

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

Thompson, J.

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref] [PubMed]

Treutlein, P.

S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hansch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

Vanner, M. R.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
[Crossref] [PubMed]

Vitali, D.

C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).
[Crossref]

Wallquist, M.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Wang, H.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Wang, Y.

Y. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Weber, T.

G. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D 34, 470 (1986).
[Crossref]

Weides, M.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Wenner, J.

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

Wright, E. M.

S. Singh, H. Jing, E. M. Wright, and P. Meystre, “Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror,” Phys. Rev. A 86, 021801 (2012).
[Crossref]

Wu, H.

H. Wu and M. Xiao, “Strong coupling of an optomechanical system to an anomalously dispersive atomic medium,” Laser Physics Letters 11, 126003 (2014).
[Crossref]

Wu, S.

Z. Yi, G. Li, S. Wu, and Y. Yang, “Ground-state cooling of an oscillator in a hybrid atom-optomechanical system,” Optics Express 22(17), 20060–20075 (2014).
[Crossref] [PubMed]

Wuster, S.

A. Sanz-Mora, A. Eisfeld, S. Wuster, and J.-M. Rost, “Coupling of a nanomechanical oscillator and an atomic three-level medium,” Phys. Rev. A 93, 023816 (2016).
[Crossref]

Xiao, M.

H. Wu and M. Xiao, “Strong coupling of an optomechanical system to an anomalously dispersive atomic medium,” Laser Physics Letters 11, 126003 (2014).
[Crossref]

Xiao, Y.

X. Chen, Y. Liu, P. Peng, Y. Zhi, and Y. Xiao, “Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems,” Phys. Rev. A 92, 033841 (2015).
[Crossref]

Yang, Y.

Z. Yi, G. Li, S. Wu, and Y. Yang, “Ground-state cooling of an oscillator in a hybrid atom-optomechanical system,” Optics Express 22(17), 20060–20075 (2014).
[Crossref] [PubMed]

Ye, J.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Yi, Z.

Z. Yi, G. Li, S. Wu, and Y. Yang, “Ground-state cooling of an oscillator in a hybrid atom-optomechanical system,” Optics Express 22(17), 20060–20075 (2014).
[Crossref] [PubMed]

Yu, Z.

Y. Chen, H. Zhai, and Z. Yu, “Superradiant phase transition of Fermi gases in a cavity across a Feshbach resonance,” Phys. Rev. A 91, 021602 (2015).
[Crossref]

Zhai, H.

Y. Chen, H. Zhai, and Z. Yu, “Superradiant phase transition of Fermi gases in a cavity across a Feshbach resonance,” Phys. Rev. A 91, 021602 (2015).
[Crossref]

Zhi, Y.

X. Chen, Y. Liu, P. Peng, Y. Zhi, and Y. Xiao, “Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems,” Phys. Rev. A 92, 033841 (2015).
[Crossref]

Zoller, P.

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Zwickl, B.

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref] [PubMed]

Applied Physics Reviews (1)

M. Metcalfe, “Applications of cavity optomechanics,” Applied Physics Reviews 1, 031105 (2014).
[Crossref]

Chaos (1)

J. M. Buldu, K. Staliunas, J. A. Casals, and J. Garcia-Ojalvo, “Bistable phase control via rocking in a nonlinear electronic oscillator,” Chaos 16, 043126 (2006).
[Crossref]

J. Russian Laser Res. (1)

M. Asjad, “Optomechanically dark state in hybrid BEC-optomechanical systems,” J. Russian Laser Res. 34(3), 278–287 (2013).
[Crossref]

Laser Physics Letters (1)

H. Wu and M. Xiao, “Strong coupling of an optomechanical system to an anomalously dispersive atomic medium,” Laser Physics Letters 11, 126003 (2014).
[Crossref]

Nat. Phys. (1)

K. Murch, K. Moore, S. gupta, and D. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008).
[Crossref]

Nature (6)

A. Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[Crossref]

T. Teufel, T. donner, D. Li, J. Harlow, M. Allman, K. Cicak, A. Sirois, J. W. abd, K. Lehert, and R. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref] [PubMed]

A. Safavi-Naeini, S. Groblacher, J. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref] [PubMed]

Optics Express (1)

Z. Yi, G. Li, S. Wu, and Y. Yang, “Ground-state cooling of an oscillator in a hybrid atom-optomechanical system,” Optics Express 22(17), 20060–20075 (2014).
[Crossref] [PubMed]

Phys. Rev. A (12)

S. Singh, H. Jing, E. M. Wright, and P. Meystre, “Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror,” Phys. Rev. A 86, 021801 (2012).
[Crossref]

