Abstract

We present an effective yet simple approach to study the dynamic variations in optical properties (such as the refractive index (RI)) of graphene oxide (GO) when exposed to gases in the visible spectral region, using the thin-film interference method. The dynamic variations in the complex refractive index of GO in response to exposure to a gas is an important factor affecting the performance of GO-based gas sensors. In contrast to the conventional ellipsometry, this method alleviates the need of selecting a dispersion model from among a list of model choices, which is limiting if an applicable model is not known a priori. In addition, the method used is computationally simpler, and does not need to employ any functional approximations. Further advantage over ellipsometry is that no bulky optics is required, and as a result it can be easily integrated into the sensing system, thereby allowing the reliable, simple, and dynamic evaluation of the optical performance of any GO-based gas sensor. In addition, the derived values of the dynamically changing RI values of the GO layer obtained from the method we have employed are corroborated by comparing with the values obtained from ellipsometry.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Graphene oxide-based waveguide polariser: From thin film to quasi-bulk

W. H. Lim, Y. K. Yap, W. Y. Chong, C. H. Pua, N. M. Huang, R. M. De La Rue, and H. Ahmad
Opt. Express 22(9) 11090-11098 (2014)

Reduced graphene oxide for fiber-optic toluene gas sensing

Yi Xiao, Jianhui Yu, Long Shun, Shaozao Tan, Xiang Cai, Yunhan Luo, Jun Zhang, Huazhuo Dong, Huihui Lu, Heyuan Guan, Yongchun Zhong, Jieyuan Tang, and Zhe Chen
Opt. Express 24(25) 28290-28302 (2016)

Surface plasmon resonance for characterization of large-area atomic-layer graphene film

