Abstract

In this paper, a holographic metasurface possessing beam scanning capability at fixed frequency is presented. The desired radiation beam is obtained by using a reference wave to excite a sinusoidally-modulated impedance surface, which is equivalent to the interference pattern between the radiation wave and reference wave. By changing the bias voltage of varactor diodes loaded on the sub-wavelength unit cells, the variation range of the modulated impedance can be tuned, resulting in the change of radiation angle. Both the simulation and experimental results demonstrate that the direction of the radiation beam can be tuned in the range from 23° to 50° at 5.5 GHz. The proposed holographic metasurface shows great potential applications in constructing planar beam scanning antenna for integrated microwave system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Active metasurface for broadband radiation and integrated low radar cross section

Tong Li, Huanhuan Yang, Qi Li, Chen Zhang, Jiangfeng Han, Lili Cong, Xiangyu Cao, and Jun Gao
Opt. Mater. Express 9(3) 1161-1172 (2019)

Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera

Okan Yurduseven, Daniel L. Marks, Thomas Fromenteze, and David R. Smith
Opt. Express 26(5) 5281-5291 (2018)

Real-time two-dimensional beam steering with gate-tunable materials: a theoretical investigation

Jierong Cheng, Samad Jafar-Zanjani, and Hossein Mosallaei
Appl. Opt. 55(22) 6137-6144 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Jackson and A. A. Oliner, “Leaky-Wave Antennas,” in Modern Antenna Handbook (Wiley, 2008), pp. 325–367.
  2. L. Matekovits, M. Heimlich, and K. P. Esselle, “Metamaterial-based millimeter-wave switchable leaky wave antennas for on-chip implementation in GaAs technology,” J. Electromagn. Waves Appl. 25(1), 49–61 (2011).
    [Crossref]
  3. D. F. Sievenpiper, J. H. Schaffner, R. Y. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antenn. Propag. 50(3), 384–390 (2003).
    [Crossref]
  4. D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag. 51(10), 2713–2722 (2003).
    [Crossref]
  5. M. Archbold, E. J. Rothwell, L. C. Kempel, and S. W. Schneider, “Beam steering of a half-width microstrip leaky-wave antenna using edge loading,” IEEE Antennas Wirel. Propag. Lett. 9, 203–206 (2010).
    [Crossref]
  6. J. H. Fu, A. Li, W. Chen, B. Lv, Z. Wang, P. Li, and Q. Wu, “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 760–763 (2017).
    [Crossref]
  7. A. Suntives and S. V. Hum, “An electronically tunable half-mode substrate integrated waveguide leaky-wave antenna,” in Proc. Eur. Conf. on Antennas and Propagation (2011), pp. 3828–3832.
  8. A. Suntives and S. V. Hum, “A fixed-frequency beam-steerable half-mode substrate integrated waveguide leaky-wave antenna,” IEEE Trans. Antenn. Propag. 60(5), 2540–2544 (2012).
    [Crossref]
  9. S. Lim, C. C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microw. Theory Tech. 53(1), 161–173 (2005).
    [Crossref]
  10. P. F. Checcacci, V. Russo, and A. M. Scheggi, “A holographic VHF antenna,” IEEE Trans. Antenn. Propag. 19(2), 278–279 (1971).
    [Crossref]
  11. Y. H. Chen, J. X. Fu, and Z. Y. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express 19(24), 23908–23920 (2011).
    [Crossref] [PubMed]
  12. C. Rush, J. Schafer, H. Gulan, P. Pahl, and T. Zwick, “Holographic mmW-Antennas With TE0 and TM0 Surface Wave Launchers for Frequency-Scanning FMCW-Radars,” IEEE Trans. Antenn. Propag. 63(4), 1603–1613 (2015).
    [Crossref]
  13. A. Onliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IEEE Trans. Antenn. Propag. 7(5), 201–208 (1959).
    [Crossref]
  14. B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
    [Crossref]
  15. A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
    [Crossref]
  16. S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
    [Crossref]
  17. J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part I: Concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
    [Crossref]
  18. J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part II: Experiments and description of frequency steering of focal length,” IEEE Trans. Antenn. Propag. 61(7), 3486–3494 (2013).
    [Crossref]
  19. B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23(6), 7593–7601 (2015).
    [Crossref] [PubMed]
  20. A. J. Martinez-Ros, J. L. Gómez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
    [Crossref]
  21. Y. B. Li, X. Wan, B. G. Cai, Q. Cheng, and T. J. Cui, “Frequency-controls of electromagnetic multi-beam scanning by metasurfaces,” Sci. Rep. 4(1), 6921 (2014).
    [Crossref] [PubMed]
  22. H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
    [Crossref]
  23. Z. Luo, X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, “Self-focusing of electromagnetic surface waves on a nonlinear impedance surface,” Appl. Phys. Lett. 106(21), 211102 (2015).
    [Crossref]
  24. H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. Liu, “Real‐Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial,” Adv. Mater. Tech. 2(1), 1600202 (2017).
    [Crossref]
  25. J. W. You, J. F. Zhang, W. X. Jiang, and H. F. Ma, “Accurate Analysis of Finite-Volume Lumped Elements in Metamaterial Absorber Design,” IEEE Trans. Antenn. Propag. 64(7), 1966–1975 (2016).
  26. G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
    [Crossref]
  27. A. H. Panaretos and D. H. Werner, “Spoof plasmon radiation using sinusoidally modulated corrugated reactance surfaces,” Opt. Express 24(3), 2443–2456 (2016).
    [Crossref] [PubMed]
  28. A. H. Panaretos and D. H. Werner, “Leaky wave lenses for spoof plasmon collimation,” Opt. Express 24(13), 14654–14671 (2016).
    [Crossref] [PubMed]
  29. J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
    [Crossref]

