Abstract

This paper reports the ultrafast imaging on the formation of periodic surface ripples induced by a single 800 nm, 50 fs laser pulse. The evolution process is observed on a Si surface with a prefabricated nanogroove. The ripples emerge very quickly, only 3 ps after the laser pulse with a fluence of 0.18 J/cm2 irradiating on the surface, and last for several hundreds of picoseconds. The ultrafast dynamics of laser-matter interaction, such as free carrier excitation, carrier and lattice heating, surface plasmon polariton (SPP) excitation, etc, are studied theoretically. The theoretical and experimental results support that the periodic ripples are caused by the periodic energy deposition due to SPP excitation. The emerge time could identify the surface melting causing the formation of periodic ripples, and exclude the other thermal effects, for example, hydrodynamics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove

K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury
Opt. Express 23(15) 19432-19441 (2015)

Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon

Thibault J.-Y. Derrien, Jörg Krüger, Tatiana E. Itina, Sandra Höhm, Arkadi Rosenfeld, and Jörn Bonse
Opt. Express 21(24) 29643-29655 (2013)

Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation

Sandra Höhm, Marcel Herzlieb, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(1) 61-71 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
    [Crossref]
  2. K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
    [Crossref]
  3. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
    [Crossref]
  4. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
    [Crossref] [PubMed]
  5. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
    [Crossref]
  6. I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
    [Crossref] [PubMed]
  7. Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
    [Crossref] [PubMed]
  8. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
    [Crossref] [PubMed]
  9. J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
    [Crossref] [PubMed]
  10. H. Qiao, J. Yang, F. Wang, Y. Yang, and J. Sun, “Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces,” Opt. Express 23(20), 26617–26627 (2015).
    [Crossref] [PubMed]
  11. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
    [Crossref] [PubMed]
  12. F. Liang and R. Vallée, “Femtosecond laser-induced ultra-fine nanostructures on Si surface,” Opt. Mater. Express 6(10), 3330–3338 (2016).
    [Crossref]
  13. L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637 (2017).
    [Crossref]
  14. J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D Appl. Phys. 49(43), 435105 (2016).
    [Crossref]
  15. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
    [Crossref] [PubMed]
  16. J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  17. J. F. Young, J. E. Sipe, H. M. van Driel, and J. E. Sipe, “Regimes of laser-induced periodic surface structure on germanium: radiation remnants and surface plasmons,” Opt. Lett. 8(8), 431–433 (1983).
    [Crossref] [PubMed]
  18. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
    [Crossref] [PubMed]
  19. S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
    [Crossref]
  20. A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
    [Crossref]
  21. M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
    [Crossref]
  22. Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys., A Mater. Sci. Process. 106(3), 567–574 (2012).
    [Crossref]
  23. K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
    [Crossref]
  24. R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 114104 (2013).
    [Crossref]
  25. M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
    [Crossref]
  26. X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
    [Crossref]
  27. K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury, “Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove,” Opt. Express 23(15), 19432–19441 (2015).
    [Crossref] [PubMed]
  28. M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. Drevensek-Olenik, and J. Xu, “Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse,” Opt. Lett. 39(2), 343–346 (2014).
    [Crossref] [PubMed]
  29. J. Wang and C. Guo, “Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals,” J. Appl. Phys. 102(5), 053522 (2007).
    [Crossref]
  30. M. Hongo and S. Matsuo, “Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate,” Appl. Phys. Express 9(6), 062703 (2016).
    [Crossref]
  31. J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, R. Stoian, and O. Parriaux, “Plasmonic and hydrodynamic effects in ultrafast laser induced periodic surface structures on metals,” J. Laser Micro Nanoeng. 7(3), 362–368 (2012).
    [Crossref]
  32. C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond optical pulse induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
    [Crossref]
  33. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
    [Crossref]
  34. J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time-and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
    [Crossref]
  35. P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
    [Crossref] [PubMed]
  36. Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
    [Crossref]
  37. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Springer Science & Business Media, 1999).
  38. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [Crossref] [PubMed]
  39. B. Rethfeld, K. Sokolowski-Tinten, D. V. D. Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4), 767–769 (2004).
    [Crossref]
  40. J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48(3), 501–509 (2005).
  41. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
    [Crossref]
  42. H. S. Sim, S. H. Lee, and K. G. Kang, “Femtosecond pulse laser interactions with thin silicon films and crater formation considering optical phonons and wave interference,” Microsyst. Technol. 14(9–11), 1439–1446 (2008).
    [Crossref]
  43. S. H. Lee, J. S. Lee, S. Park, and Y. K. Choi, “Numerical analysis on heat transfer characteristics of a silicon film irradiated by pico-to femtosecond pulse lasers,” Numer. Heat Transf., Part A Appl. 44(8), 833–850 (2003).
    [Crossref]
  44. J. Yang, Y. Zhao, N. Zhang, Y. Liang, and M. Wang, “Ablation of metallic targets by high-intensity ultrashort laser pulses,” Phys. Rev. B 76(16), 165430 (2007).
    [Crossref]
  45. E. L. Gurevich and S. V. Gurevich, “Laser induced periodic surface structures induced by surface plasmons coupled via roughness,” Appl. Surf. Sci. 302(19), 118–123 (2014).
    [Crossref]
  46. G. D. Tsibidis, E. Skoulas, and E. Stratakis, “Ripple formation on nickel irradiated with radially polarized femtosecond beams,” Opt. Lett. 40(22), 5172–5175 (2015).
    [Crossref] [PubMed]
  47. D. Ryan, M. B. Torralva, D. P. Adams, and S. M. Yalisove, “Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate,” Appl. Phys. Lett. 102(21), 211101 (2013).
    [Crossref]
  48. Z. Li, S. Yue, J. Chen, and Q. Gong, “Ultrafast spatiotemporal relaxation dynamics of excited electrons in a metal nanostructure detected by femtosecond-SNOM,” Opt. Express 18(13), 14232–14237 (2010).
    [Crossref] [PubMed]