Henri Jussila, He Yang, Niko Granqvist, and Zhipei Sun
Optica 3(2) 151-158 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
    [Crossref] [PubMed]
  2. W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A Mater. Energy Sustain. 1(35), 10078–10091 (2013).
    [Crossref]
  3. A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale 5(12), 5426–5434 (2013).
    [Crossref] [PubMed]
  4. S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
    [Crossref]
  5. G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim, “Graphene-based nitrogen dioxide gas sensors,” Curr. Appl. Phys. 10(4), 1002–1004 (2010).
    [Crossref]
  6. H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
    [Crossref]
  7. M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, and A. Martucci, “Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor,” Carbon 69, 452–459 (2014).
    [Crossref]
  8. S. Tabassum, Q. Wang, W. Wang, S. Oren, M. A. Ali, R. Kumar, and L. Dong, “Plasmonic crystal gas sensor incorporating graphene oxide for detection of volatile organic compounds,” in Proceedings of IEEE 29th International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 913–916.
    [Crossref]
  9. S. Tabassum, R. Kumar, and L. Dong, “Plasmonic crystal based gas sensor towards an optical nose design,” IEEE Sens. J. 17(19), 6210–6223 (2017).
    [Crossref]
  10. S. Tabassum, Y. Wang, J. Qu, Q. Wang, S. Oren, R. J. Weber, M. Lu, R. Kumar, and L. Dong, “Patterning of nanophotonic structures at optical fiber tip for refractive index sensing,” in Proceedings of IEEE Sensors (IEEE, 2016), pp. 1–3.
  11. S. Tabassum, R. Kumar, and L. Dong, “Nanopatterned optical fiber tip for guided mode resonance and application to gas sensing,” IEEE Sens. J. 17(22), 7262–7272 (2017).
    [Crossref]
  12. M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar, and L. Dong, “Plasmonic-electrochemical dual modality microfluidic sensor for cancer biomarker detection,” in Proceedings of IEEE 30th International Conference on Micro Electro Mechanical Systems (IEEE, 2017), pp. 390–393.
  13. M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar, and L. Dong, “Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal,” Lab Chip (2018), doi:10.1039/C7LC01211J.
  14. M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).
  15. H. Li, J. He, S. Li, and A. P. F. Turner, “Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3,” Biosens. Bioelectron. 43(1), 25–29 (2013).
    [Crossref] [PubMed]
  16. S. S. Nanda, D. K. Yi, and K. Kim, “Study of antibacterial mechanism of graphene oxide using Raman spectroscopy,” Sci. Rep. 6(1), 28443 (2016).
    [Crossref] [PubMed]
  17. S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, “Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 778–782 (2017).
    [Crossref]
  18. V. G. Kravets, O. P. Marshall, R. R. Nair, B. Thackray, A. Zhukov, J. Leng, and A. N. Grigorenko, “Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels,” Opt. Express 23(2), 1265–1275 (2015).
    [Crossref] [PubMed]
  19. I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
    [Crossref]
  20. S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
    [Crossref] [PubMed]
  21. M. Turowski, T. Amotchkina, H. Ehlers, M. Jupé, and D. Ristau, “Calculation of optical and electronic properties of modeled titanium dioxide films of different densities,” Appl. Opt. 53(4), A159–A168 (2014).
    [Crossref] [PubMed]
  22. A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of density functional theory,” Science 321(5890), 792–794 (2008).
    [Crossref] [PubMed]
  23. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
    [Crossref] [PubMed]
  24. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
    [Crossref]
  25. D. A. Minkov, “Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum,” J. Phys. D Appl. Phys. 22(8), 1157–1161 (1989).
    [Crossref]
  26. S. H. Fei, W. Can, S. Z. Pei, Z. Y. Liang, J. K. Juan, and Y. G. Zhen, “Transparent conductive reduced grahene oxide thin films produced by spray coating,” Sci. China Phys. Mech. Astron. 58(1), 014202 (2015).
  27. R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, “Solvothermal synthesis of Zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes,” Elect. Acta 178, 647–657 (2015).
    [Crossref]
  28. S.-H. Hong and J.-K. Song, “Comment on “Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide” and Thin-Film Interference from Dried Graphene Oxide Film,” Small 13(15), 1603125 (2017).
    [Crossref] [PubMed]
  29. K. A. Aly and F. M. A. Rahim, “Effect of Sn addition on the optical constants of Ge-Sb-S thin films based only on their measured reflectance spectra,” J. Alloys Compd. 561, 284–290 (2013).
    [Crossref]
  30. C.-B. Yu, Y. Wu, X.-L. Liu, B.-C. Yao, F. Fu, Y. Gong, Y.-J. Rao, and Y.-F. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6(3), 727–733 (2016).
    [Crossref]
  31. B. Mehta, K. D. Benkstein, S. Semancik, and M. E. Zaghloul, “Gas sensing with bare and graphene-covered optical nano-antenna structures,” Sci. Rep. 6(1), 21287 (2016).
    [Crossref] [PubMed]
  32. S. Al-Zangana, M. Iliut, G. Boran, M. Turner, A. Vijayaraghavan, and I. Dierking, “Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide,” Sci. Rep. 6(1), 31885 (2016).
    [Crossref] [PubMed]
  33. J. A. Woollam Co, Inc, “A short course in ellipsometry,” https://www.nnf.ncsu.edu/sites/default/files/vase_manual_short_course.pdf .
  34. D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D Appl. Phys. 36(15), 1850–1857 (2003).
    [Crossref]

2017 (5)

S. Tabassum, R. Kumar, and L. Dong, “Plasmonic crystal based gas sensor towards an optical nose design,” IEEE Sens. J. 17(19), 6210–6223 (2017).
[Crossref]

S. Tabassum, R. Kumar, and L. Dong, “Nanopatterned optical fiber tip for guided mode resonance and application to gas sensing,” IEEE Sens. J. 17(22), 7262–7272 (2017).
[Crossref]

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, “Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 778–782 (2017).
[Crossref]

S.-H. Hong and J.-K. Song, “Comment on “Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide” and Thin-Film Interference from Dried Graphene Oxide Film,” Small 13(15), 1603125 (2017).
[Crossref] [PubMed]

2016 (4)

C.-B. Yu, Y. Wu, X.-L. Liu, B.-C. Yao, F. Fu, Y. Gong, Y.-J. Rao, and Y.-F. Chen, “Graphene oxide deposited microfiber knot resonator for gas sensing,” Opt. Mater. Express 6(3), 727–733 (2016).
[Crossref]