2017 (2)

J. H. Fu, A. Li, W. Chen, B. Lv, Z. Wang, P. Li, and Q. Wu, “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 760–763 (2017).
[Crossref]

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. Liu, “Real‐Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial,” Adv. Mater. Tech. 2(1), 1600202 (2017).
[Crossref]

2016 (3)

2015 (6)

Z. Luo, X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, “Self-focusing of electromagnetic surface waves on a nonlinear impedance surface,” Appl. Phys. Lett. 106(21), 211102 (2015).
[Crossref]

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23(6), 7593–7601 (2015).
[Crossref] [PubMed]

C. Rush, J. Schafer, H. Gulan, P. Pahl, and T. Zwick, “Holographic mmW-Antennas With TE0 and TM0 Surface Wave Launchers for Frequency-Scanning FMCW-Radars,” IEEE Trans. Antenn. Propag. 63(4), 1603–1613 (2015).
[Crossref]

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

2014 (1)

Y. B. Li, X. Wan, B. G. Cai, Q. Cheng, and T. J. Cui, “Frequency-controls of electromagnetic multi-beam scanning by metasurfaces,” Sci. Rep. 4(1), 6921 (2014).
[Crossref] [PubMed]

2013 (4)

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part I: Concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part II: Experiments and description of frequency steering of focal length,” IEEE Trans. Antenn. Propag. 61(7), 3486–3494 (2013).
[Crossref]

A. J. Martinez-Ros, J. L. Gómez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

2012 (1)

A. Suntives and S. V. Hum, “A fixed-frequency beam-steerable half-mode substrate integrated waveguide leaky-wave antenna,” IEEE Trans. Antenn. Propag. 60(5), 2540–2544 (2012).
[Crossref]

2011 (3)

L. Matekovits, M. Heimlich, and K. P. Esselle, “Metamaterial-based millimeter-wave switchable leaky wave antennas for on-chip implementation in GaAs technology,” J. Electromagn. Waves Appl. 25(1), 49–61 (2011).
[Crossref]

Y. H. Chen, J. X. Fu, and Z. Y. Li, “Surface wave holography on designing subwavelength metallic structures,” Opt. Express 19(24), 23908–23920 (2011).
[Crossref] [PubMed]

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

2010 (2)

M. Archbold, E. J. Rothwell, L. C. Kempel, and S. W. Schneider, “Beam steering of a half-width microstrip leaky-wave antenna using edge loading,” IEEE Antennas Wirel. Propag. Lett. 9, 203–206 (2010).
[Crossref]

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

2005 (1)

S. Lim, C. C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microw. Theory Tech. 53(1), 161–173 (2005).
[Crossref]

2003 (2)

D. F. Sievenpiper, J. H. Schaffner, R. Y. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antenn. Propag. 50(3), 384–390 (2003).
[Crossref]

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag. 51(10), 2713–2722 (2003).
[Crossref]

1971 (1)

P. F. Checcacci, V. Russo, and A. M. Scheggi, “A holographic VHF antenna,” IEEE Trans. Antenn. Propag. 19(2), 278–279 (1971).
[Crossref]

1959 (1)

A. Onliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IEEE Trans. Antenn. Propag. 7(5), 201–208 (1959).
[Crossref]

Archbold, M.