Y. Chen, H. Zhai, and Z. Yu, “Superradiant phase transition of Fermi gases in a cavity across a Feshbach resonance,” Phys. Rev. A 91, 021602 (2015).
[Crossref]

G. de Valcarcel and K. Staliunas, “Phase-bistable Kerr cavity solitons and patterns,” Phys. Rev. A 87, 043802 (2013).
[Crossref]

S. Huang and G. S. Agarwal, “Enhancement of cavity cooling of a micromechanical mirror using parametric interactions,” Phys. Rev. A 79, 013821 (2009).
[Crossref]

T. Kumar and A. B. Bhattacherjee, and ManMohan, “Dynamics of a movable micromirror in a nonlinear optical cavity,” Phys. Rev. A 81, 013835 (2010).
[Crossref]

M. Bienert and P. Barberis-Blostein, “Optomechanical laser cooling with mechanical modulations,” Phys. Rev. A 91, 023818 (2015).
[Crossref]

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86,013820 (2012).
[Crossref]

Y. Chang, T. Shi, Y. Liu, C. P. Sun, and F. Nori, “Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities,” Phys. Rev. A 83, 063826 (2011).
[Crossref]

C. Genes, H. Ritsch, M. Drewsen, and A. Dantan, “Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency,” Phys. Rev. A 84, 051801 (2011).
[Crossref]

C. Genes, H. Ritsch, and D. Vitali, “Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption,” Phys. Rev. A 80, 061803 (2009).
[Crossref]

X. Chen, Y. Liu, P. Peng, Y. Zhi, and Y. Xiao, “Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems,” Phys. Rev. A 92, 033841 (2015).
[Crossref]

A. Sanz-Mora, A. Eisfeld, S. Wuster, and J.-M. Rost, “Coupling of a nanomechanical oscillator and an atomic three-level medium,” Phys. Rev. A 93, 023816 (2016).
[Crossref]

Phys. Rev. D (2)

G. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D 34, 470 (1986).
[Crossref]

C. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 (1981).
[Crossref]

Phys. Rev. E (1)

G. de Valcarcel and K. Staliunas, “Excitation of phase patterns and spatial solitons via two-frequency forcing of a 1:1 resonance,” Phys. Rev. E 67, 026604 (2003).
[Crossref]

Phys. Rev. Lett. (8)

A. Esteban-Martin, M. Martinez-Quesada, V. B. Taranenko, E. Roldan, and G. de Valcarcel, “Bistable phase locking of a nonlinear optical cavity via rocking: transmuting vortices into phase patterns,” Phys. Rev. Lett. 97, 093903 (2006).
[Crossref] [PubMed]

K. Staliunas, G. de Valcarcel, J. M. Buldu, and J. Garcia-Ojalvo, “Noise-induced phase bistability via stochastic rocking,” Phys. Rev. Lett. 102, 010601 (2009).
[Crossref] [PubMed]

A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009).
[Crossref]

R. Kanamoto and P. Meystre, “Optomechanics of a quantum-degenerate Fermi gas,” Phys. Rev. Lett. 104, 063601 (2010).
[Crossref] [PubMed]

J. Keeling, M. J. Bhaseen, and B. D. Simons, “Fermionic superradiance in a transversely pumped optical cavity,” Phys. Rev. Lett. 112, 143002 (2014).
[Crossref] [PubMed]

K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009).
[Crossref] [PubMed]

Y. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

S. Camerer, M. Korppi, A. Jockel, D. Hunger, T. W. Hansch, and P. Treutlein, “Realization of an optomechanical interface between ultracold atoms and a membrane,” Phys. Rev. Lett. 107, 223001 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

T. Purdy, P. Li, R. Peterson, N. Kampel, and C. Regel, “Strong optomechanical squeezing of light,” Phys. Rev. X 3, 031012 (2012).