B. Mehta, K. D. Benkstein, S. Semancik, and M. E. Zaghloul, “Gas sensing with bare and graphene-covered optical nano-antenna structures,” Sci. Rep. 6(1), 21287 (2016).
[Crossref] [PubMed]

S. Al-Zangana, M. Iliut, G. Boran, M. Turner, A. Vijayaraghavan, and I. Dierking, “Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide,” Sci. Rep. 6(1), 31885 (2016).
[Crossref] [PubMed]

S. S. Nanda, D. K. Yi, and K. Kim, “Study of antibacterial mechanism of graphene oxide using Raman spectroscopy,” Sci. Rep. 6(1), 28443 (2016).
[Crossref] [PubMed]

2015 (4)

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

S. H. Fei, W. Can, S. Z. Pei, Z. Y. Liang, J. K. Juan, and Y. G. Zhen, “Transparent conductive reduced grahene oxide thin films produced by spray coating,” Sci. China Phys. Mech. Astron. 58(1), 014202 (2015).

R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, “Solvothermal synthesis of Zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes,” Elect. Acta 178, 647–657 (2015).
[Crossref]

V. G. Kravets, O. P. Marshall, R. R. Nair, B. Thackray, A. Zhukov, J. Leng, and A. N. Grigorenko, “Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels,” Opt. Express 23(2), 1265–1275 (2015).
[Crossref] [PubMed]

2014 (2)

M. Turowski, T. Amotchkina, H. Ehlers, M. Jupé, and D. Ristau, “Calculation of optical and electronic properties of modeled titanium dioxide films of different densities,” Appl. Opt. 53(4), A159–A168 (2014).
[Crossref] [PubMed]

M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, and A. Martucci, “Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor,” Carbon 69, 452–459 (2014).
[Crossref]

2013 (5)

H. Li, J. He, S. Li, and A. P. F. Turner, “Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3,” Biosens. Bioelectron. 43(1), 25–29 (2013).
[Crossref] [PubMed]

W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A Mater. Energy Sustain. 1(35), 10078–10091 (2013).
[Crossref]

A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale 5(12), 5426–5434 (2013).
[Crossref] [PubMed]

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

K. A. Aly and F. M. A. Rahim, “Effect of Sn addition on the optical constants of Ge-Sb-S thin films based only on their measured reflectance spectra,” J. Alloys Compd. 561, 284–290 (2013).
[Crossref]

2012 (1)

D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
[Crossref] [PubMed]

2011 (1)

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

2010 (1)

G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim, “Graphene-based nitrogen dioxide gas sensors,” Curr. Appl. Phys. 10(4), 1002–1004 (2010).
[Crossref]

2009 (1)

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

2008 (2)

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of density functional theory,” Science 321(5890), 792–794 (2008).
[Crossref] [PubMed]

2007 (1)

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

2003 (1)

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

1989 (1)

D. A. Minkov, “Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum,” J. Phys. D Appl. Phys. 22(8), 1157–1161 (1989).
[Crossref]

Admane, P.

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

Agrawal, V. V.

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

Ahn, J.

G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim, “Graphene-based nitrogen dioxide gas sensors,” Curr. Appl. Phys. 10(4), 1002–1004 (2010).
[Crossref]

Ali, M. A.

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar, and L. Dong, “Plasmonic-electrochemical dual modality microfluidic sensor for cancer biomarker detection,” in Proceedings of IEEE 30th International Conference on Micro Electro Mechanical Systems (IEEE, 2017), pp. 390–393.

S. Tabassum, Q. Wang, W. Wang, S. Oren, M. A. Ali, R. Kumar, and L. Dong, “Plasmonic crystal gas sensor incorporating graphene oxide for detection of volatile organic compounds,” in Proceedings of IEEE 29th International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 913–916.
[Crossref]

Aly, K. A.

K. A. Aly and F. M. A. Rahim, “Effect of Sn addition on the optical constants of Ge-Sb-S thin films based only on their measured reflectance spectra,” J. Alloys Compd. 561, 284–290 (2013).
[Crossref]

Al-Zangana, S.