M. Archbold, E. J. Rothwell, L. C. Kempel, and S. W. Schneider, “Beam steering of a half-width microstrip leaky-wave antenna using edge loading,” IEEE Antennas Wirel. Propag. Lett. 9, 203–206 (2010).
[Crossref]

Balanis, C. A.

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

Birtcher, C. R.

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

Blanco, D.

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part I: Concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part II: Experiments and description of frequency steering of focal length,” IEEE Trans. Antenn. Propag. 61(7), 3486–3494 (2013).
[Crossref]

Cai, B. G.

B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23(6), 7593–7601 (2015).
[Crossref] [PubMed]

Y. B. Li, X. Wan, B. G. Cai, Q. Cheng, and T. J. Cui, “Frequency-controls of electromagnetic multi-beam scanning by metasurfaces,” Sci. Rep. 4(1), 6921 (2014).
[Crossref] [PubMed]

Caloz, C. C.

S. Lim, C. C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microw. Theory Tech. 53(1), 161–173 (2005).
[Crossref]

Caminita, F.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Checcacci, P. F.

P. F. Checcacci, V. Russo, and A. M. Scheggi, “A holographic VHF antenna,” IEEE Trans. Antenn. Propag. 19(2), 278–279 (1971).
[Crossref]

Chen, W.

J. H. Fu, A. Li, W. Chen, B. Lv, Z. Wang, P. Li, and Q. Wu, “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 760–763 (2017).
[Crossref]

Chen, X.

Z. Luo, X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, “Self-focusing of electromagnetic surface waves on a nonlinear impedance surface,” Appl. Phys. Lett. 106(21), 211102 (2015).
[Crossref]

Chen, Y. H.

Cheng, Q.

B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23(6), 7593–7601 (2015).
[Crossref] [PubMed]

Y. B. Li, X. Wan, B. G. Cai, Q. Cheng, and T. J. Cui, “Frequency-controls of electromagnetic multi-beam scanning by metasurfaces,” Sci. Rep. 4(1), 6921 (2014).
[Crossref] [PubMed]

Colburn, J. S.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

Cui, T. J.

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. Liu, “Real‐Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial,” Adv. Mater. Tech. 2(1), 1600202 (2017).
[Crossref]

B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23(6), 7593–7601 (2015).
[Crossref] [PubMed]

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Y. B. Li, X. Wan, B. G. Cai, Q. Cheng, and T. J. Cui, “Frequency-controls of electromagnetic multi-beam scanning by metasurfaces,” Sci. Rep. 4(1), 6921 (2014).
[Crossref] [PubMed]

De Vita, P.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Esselle, K. P.

L. Matekovits, M. Heimlich, and K. P. Esselle, “Metamaterial-based millimeter-wave switchable leaky wave antennas for on-chip implementation in GaAs technology,” J. Electromagn. Waves Appl. 25(1), 49–61 (2011).
[Crossref]

Faenzi, M.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Fong, B. H.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

Fu, J. H.

J. H. Fu, A. Li, W. Chen, B. Lv, Z. Wang, P. Li, and Q. Wu, “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 760–763 (2017).
[Crossref]

Fu, J. X.

Gómez-Tornero, J. L.

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part II: Experiments and description of frequency steering of focal length,” IEEE Trans. Antenn. Propag. 61(7), 3486–3494 (2013).
[Crossref]

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part I: Concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

A. J. Martinez-Ros, J. L. Gómez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

Gonzalez-Ovejero, D.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Goussetis, G.

A. J. Martinez-Ros, J. L. Gómez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

Grbic, A.

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

Gulan, H.

C. Rush, J. Schafer, H. Gulan, P. Pahl, and T. Zwick, “Holographic mmW-Antennas With TE0 and TM0 Surface Wave Launchers for Frequency-Scanning FMCW-Radars,” IEEE Trans. Antenn. Propag. 63(4), 1603–1613 (2015).
[Crossref]

Harold, R.

D. F. Sievenpiper, J. H. Schaffner, R. Y. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antenn. Propag. 50(3), 384–390 (2003).
[Crossref]

Heimlich, M.