2017 (7)

I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref] [PubMed]

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref] [PubMed]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637 (2017).
[Crossref]

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
[Crossref]

2016 (4)

M. Hongo and S. Matsuo, “Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate,” Appl. Phys. Express 9(6), 062703 (2016).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D Appl. Phys. 49(43), 435105 (2016).
[Crossref]

F. Liang and R. Vallée, “Femtosecond laser-induced ultra-fine nanostructures on Si surface,” Opt. Mater. Express 6(10), 3330–3338 (2016).
[Crossref]

2015 (3)

2014 (4)

E. L. Gurevich and S. V. Gurevich, “Laser induced periodic surface structures induced by surface plasmons coupled via roughness,” Appl. Surf. Sci. 302(19), 118–123 (2014).
[Crossref]

M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. Drevensek-Olenik, and J. Xu, “Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse,” Opt. Lett. 39(2), 343–346 (2014).
[Crossref] [PubMed]

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref] [PubMed]

2013 (6)

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 114104 (2013).
[Crossref]

S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
[Crossref]

D. Ryan, M. B. Torralva, D. P. Adams, and S. M. Yalisove, “Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate,” Appl. Phys. Lett. 102(21), 211101 (2013).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

2012 (3)

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys., A Mater. Sci. Process. 106(3), 567–574 (2012).
[Crossref]

J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, R. Stoian, and O. Parriaux, “Plasmonic and hydrodynamic effects in ultrafast laser induced periodic surface structures on metals,” J. Laser Micro Nanoeng. 7(3), 362–368 (2012).
[Crossref]

2010 (1)

2009 (6)

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

2008 (3)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

H. S. Sim, S. H. Lee, and K. G. Kang, “Femtosecond pulse laser interactions with thin silicon films and crater formation considering optical phonons and wave interference,” Microsyst. Technol. 14(9–11), 1439–1446 (2008).
[Crossref]

2007 (2)

J. Yang, Y. Zhao, N. Zhang, Y. Liang, and M. Wang, “Ablation of metallic targets by high-intensity ultrashort laser pulses,” Phys. Rev. B 76(16), 165430 (2007).
[Crossref]

J. Wang and C. Guo, “Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals,” J. Appl. Phys. 102(5), 053522 (2007).
[Crossref]

2006 (1)

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time-and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

2005 (1)

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48(3), 501–509 (2005).