S. Al-Zangana, M. Iliut, G. Boran, M. Turner, A. Vijayaraghavan, and I. Dierking, “Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide,” Sci. Rep. 6(1), 31885 (2016).
[Crossref] [PubMed]

Ambrosio, A.

S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, “Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 778–782 (2017).
[Crossref]

Amotchkina, T.

An, J.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Benkstein, K. D.

B. Mehta, K. D. Benkstein, S. Semancik, and M. E. Zaghloul, “Gas sensing with bare and graphene-covered optical nano-antenna structures,” Sci. Rep. 6(1), 21287 (2016).
[Crossref] [PubMed]

Bersani, M.

M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, and A. Martucci, “Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor,” Carbon 69, 452–459 (2014).
[Crossref]

Boran, G.

S. Al-Zangana, M. Iliut, G. Boran, M. Turner, A. Vijayaraghavan, and I. Dierking, “Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide,” Sci. Rep. 6(1), 31885 (2016).
[Crossref] [PubMed]

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

Can, W.

S. H. Fei, W. Can, S. Z. Pei, Z. Y. Liang, J. K. Juan, and Y. G. Zhen, “Transparent conductive reduced grahene oxide thin films produced by spray coating,” Sci. China Phys. Mech. Astron. 58(1), 014202 (2015).

Cantalini, C.

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Capasso, F.

S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, “Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 778–782 (2017).
[Crossref]

Chen, D.

D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
[Crossref] [PubMed]

Chen, Y.-F.

Cheng, M. M.-C.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Cheon, S.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Cittadini, M.

M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, and A. Martucci, “Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor,” Carbon 69, 452–459 (2014).
[Crossref]

Cohen, A. J.

A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of density functional theory,” Science 321(5890), 792–794 (2008).
[Crossref] [PubMed]

Dierking, I.

S. Al-Zangana, M. Iliut, G. Boran, M. Turner, A. Vijayaraghavan, and I. Dierking, “Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide,” Sci. Rep. 6(1), 31885 (2016).
[Crossref] [PubMed]

Dikin, D. A.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Dong, L.

S. Tabassum, R. Kumar, and L. Dong, “Plasmonic crystal based gas sensor towards an optical nose design,” IEEE Sens. J. 17(19), 6210–6223 (2017).
[Crossref]

S. Tabassum, R. Kumar, and L. Dong, “Nanopatterned optical fiber tip for guided mode resonance and application to gas sensing,” IEEE Sens. J. 17(22), 7262–7272 (2017).
[Crossref]

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar, and L. Dong, “Plasmonic-electrochemical dual modality microfluidic sensor for cancer biomarker detection,” in Proceedings of IEEE 30th International Conference on Micro Electro Mechanical Systems (IEEE, 2017), pp. 390–393.

S. Tabassum, Q. Wang, W. Wang, S. Oren, M. A. Ali, R. Kumar, and L. Dong, “Plasmonic crystal gas sensor incorporating graphene oxide for detection of volatile organic compounds,” in Proceedings of IEEE 29th International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 913–916.
[Crossref]

Ehlers, H.

Fan, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Fei, S. H.

S. H. Fei, W. Can, S. Z. Pei, Z. Y. Liang, J. K. Juan, and Y. G. Zhen, “Transparent conductive reduced grahene oxide thin films produced by spray coating,” Sci. China Phys. Mech. Astron. 58(1), 014202 (2015).

Feng, H.

D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
[Crossref] [PubMed]

Feng, Y. P.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Fu, F.

Giancaterini, L.

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Gong, Y.

Grace, A. N.

R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, “Solvothermal synthesis of Zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes,” Elect. Acta 178, 647–657 (2015).
[Crossref]

Grigorenko, A. N.

He, J.

H. Li, J. He, S. Li, and A. P. F. Turner, “Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3,” Biosens. Bioelectron. 43(1), 25–29 (2013).
[Crossref] [PubMed]

Hong, N.

S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, “Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 778–782 (2017).
[Crossref]

Hong, S.-H.

S.-H. Hong and J.-K. Song, “Comment on “Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide” and Thin-Film Interference from Dried Graphene Oxide Film,” Small 13(15), 1603125 (2017).
[Crossref] [PubMed]

Iliut, M.