L. Matekovits, M. Heimlich, and K. P. Esselle, “Metamaterial-based millimeter-wave switchable leaky wave antennas for on-chip implementation in GaAs technology,” J. Electromagn. Waves Appl. 25(1), 49–61 (2011).
[Crossref]

Hessel, A.

A. Onliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IEEE Trans. Antenn. Propag. 7(5), 201–208 (1959).
[Crossref]

Hum, S. V.

A. Suntives and S. V. Hum, “A fixed-frequency beam-steerable half-mode substrate integrated waveguide leaky-wave antenna,” IEEE Trans. Antenn. Propag. 60(5), 2540–2544 (2012).
[Crossref]

Itoh, T.

S. Lim, C. C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microw. Theory Tech. 53(1), 161–173 (2005).
[Crossref]

Jiang, W. X.

J. W. You, J. F. Zhang, W. X. Jiang, and H. F. Ma, “Accurate Analysis of Finite-Volume Lumped Elements in Metamaterial Absorber Design,” IEEE Trans. Antenn. Propag. 64(7), 1966–1975 (2016).

B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23(6), 7593–7601 (2015).
[Crossref] [PubMed]

Kempel, L. C.

M. Archbold, E. J. Rothwell, L. C. Kempel, and S. W. Schneider, “Beam steering of a half-width microstrip leaky-wave antenna using edge loading,” IEEE Antennas Wirel. Propag. Lett. 9, 203–206 (2010).
[Crossref]

Kim, S.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

Li, A.

J. H. Fu, A. Li, W. Chen, B. Lv, Z. Wang, P. Li, and Q. Wu, “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 760–763 (2017).
[Crossref]

Li, P.

J. H. Fu, A. Li, W. Chen, B. Lv, Z. Wang, P. Li, and Q. Wu, “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 760–763 (2017).
[Crossref]

Li, Y. B.

B. G. Cai, Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, “Generation of spatial Bessel beams using holographic metasurface,” Opt. Express 23(6), 7593–7601 (2015).
[Crossref] [PubMed]

Y. B. Li, X. Wan, B. G. Cai, Q. Cheng, and T. J. Cui, “Frequency-controls of electromagnetic multi-beam scanning by metasurfaces,” Sci. Rep. 4(1), 6921 (2014).
[Crossref] [PubMed]

Li, Z. Y.

Lim, S.

S. Lim, C. C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microw. Theory Tech. 53(1), 161–173 (2005).
[Crossref]

Liu, J.

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. Liu, “Real‐Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial,” Adv. Mater. Tech. 2(1), 1600202 (2017).
[Crossref]

Llombart, N.

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part II: Experiments and description of frequency steering of focal length,” IEEE Trans. Antenn. Propag. 61(7), 3486–3494 (2013).
[Crossref]

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part I: Concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

Long, J.

Z. Luo, X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, “Self-focusing of electromagnetic surface waves on a nonlinear impedance surface,” Appl. Phys. Lett. 106(21), 211102 (2015).
[Crossref]

Loo, R. Y.

D. F. Sievenpiper, J. H. Schaffner, R. Y. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antenn. Propag. 50(3), 384–390 (2003).
[Crossref]

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag. 51(10), 2713–2722 (2003).
[Crossref]

Luo, Z.

Z. Luo, X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, “Self-focusing of electromagnetic surface waves on a nonlinear impedance surface,” Appl. Phys. Lett. 106(21), 211102 (2015).
[Crossref]

Lv, B.

J. H. Fu, A. Li, W. Chen, B. Lv, Z. Wang, P. Li, and Q. Wu, “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 760–763 (2017).
[Crossref]

Ma, H. F.

J. W. You, J. F. Zhang, W. X. Jiang, and H. F. Ma, “Accurate Analysis of Finite-Volume Lumped Elements in Metamaterial Absorber Design,” IEEE Trans. Antenn. Propag. 64(7), 1966–1975 (2016).

Maci, S.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Martinez-Ros, A. J.

A. J. Martinez-Ros, J. L. Gómez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

Martini, E.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Matekovits, L.

L. Matekovits, M. Heimlich, and K. P. Esselle, “Metamaterial-based millimeter-wave switchable leaky wave antennas for on-chip implementation in GaAs technology,” J. Electromagn. Waves Appl. 25(1), 49–61 (2011).
[Crossref]

Minatti, G.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Onliner, A.

A. Onliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IEEE Trans. Antenn. Propag. 7(5), 201–208 (1959).
[Crossref]

Ontiveros, S.