2004 (1)

B. Rethfeld, K. Sokolowski-Tinten, D. V. D. Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4), 767–769 (2004).
[Crossref]

2003 (1)

S. H. Lee, J. S. Lee, S. Park, and Y. K. Choi, “Numerical analysis on heat transfer characteristics of a silicon film irradiated by pico-to femtosecond pulse lasers,” Numer. Heat Transf., Part A Appl. 44(8), 833–850 (2003).
[Crossref]

2002 (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

1998 (1)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

1983 (2)

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond optical pulse induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

J. F. Young, J. E. Sipe, H. M. van Driel, and J. E. Sipe, “Regimes of laser-induced periodic surface structure on germanium: radiation remnants and surface plasmons,” Opt. Lett. 8(8), 431–433 (1983).
[Crossref] [PubMed]

Abdulhalim, I.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Adams, D. P.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 114104 (2013).
[Crossref]

D. Ryan, M. B. Torralva, D. P. Adams, and S. M. Yalisove, “Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate,” Appl. Phys. Lett. 102(21), 211101 (2013).
[Crossref]

Anastasiadis, S. H.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Anisimov, S. I.

B. Rethfeld, K. Sokolowski-Tinten, D. V. D. Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4), 767–769 (2004).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Austin, D. R.

Bachelier, G.

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time-and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Barberoglou, M.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Beraun, J. E.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48(3), 501–509 (2005).

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Bian, H. D.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys., A Mater. Sci. Process. 106(3), 567–574 (2012).
[Crossref]

Bonse, J.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time-and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Bragheri, F.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Brunet, P.

J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, R. Stoian, and O. Parriaux, “Plasmonic and hydrodynamic effects in ultrafast laser induced periodic surface structures on metals,” J. Laser Micro Nanoeng. 7(3), 362–368 (2012).
[Crossref]

Bruyere, A.

J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, R. Stoian, and O. Parriaux, “Plasmonic and hydrodynamic effects in ultrafast laser induced periodic surface structures on metals,” J. Laser Micro Nanoeng. 7(3), 362–368 (2012).
[Crossref]

Bulgakova, N. M.

I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref] [PubMed]

Cao, K.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Cao, X.

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Cerkauskaite, A.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Chen, J.

Chen, J. K.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48(3), 501–509 (2005).

Chen, Q.

Chen, Z.

Cheng, J.

Cheng, K.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

Choi, Y. K.

S. H. Lee, J. S. Lee, S. Park, and Y. K. Choi, “Numerical analysis on heat transfer characteristics of a silicon film irradiated by pico-to femtosecond pulse lasers,” Numer. Heat Transf., Part A Appl. 44(8), 833–850 (2003).
[Crossref]

Chowdhury, E. A.

Colombier, J. P.

J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, R. Stoian, and O. Parriaux, “Plasmonic and hydrodynamic effects in ultrafast laser induced periodic surface structures on metals,” J. Laser Micro Nanoeng. 7(3), 362–368 (2012).
[Crossref]

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Dai, Y.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys., A Mater. Sci. Process. 106(3), 567–574 (2012).
[Crossref]

Das, S. K.

S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Debroy, A.

Derrien, T. J. Y.

I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref] [PubMed]

Drevensek-Olenik, I.

Drevinskas, R.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Erdogan, M.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Feng, D.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref] [PubMed]

Feng, D. H.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Florian, C.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref] [PubMed]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
[Crossref]

Fotakis, C.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Fuentes-Edfuf, Y.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
[Crossref]

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref] [PubMed]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Gamaly, E. G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Garcia de Abajo, F. J.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

Garcia-Lechuga, M.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref] [PubMed]

Garcia-Leis, A.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref] [PubMed]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
[Crossref]

Garcial-Lechuga, M.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Garrelie, F.