Physics Today (1)

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Physics Today 58(7), 36 (2005).
[Crossref]

Proc. Nat. Acad. Sci. (1)

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Nat. Acad. Sci. 108, 16182–16187 (2011).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391 (2014).
[Crossref]

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Rev. Mod. Phys. 70, 223 (1998).
[Crossref]

Science (2)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

T. Purdy, R. Peterson, and C. Regal, “Observation of radiation pressure shot noise on a macroscopic object,” Science 339(6121), 801–804 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of a hybrid optomechanical system with a movable membrane and Kerr nonlinear medium in an optical cavity. The optomechanical cavity is driven by an amplitude-modulated light field, Edriving = (E0 + ϵ cos(Ωt)) exp(−pt (E0 ≡ 0 for the study of rocking). M represents the membrane. M1 and M2 are the cavity mirrors. a is the cavity field.
Fig. 2
Fig. 2 The intracavity intensity |as|2 as a function of |E0|2 for (a) C = 0 and (b) C = 5. The parameters are (a) ∆ = 1.0 ωm, χ = 0 and (b) ∆ = 2.0 ωm, χ = 1.0 ωm. Other parameters are g2/ωm = 0.02ωm, η = 0.1 ωm, and κ = 0.1 ωm.
Fig. 3
Fig. 3 (a) The steady-state position qs of the mechanical oscillator as functions of C and ∆/ωm for two rocking states. (b) The parameters region of the existence of the rocking states. The parameters are κ = 0.1 ωm, g2/ωm = 0.04 ωm, η = 0.05 ωm, and χ = 2.4 ωm.
Fig. 4
Fig. 4 The parametric plot of the cavity field quadratures Re(as) and Im(as) as a function of the rocking parameter C. The red and blue solid curves are the rocking states. The dashed curves are the corresponding phase-bistable states. The parameters are Δ = −1.0 ωm, κ = 0.03 ωm, g = 0.01 ωm, η = −0.005 ωm, γm = 10−8 ωm, respectively.
Fig. 5
Fig. 5 The spectra S(ω) as a function of ω/ωm for two rocking states q+ (a) and q (b). The parameters are ∆ = −1.0 ωm, κ = 0.03 ωm, g = 0.01 ωm, η = −0.005 ωm, γm = 10−8ωm. In (a), the blue, red, and black curves are for the rocking parameters C = 60, C = 50, and C = 38, respectively. In (b), the rocking parameter C = 10.
Fig. 6
Fig. 6 The final mode occupancy nf as a function of the rocking parameter C for the rocking states. The parameters are ∆ = −1.0 ωm, κ = 0.03 ωm, g = 0.01 ωm, η = −0.005 ωm, γm = 10−8ωm. The solid blue curves are the results from Eq. (12) and the dashed red curves are for the numerical calculations. The dashed blue and black lines represent nf = 1 and ni = 104, respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H = ω c a a + ω m b b + g a a ( b + b ) + η a 2 a 2 + H d ,
a ˙ = ( i Δ c κ ) a i g a ( b + b ) 2 i η a a 2 + E ( t ) + α ˜ , b ˙ = ( i ω m γ m ) b i g a a + ξ ˜ ,
a ˙ = ( i Δ κ ) a i g a ( b + b ) 2 i η a a 2 i χ a + E 0 + α ˜ , b ˙ = ( i ω m γ m ) b i g ( a a + C ) + ξ ˜ ,
b s = i g ( | a s | 2 + C ) / ( i ω m + γ m ) ,
| a s | 2 = ( M χ ) 2 + κ 2 ( M 2 + κ 2 χ 2 ) 2 | E 0 | 2 ,
| a s | ± 2 = Δ ( 2 g 2 / ω m 4 η ) C ± χ 2 κ 2 2 g 2 / ω m 2 η ,
2 ϕ ± = arg [ ( ± χ 2 κ 2 i κ ) / χ ] ,
q s ± = g 2 ω m m Δ χ χ 2 κ 2 ( 2 g 2 / ω m 2 η ) ( ω m 2 + γ 2 ) .
b ˙ = ( i ω m γ m ) b i ( G a + G a ) + ξ ˜ , a ˙ = ( i Δ e f f κ ) a i G ( b + b ) i χ a + α ˜ ,
S ( ω ) = 2 | d ( ω ) | 2 [ γ m n i + | G | 2 κ | h ( ω ) | 2 [ ( ω Δ e f f 2 η | a s | 2 χ c o s ( 2 ϕ ) ) 2 ( κ χ s i n ( 2 ϕ ) ) 2 ] ] ,
S ( ω ) = 2 | d ( ω ) | 2 [ γ m n i + | G | 2 κ | h ( ω ) | 2 [ ( ω + 4 η | a s | 2 ) 2 + 4 κ 2 ] ] .
n f = 1 γ e f f ( γ m n i + | G | 2 κ [ ( ω m + 4 η | a s | 2 ) 2 + 4 κ 2 ] ( 8 η | a s | 2 M + ω m 2 ) 2 + 4 ω m 2 κ 2 ) ,
γ e f f = | γ m 8 | G | 2 M ω m κ ( 8 η | a s | 2 M + ω m 2 ) 2 + 4 ω m 2 κ 2 | .

Metrics