D. F. Sievenpiper, J. H. Schaffner, R. Y. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antenn. Propag. 50(3), 384–390 (2003).
[Crossref]

Ottusch, J. J.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

Pahl, P.

C. Rush, J. Schafer, H. Gulan, P. Pahl, and T. Zwick, “Holographic mmW-Antennas With TE0 and TM0 Surface Wave Launchers for Frequency-Scanning FMCW-Radars,” IEEE Trans. Antenn. Propag. 63(4), 1603–1613 (2015).
[Crossref]

Panaretos, A. H.

Pandi, S.

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

Patel, A. M.

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

Quarfoth, R.

Z. Luo, X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, “Self-focusing of electromagnetic surface waves on a nonlinear impedance surface,” Appl. Phys. Lett. 106(21), 211102 (2015).
[Crossref]

Rajo-Iglesias, E.

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part II: Experiments and description of frequency steering of focal length,” IEEE Trans. Antenn. Propag. 61(7), 3486–3494 (2013).
[Crossref]

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part I: Concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

Rothwell, E. J.

M. Archbold, E. J. Rothwell, L. C. Kempel, and S. W. Schneider, “Beam steering of a half-width microstrip leaky-wave antenna using edge loading,” IEEE Antennas Wirel. Propag. Lett. 9, 203–206 (2010).
[Crossref]

Rush, C.

C. Rush, J. Schafer, H. Gulan, P. Pahl, and T. Zwick, “Holographic mmW-Antennas With TE0 and TM0 Surface Wave Launchers for Frequency-Scanning FMCW-Radars,” IEEE Trans. Antenn. Propag. 63(4), 1603–1613 (2015).
[Crossref]

Rushton, J. J.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

Russo, V.

P. F. Checcacci, V. Russo, and A. M. Scheggi, “A holographic VHF antenna,” IEEE Trans. Antenn. Propag. 19(2), 278–279 (1971).
[Crossref]

Sabbadini, M.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Schafer, J.

C. Rush, J. Schafer, H. Gulan, P. Pahl, and T. Zwick, “Holographic mmW-Antennas With TE0 and TM0 Surface Wave Launchers for Frequency-Scanning FMCW-Radars,” IEEE Trans. Antenn. Propag. 63(4), 1603–1613 (2015).
[Crossref]

Schaffner, J. H.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag. 51(10), 2713–2722 (2003).
[Crossref]

D. F. Sievenpiper, J. H. Schaffner, R. Y. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antenn. Propag. 50(3), 384–390 (2003).
[Crossref]

Scheggi, A. M.

P. F. Checcacci, V. Russo, and A. M. Scheggi, “A holographic VHF antenna,” IEEE Trans. Antenn. Propag. 19(2), 278–279 (1971).
[Crossref]

Schneider, S. W.

M. Archbold, E. J. Rothwell, L. C. Kempel, and S. W. Schneider, “Beam steering of a half-width microstrip leaky-wave antenna using edge loading,” IEEE Antennas Wirel. Propag. Lett. 9, 203–206 (2010).
[Crossref]

Sievenpiper, D.

Z. Luo, X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, “Self-focusing of electromagnetic surface waves on a nonlinear impedance surface,” Appl. Phys. Lett. 106(21), 211102 (2015).
[Crossref]

Sievenpiper, D. F.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

D. F. Sievenpiper, J. H. Schaffner, R. Y. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antenn. Propag. 50(3), 384–390 (2003).
[Crossref]

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag. 51(10), 2713–2722 (2003).
[Crossref]

Song, H. J.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag. 51(10), 2713–2722 (2003).
[Crossref]

Suntives, A.

A. Suntives and S. V. Hum, “A fixed-frequency beam-steerable half-mode substrate integrated waveguide leaky-wave antenna,” IEEE Trans. Antenn. Propag. 60(5), 2540–2544 (2012).
[Crossref]

Tang, W.

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. Liu, “Real‐Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial,” Adv. Mater. Tech. 2(1), 1600202 (2017).
[Crossref]

Tangonan, G.

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag. 51(10), 2713–2722 (2003).
[Crossref]

D. F. Sievenpiper, J. H. Schaffner, R. Y. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antenn. Propag. 50(3), 384–390 (2003).
[Crossref]

Visher, J. L.

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

Wakatsuchi, H.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

Wan, X.