J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, R. Stoian, and O. Parriaux, “Plasmonic and hydrodynamic effects in ultrafast laser induced periodic surface structures on metals,” J. Laser Micro Nanoeng. 7(3), 362–368 (2012).
[Crossref]

Gnilitskyi, I.

I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref] [PubMed]

Gong, Q.

Grunwald, R.

S. K. Das, H. Messaoudi, A. Debroy, E. McGlynn, and R. Grunwald, “Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials,” Opt. Mater. Express 3(10), 1705–1715 (2013).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Guo, C.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

J. Wang and C. Guo, “Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals,” J. Appl. Phys. 102(5), 053522 (2007).
[Crossref]

Gurevich, E. L.

E. L. Gurevich and S. V. Gurevich, “Laser induced periodic surface structures induced by surface plasmons coupled via roughness,” Appl. Surf. Sci. 302(19), 118–123 (2014).
[Crossref]

Gurevich, S. V.

E. L. Gurevich and S. V. Gurevich, “Laser induced periodic surface structures induced by surface plasmons coupled via roughness,” Appl. Surf. Sci. 302(19), 118–123 (2014).
[Crossref]

Hashida, M.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

He, M.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys., A Mater. Sci. Process. 106(3), 567–574 (2012).
[Crossref]

Hirlimann, C.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond optical pulse induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

Hongo, M.

M. Hongo and S. Matsuo, “Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate,” Appl. Phys. Express 9(6), 062703 (2016).
[Crossref]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

Huang, Y.

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D Appl. Phys. 49(43), 435105 (2016).
[Crossref]

Ilday, F. Ö.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ilday, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Jia, T.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D Appl. Phys. 49(43), 435105 (2016).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref] [PubMed]

Jia, T. Q.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Jia, X.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref] [PubMed]

Juodkazis, S.

L. Wang, B. Xu, X. Cao, Q. Li, W. Tian, Q. Chen, S. Juodkazis, and H. Sun, “Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses,” Optica 4(6), 637 (2017).
[Crossref]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Kafka, K. R. P.

Kalaycioglu, H.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Kang, K. G.

H. S. Sim, S. H. Lee, and K. G. Kang, “Femtosecond pulse laser interactions with thin silicon films and crater formation considering optical phonons and wave interference,” Microsyst. Technol. 14(9–11), 1439–1446 (2008).
[Crossref]

Kazansky, P. G.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Kruger, J.

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Kühler, P.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

Lee, J. S.

S. H. Lee, J. S. Lee, S. Park, and Y. K. Choi, “Numerical analysis on heat transfer characteristics of a silicon film irradiated by pico-to femtosecond pulse lasers,” Numer. Heat Transf., Part A Appl. 44(8), 833–850 (2003).
[Crossref]

Lee, S. H.

H. S. Sim, S. H. Lee, and K. G. Kang, “Femtosecond pulse laser interactions with thin silicon films and crater formation considering optical phonons and wave interference,” Microsyst. Technol. 14(9–11), 1439–1446 (2008).
[Crossref]

S. H. Lee, J. S. Lee, S. Park, and Y. K. Choi, “Numerical analysis on heat transfer characteristics of a silicon film irradiated by pico-to femtosecond pulse lasers,” Numer. Heat Transf., Part A Appl. 44(8), 833–850 (2003).
[Crossref]

Leiderer, P.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

Levy, Y.

I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref] [PubMed]

Li, H.

Li, Q.

Li, Z.

Liang, F.

Liang, Y.

J. Yang, Y. Zhao, N. Zhang, Y. Liang, and M. Wang, “Ablation of metallic targets by high-intensity ultrashort laser pulses,” Phys. Rev. B 76(16), 165430 (2007).
[Crossref]

Linde, D. V. D.