Y. B. Li, X. Wan, B. G. Cai, Q. Cheng, and T. J. Cui, “Frequency-controls of electromagnetic multi-beam scanning by metasurfaces,” Sci. Rep. 4(1), 6921 (2014).
[Crossref] [PubMed]

Wang, Z.

J. H. Fu, A. Li, W. Chen, B. Lv, Z. Wang, P. Li, and Q. Wu, “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 760–763 (2017).
[Crossref]

Werner, D. H.

Wu, Q.

J. H. Fu, A. Li, W. Chen, B. Lv, Z. Wang, P. Li, and Q. Wu, “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 760–763 (2017).
[Crossref]

Xu, J.

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. Liu, “Real‐Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial,” Adv. Mater. Tech. 2(1), 1600202 (2017).
[Crossref]

Xu, J. J.

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

You, J. W.

J. W. You, J. F. Zhang, W. X. Jiang, and H. F. Ma, “Accurate Analysis of Finite-Volume Lumped Elements in Metamaterial Absorber Design,” IEEE Trans. Antenn. Propag. 64(7), 1966–1975 (2016).

Zhang, H. C.

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. Liu, “Real‐Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial,” Adv. Mater. Tech. 2(1), 1600202 (2017).
[Crossref]

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Zhang, J. F.

J. W. You, J. F. Zhang, W. X. Jiang, and H. F. Ma, “Accurate Analysis of Finite-Volume Lumped Elements in Metamaterial Absorber Design,” IEEE Trans. Antenn. Propag. 64(7), 1966–1975 (2016).

Zhang, Q.

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

Zwick, T.

C. Rush, J. Schafer, H. Gulan, P. Pahl, and T. Zwick, “Holographic mmW-Antennas With TE0 and TM0 Surface Wave Launchers for Frequency-Scanning FMCW-Radars,” IEEE Trans. Antenn. Propag. 63(4), 1603–1613 (2015).
[Crossref]

Adv. Mater. Tech. (1)

H. C. Zhang, T. J. Cui, J. Xu, W. Tang, and J. Liu, “Real‐Time Controls of Designer Surface Plasmon Polaritons Using Programmable Plasmonic Metamaterial,” Adv. Mater. Tech. 2(1), 1600202 (2017).
[Crossref]

Appl. Phys. Lett. (3)

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

Z. Luo, X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, “Self-focusing of electromagnetic surface waves on a nonlinear impedance surface,” Appl. Phys. Lett. 106(21), 211102 (2015).
[Crossref]

J. J. Xu, H. C. Zhang, Q. Zhang, and T. J. Cui, “Efficient conversion of surface-plasmon-like modes to spatial radiated modes,” Appl. Phys. Lett. 106(2), 021102 (2015).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

M. Archbold, E. J. Rothwell, L. C. Kempel, and S. W. Schneider, “Beam steering of a half-width microstrip leaky-wave antenna using edge loading,” IEEE Antennas Wirel. Propag. Lett. 9, 203–206 (2010).
[Crossref]

J. H. Fu, A. Li, W. Chen, B. Lv, Z. Wang, P. Li, and Q. Wu, “An Electrically Controlled CRLH-Inspired Circularly Polarized Leaky-Wave Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 760–763 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (14)

A. Suntives and S. V. Hum, “A fixed-frequency beam-steerable half-mode substrate integrated waveguide leaky-wave antenna,” IEEE Trans. Antenn. Propag. 60(5), 2540–2544 (2012).
[Crossref]

D. F. Sievenpiper, J. H. Schaffner, R. Y. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Trans. Antenn. Propag. 50(3), 384–390 (2003).
[Crossref]

D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antenn. Propag. 51(10), 2713–2722 (2003).
[Crossref]

C. Rush, J. Schafer, H. Gulan, P. Pahl, and T. Zwick, “Holographic mmW-Antennas With TE0 and TM0 Surface Wave Launchers for Frequency-Scanning FMCW-Radars,” IEEE Trans. Antenn. Propag. 63(4), 1603–1613 (2015).
[Crossref]

A. Onliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IEEE Trans. Antenn. Propag. 7(5), 201–208 (1959).
[Crossref]

B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, “Scalar and tensor holographic artificial impedance surfaces,” IEEE Trans. Antenn. Propag. 58(10), 3212–3221 (2010).
[Crossref]

A. M. Patel and A. Grbic, “A printed leaky-wave antenna based on a sinusoidally-modulated reactance surface,” IEEE Trans. Antenn. Propag. 59(6), 2087–2096 (2011).
[Crossref]

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part I: Concept, design and analysis theory,” IEEE Trans. Antenn. Propag. 61(7), 3475–3485 (2013).
[Crossref]

J. L. Gómez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, “Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part II: Experiments and description of frequency steering of focal length,” IEEE Trans. Antenn. Propag. 61(7), 3486–3494 (2013).
[Crossref]

J. W. You, J. F. Zhang, W. X. Jiang, and H. F. Ma, “Accurate Analysis of Finite-Volume Lumped Elements in Metamaterial Absorber Design,” IEEE Trans. Antenn. Propag. 64(7), 1966–1975 (2016).