B. Rethfeld, K. Sokolowski-Tinten, D. V. D. Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4), 767–769 (2004).
[Crossref]

Liu, J.

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D Appl. Phys. 49(43), 435105 (2016).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref] [PubMed]

Loukakos, P. A.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Lu, B.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys., A Mater. Sci. Process. 106(3), 567–574 (2012).
[Crossref]

Ma, G. H.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys., A Mater. Sci. Process. 106(3), 567–574 (2012).
[Crossref]

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Matsuo, S.

M. Hongo and S. Matsuo, “Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate,” Appl. Phys. Express 9(6), 062703 (2016).
[Crossref]

Mazur, E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

McGlynn, E.

Messaoudi, H.

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Miyaji, G.

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

Miyazaki, K.

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

Mocek, T.

I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref] [PubMed]

Mosbacher, M.

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

Murphy, R. D.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 114104 (2013).
[Crossref]

Namba, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Okamuro, K.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Öktem, B.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Orazi, L.

I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref] [PubMed]

Osellame, R.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Park, S.

S. H. Lee, J. S. Lee, S. Park, and Y. K. Choi, “Numerical analysis on heat transfer characteristics of a silicon film irradiated by pico-to femtosecond pulse lasers,” Numer. Heat Transf., Part A Appl. 44(8), 833–850 (2003).
[Crossref]

Parriaux, O.

J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, R. Stoian, and O. Parriaux, “Plasmonic and hydrodynamic effects in ultrafast laser induced periodic surface structures on metals,” J. Laser Micro Nanoeng. 7(3), 362–368 (2012).
[Crossref]

Pavlov, I.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Peng, N.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Pigeon, F.

J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, R. Stoian, and O. Parriaux, “Plasmonic and hydrodynamic effects in ultrafast laser induced periodic surface structures on metals,” J. Laser Micro Nanoeng. 7(3), 362–368 (2012).
[Crossref]

Puerto, D.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref] [PubMed]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

Qiao, H.

Qiu, J.

Raciukaitis, G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Rethfeld, B.

B. Rethfeld, K. Sokolowski-Tinten, D. V. D. Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4), 767–769 (2004).
[Crossref]

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

Ryan, D.

D. Ryan, M. B. Torralva, D. P. Adams, and S. M. Yalisove, “Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate,” Appl. Phys. Lett. 102(21), 211101 (2013).
[Crossref]

Rybak, A.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Sakabe, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Sanchez-Cortes, S.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref] [PubMed]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
[Crossref]

Shank, C. V.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond optical pulse induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

Shen, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Siegel, J.

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref] [PubMed]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time-and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Sim, H. S.

H. S. Sim, S. H. Lee, and K. G. Kang, “Femtosecond pulse laser interactions with thin silicon films and crater formation considering optical phonons and wave interference,” Microsyst. Technol. 14(9–11), 1439–1446 (2008).
[Crossref]

Sipe, J. E.

Skoulas, E.

Sokolowski-Tinten, K.

B. Rethfeld, K. Sokolowski-Tinten, D. V. D. Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4), 767–769 (2004).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Solis, J.

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
[Crossref]

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref] [PubMed]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time-and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

Solodar, A.

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

Spanakis, E.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Stankevic, V.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Stoian, R.

J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, R. Stoian, and O. Parriaux, “Plasmonic and hydrodynamic effects in ultrafast laser induced periodic surface structures on metals,” J. Laser Micro Nanoeng. 7(3), 362–368 (2012).
[Crossref]

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Stratakis, E.

G. D. Tsibidis, E. Skoulas, and E. Stratakis, “Ripple formation on nickel irradiated with radially polarized femtosecond beams,” Opt. Lett. 40(22), 5172–5175 (2015).
[Crossref] [PubMed]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Sun, H.

Sun, J.

Sun, Z.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref] [PubMed]

Sun, Z. R.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Tang, B.

Tian, W.

Tokita, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

Torralva, B.

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 114104 (2013).
[Crossref]

Torralva, M. B.

D. Ryan, M. B. Torralva, D. P. Adams, and S. M. Yalisove, “Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate,” Appl. Phys. Lett. 102(21), 211101 (2013).
[Crossref]

Tsibidis, G. D.

G. D. Tsibidis, E. Skoulas, and E. Stratakis, “Ripple formation on nickel irradiated with radially polarized femtosecond beams,” Opt. Lett. 40(22), 5172–5175 (2015).
[Crossref] [PubMed]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Tzanetakis, P.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Tzou, D. Y.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48(3), 501–509 (2005).

Vallée, R.

van Driel, H. M.

von der Linde, D.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Wang, F.

Wang, J.

J. Wang and C. Guo, “Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals,” J. Appl. Phys. 102(5), 053522 (2007).
[Crossref]

Wang, L.

Wang, M.

J. Yang, Y. Zhao, N. Zhang, Y. Liang, and M. Wang, “Ablation of metallic targets by high-intensity ultrashort laser pulses,” Phys. Rev. B 76(16), 165430 (2007).
[Crossref]

Wang, X.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Wu, Q.

Xu, B.

Xu, J.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

Yalisove, S. M.

D. Ryan, M. B. Torralva, D. P. Adams, and S. M. Yalisove, “Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate,” Appl. Phys. Lett. 102(21), 211101 (2013).
[Crossref]

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 114104 (2013).
[Crossref]

Yan, X. N.

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys., A Mater. Sci. Process. 106(3), 567–574 (2012).
[Crossref]

Yang, J.

H. Qiao, J. Yang, F. Wang, Y. Yang, and J. Sun, “Femtosecond laser direct writing of large-area two-dimensional metallic photonic crystal structures on tungsten surfaces,” Opt. Express 23(20), 26617–26627 (2015).
[Crossref] [PubMed]

J. Yang, Y. Zhao, N. Zhang, Y. Liang, and M. Wang, “Ablation of metallic targets by high-intensity ultrashort laser pulses,” Phys. Rev. B 76(16), 165430 (2007).
[Crossref]

Yang, M.

Yang, Y.

Yao, J.

Yavas, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Yen, R.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond optical pulse induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

Yi, A. Y.

Young, J. F.

Yue, S.

Zhang, B.

Zhang, H.

Zhang, N.

J. Yang, Y. Zhao, N. Zhang, Y. Liang, and M. Wang, “Ablation of metallic targets by high-intensity ultrashort laser pulses,” Phys. Rev. B 76(16), 165430 (2007).
[Crossref]

Zhang, S.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref] [PubMed]

Zhang, S. A.

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Large area uniform nanostructures fabricated by direct femtosecond laser ablation,” Opt. Express 16(23), 19354–19365 (2008).
[Crossref] [PubMed]

Zhao, H.

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D Appl. Phys. 49(43), 435105 (2016).
[Crossref]

Zhao, Y.

J. Yang, Y. Zhao, N. Zhang, Y. Liang, and M. Wang, “Ablation of metallic targets by high-intensity ultrashort laser pulses,” Phys. Rev. B 76(16), 165430 (2007).
[Crossref]

Zhou, K.

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

J. Liu, T. Jia, K. Zhou, D. Feng, S. Zhang, H. Zhang, X. Jia, Z. Sun, and J. Qiu, “Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser,” Opt. Express 22(26), 32361–32370 (2014).
[Crossref] [PubMed]

Zorba, V.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009).
[Crossref] [PubMed]

ACS Photonics (2)

A. Cerkauskaite, R. Drevinskas, A. Solodar, I. Abdulhalim, and P. G. Kazansky, “Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring,” ACS Photonics 4(11), 2944–2951 (2017).
[Crossref]

M. Garcial-Lechuga, D. Puerto, Y. Fuentes-Edfuf, J. Solis, and J. Siegel, “Ultrafast moving-spot microscopy: Birth and growth of laser-induced periodic surface structures,” ACS Photonics 3(10), 1961–1967 (2016).
[Crossref]

Appl. Phys. Express (1)