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: Synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

P. F. Checcacci, V. Russo, and A. M. Scheggi, “A holographic VHF antenna,” IEEE Trans. Antenn. Propag. 19(2), 278–279 (1971).
[Crossref]

A. J. Martinez-Ros, J. L. Gómez-Tornero, and G. Goussetis, “Holographic pattern synthesis with modulated substrate integrated waveguide line-source leaky-wave antennas,” IEEE Trans. Antenn. Propag. 61(7), 3466–3474 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. Lim, C. C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microw. Theory Tech. 53(1), 161–173 (2005).
[Crossref]

J. Electromagn. Waves Appl. (1)

L. Matekovits, M. Heimlich, and K. P. Esselle, “Metamaterial-based millimeter-wave switchable leaky wave antennas for on-chip implementation in GaAs technology,” J. Electromagn. Waves Appl. 25(1), 49–61 (2011).
[Crossref]

Opt. Express (4)

Sci. Rep. (1)

Y. B. Li, X. Wan, B. G. Cai, Q. Cheng, and T. J. Cui, “Frequency-controls of electromagnetic multi-beam scanning by metasurfaces,” Sci. Rep. 4(1), 6921 (2014).
[Crossref] [PubMed]

Other (2)

D. R. Jackson and A. A. Oliner, “Leaky-Wave Antennas,” in Modern Antenna Handbook (Wiley, 2008), pp. 325–367.

A. Suntives and S. V. Hum, “An electronically tunable half-mode substrate integrated waveguide leaky-wave antenna,” in Proc. Eur. Conf. on Antennas and Propagation (2011), pp. 3828–3832.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Unit cell loaded with varactor. (a) Geometrical structure of the tunable unit cell. The substrate with a thickness of 3 mm and a relative permittivity of 2.65 is used in this paper. The dimensions of the unit are p = 8 mm, l1 = 10 mm, w1 = w2 = 1.5 mm, d = 1.2 mm, and varied g. The metallic part is illustrated in yellow, and the dielectric part is shown in gray. (b) The equivalent-circuit model of the unit.
Fig. 2
Fig. 2 The dispersion diagram of the unit cell. (a) Dispersion relationship with different gap size g, in which Cv = 1 pF. (b) Dispersion relationship with different Cv, in which g = 0.6 mm. (c) Relationship between surface impedance and gap size g under different Cv at 5.5 GHz.
Fig. 3
Fig. 3 (a) The schematic diagram of the proposed antenna. (b) Normalized impedance profile in one modulation period. (c) - (e) The simulated radiation patterns with capacitances of 2 pF, 4 pF and 6 pF at 5.5 GHz.
Fig. 4
Fig. 4 (a) The normalized E-field radiation patterns with different uniform bias voltage distribution. (b) The normalized E-field radiation patterns with different non-uniform bias voltage distribution.
Fig. 5
Fig. 5 (a) The photograph of the fabricated antenna. (b) The measured S-parameters. (c) The extracted leakage rate α. (d) The measured and simulated gain at 5.5 GHz.

Tables (1)

Tables Icon

Table 1 Bias Voltage Distribution and Corresponding Capacitance in One Modulation Period

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Z s = j η 0 ( β k 0 ) 2 1
Z = j X s [ 1 + M Re ( ψ r e f · ψ r a d ) ]
ψ r e f = e j k 0 n x
ψ r a d = e j k 0 x sin θ
Z = j X s [ 1 + M cos ( k 0 n x k 0 x sin θ ) ]
β m = β 0 + 2 m π / d ( m = ± 1 , ± 2 , ... )
θ = arc sin ( β 1 k 0 ) =arc sin ( 1 + ( X s η 0 ) 2 - 2 π k 0 d )
η r a d = 1 e 2 α L A

Metrics