M. Hongo and S. Matsuo, “Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate,” Appl. Phys. Express 9(6), 062703 (2016).
[Crossref]

Appl. Phys. Lett. (3)

R. D. Murphy, B. Torralva, D. P. Adams, and S. M. Yalisove, “Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si,” Appl. Phys. Lett. 103(14), 114104 (2013).
[Crossref]

Y. Fuentes-Edfuf, M. Garcial-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Fabrication of amorphous micro-ring arrays in crystalline Si using ultrashort laser pulses,” Appl. Phys. Lett. 110(21), 211602 (2017).
[Crossref]

D. Ryan, M. B. Torralva, D. P. Adams, and S. M. Yalisove, “Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate,” Appl. Phys. Lett. 102(21), 211101 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

B. Rethfeld, K. Sokolowski-Tinten, D. V. D. Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys., A Mater. Sci. Process. 79(4), 767–769 (2004).
[Crossref]

Y. Dai, M. He, H. D. Bian, B. Lu, X. N. Yan, and G. H. Ma, “Femtosecond laser nanostructuring of silver film,” Appl. Phys., A Mater. Sci. Process. 106(3), 567–574 (2012).
[Crossref]

Appl. Surf. Sci. (2)

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

E. L. Gurevich and S. V. Gurevich, “Laser induced periodic surface structures induced by surface plasmons coupled via roughness,” Appl. Surf. Sci. 302(19), 118–123 (2014).
[Crossref]

Beilstein J. Nanotechnol. (1)

P. Kühler, D. Puerto, M. Mosbacher, P. Leiderer, F. J. Garcia de Abajo, J. Siegel, and J. Solis, “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle,” Beilstein J. Nanotechnol. 4, 501–509 (2013).
[Crossref] [PubMed]

Int. J. Heat Mass Transf. (1)

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48(3), 501–509 (2005).

J. Appl. Phys. (6)

K. Zhou, X. Jia, T. Jia, K. Cheng, K. Cao, S. Zhang, D. Feng, and Z. Sun, “The influences of surface plasmons and thermal effects on femtosecond laser-induced subwavelength periodic ripples on Au film by pump-probe imaging,” J. Appl. Phys. 121(10), 104301 (2017).
[Crossref]

X. Jia, T. Q. Jia, N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, “Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging,” J. Appl. Phys. 115(14), 143102 (2014).
[Crossref]

J. Wang and C. Guo, “Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals,” J. Appl. Phys. 102(5), 053522 (2007).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009).
[Crossref]

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

J. Laser Micro Nanoeng. (1)

J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, R. Stoian, and O. Parriaux, “Plasmonic and hydrodynamic effects in ultrafast laser induced periodic surface structures on metals,” J. Laser Micro Nanoeng. 7(3), 362–368 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Liu, T. Jia, H. Zhao, and Y. Huang, “Two-photon excitation of surface plasmon and the period-increasing effect of low spatial frequency ripples on a GaP crystal in air/water,” J. Phys. D Appl. Phys. 49(43), 435105 (2016).
[Crossref]

Microsyst. Technol. (1)

H. S. Sim, S. H. Lee, and K. G. Kang, “Femtosecond pulse laser interactions with thin silicon films and crater formation considering optical phonons and wave interference,” Microsyst. Technol. 14(9–11), 1439–1446 (2008).
[Crossref]

Nano Lett. (1)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8(7), 2087–2091 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Numer. Heat Transf., Part A Appl. (1)

S. H. Lee, J. S. Lee, S. Park, and Y. K. Choi, “Numerical analysis on heat transfer characteristics of a silicon film irradiated by pico-to femtosecond pulse lasers,” Numer. Heat Transf., Part A Appl. 44(8), 833–850 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. B (4)

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009).
[Crossref]

J. Bonse, G. Bachelier, J. Siegel, and J. Solis, “Time-and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium,” Phys. Rev. B 74(13), 134106 (2006).
[Crossref]

J. Yang, Y. Zhao, N. Zhang, Y. Liang, and M. Wang, “Ablation of metallic targets by high-intensity ultrashort laser pulses,” Phys. Rev. B 76(16), 165430 (2007).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 115316 (2012).
[Crossref]

Phys. Rev. Lett. (3)

C. V. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond optical pulse induced phase transitions in silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998).
[Crossref]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources,” Phys. Rev. Lett. 102(23), 234301 (2009).
[Crossref] [PubMed]

Sci. Rep. (3)

I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, and L. Orazi, “High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity,” Sci. Rep. 7(1), 8485 (2017).
[Crossref] [PubMed]

Y. Fuentes-Edfuf, M. Garcia-Lechuga, D. Puerto, C. Florian, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Coherent scatter-controlled phase-change grating structures in silicon using femtosecond laser pulses,” Sci. Rep. 7(1), 4594 (2017).
[Crossref] [PubMed]

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Other (1)

S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Springer Science & Business Media, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Experimental setup of the ultrafast pump-probe imaging. BS: beam splitter; DL: delay line. (b) The intensity distribution of the laser focus at the object plane obtained with and without the concave lens, respectively. (c) The profile of normalized emission intensity from ZnSe crystal along the red arrow in (b). The profile of laser intensity is calculated according to the emission intensity. (d) The spectra of white-light pulse with (red solid curve) and without (black dotted curve) the short-wave pass filter.
Fig. 2
Fig. 2 (a) SEM image, (b) AFM image of the prefabricated nanogroove on Si surface by fs laser direct writing. (c) The cross profiles at different positions as shown in (b).
Fig. 3
Fig. 3 Normalized reflectivity of the white-light pulse as a function of delay time. The insets are the OM images of the laser spot area.
Fig. 4
Fig. 4 (a) OM image and (b) SEM image after irradiation by single pump pulse at a fluence of 0.18 J/cm2; (c) The average values of the height profiles in the two rectangles in Fig. 4(b). The double arrow in (a) indicates the laser polarization direction.
Fig. 5
Fig. 5 OM images measured at different delay times after irradiating by a single pump pulse with a fluence of 0.18 J/cm2.
Fig. 6
Fig. 6 The intensity profiles of CCD pixels along the lines in Fig. 5. The zero point of horizontal coordinate represents the center of nanogroove.
Fig. 7
Fig. 7 (a) The evolution of carrier density at Si surface irradiated with a laser pulse of 50 fs, 0.18 J/cm2, where Ip is the laser pulse with the peak at 0.05 ps. (b) The peak carrier density for different laser fluences. (c) The evolution of lattice temperature Tl and carrier temperature Te at Si surface for laser fluence of 0.18 J/cm2. (d) The evolution of lattice temperature for different laser fluences. Tmelt and Tvapor are the melting and vaporization temperature of Si crystal, respectively.
Fig. 8
Fig. 8 Dispersion of surface plasmon and light in air.
Fig. 9
Fig. 9 (a) A relationship between Ne and the real part of dielectric constant ε . (b) LSFL period on Si surface (red solid curve) as the function of laser fluence F. The black squares and the error bars are experimental data.
Fig. 10
Fig. 10 OM images of sample surface irradiated by single pump pulse at different delay times. The double arrow in (a) indicates that the laser polarization direction is parallel to the nanogroove.

Tables (1)

Tables Icon

Table 1 The parameters of Si crystal at 800 nm lighta

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N e t = D 0 x ( N e x )γ N e 3 +δ N e + αF ω + β F 2 2ω
C e T e t = κ e x ( T e x ) 3 N e k B τ ( T e T l )+( α+ N e θ )F+β F 2
C l T l t = κ l x ( T l x )+ 3 N e k B τ ( T e T l )
k s = ω c ε / ( 1+ ε ) and k p = ω c ,
ε =ε e 2 N e λ 2 τ D 2 ε 0 m opt * m e ( 4 π 2 c 2 τ D 2 + λ 2 ) ,
Λ = λ s =λ ( ε +1 )/ ε ,

Metrics