S. Al-Zangana, M. Iliut, G. Boran, M. Turner, A. Vijayaraghavan, and I. Dierking, “Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide,” Sci. Rep. 6(1), 31885 (2016).
[Crossref] [PubMed]

Jeong, S. K.

R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, “Solvothermal synthesis of Zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes,” Elect. Acta 178, 647–657 (2015).
[Crossref]

John, R.

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

Juan, J. K.

S. H. Fei, W. Can, S. Z. Pei, Z. Y. Liang, J. K. Juan, and Y. G. Zhen, “Transparent conductive reduced grahene oxide thin films produced by spray coating,” Sci. China Phys. Mech. Astron. 58(1), 014202 (2015).

Jun, D. H.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Jung, I.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Jupé, M.

Kasim, J.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Khorasaninejad, M.

S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, “Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 778–782 (2017).
[Crossref]

Kihm, K. D.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Kim, H.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Kim, H.-Y.

G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim, “Graphene-based nitrogen dioxide gas sensors,” Curr. Appl. Phys. 10(4), 1002–1004 (2010).
[Crossref]

Kim, J.

G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim, “Graphene-based nitrogen dioxide gas sensors,” Curr. Appl. Phys. 10(4), 1002–1004 (2010).
[Crossref]

Kim, K.

S. S. Nanda, D. K. Yi, and K. Kim, “Study of antibacterial mechanism of graphene oxide using Raman spectroscopy,” Sci. Rep. 6(1), 28443 (2016).
[Crossref] [PubMed]

Ko, G.

G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim, “Graphene-based nitrogen dioxide gas sensors,” Curr. Appl. Phys. 10(4), 1002–1004 (2010).
[Crossref]

Kollu, P.

R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, “Solvothermal synthesis of Zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes,” Elect. Acta 178, 647–657 (2015).
[Crossref]

Kolmakov, A.

A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale 5(12), 5426–5434 (2013).
[Crossref] [PubMed]

Kravets, V. G.

Kumar, R.

S. Tabassum, R. Kumar, and L. Dong, “Plasmonic crystal based gas sensor towards an optical nose design,” IEEE Sens. J. 17(19), 6210–6223 (2017).
[Crossref]

S. Tabassum, R. Kumar, and L. Dong, “Nanopatterned optical fiber tip for guided mode resonance and application to gas sensing,” IEEE Sens. J. 17(22), 7262–7272 (2017).
[Crossref]

S. Tabassum, Q. Wang, W. Wang, S. Oren, M. A. Ali, R. Kumar, and L. Dong, “Plasmonic crystal gas sensor incorporating graphene oxide for detection of volatile organic compounds,” in Proceedings of IEEE 29th International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 913–916.
[Crossref]

M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar, and L. Dong, “Plasmonic-electrochemical dual modality microfluidic sensor for cancer biomarker detection,” in Proceedings of IEEE 30th International Conference on Micro Electro Mechanical Systems (IEEE, 2017), pp. 390–393.

Lee, J. S.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Lee, K.-Y.

G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim, “Graphene-based nitrogen dioxide gas sensors,” Curr. Appl. Phys. 10(4), 1002–1004 (2010).
[Crossref]

Leng, J.

Li, H.

H. Li, J. He, S. Li, and A. P. F. Turner, “Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3,” Biosens. Bioelectron. 43(1), 25–29 (2013).
[Crossref] [PubMed]

Li, J.

D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
[Crossref] [PubMed]

Li, S.

H. Li, J. He, S. Li, and A. P. F. Turner, “Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3,” Biosens. Bioelectron. 43(1), 25–29 (2013).
[Crossref] [PubMed]

Liang, Z. Y.

S. H. Fei, W. Can, S. Z. Pei, Z. Y. Liang, J. K. Juan, and Y. G. Zhen, “Transparent conductive reduced grahene oxide thin films produced by spray coating,” Sci. China Phys. Mech. Astron. 58(1), 014202 (2015).

Lim, G.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Lipatov, A.

A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale 5(12), 5426–5434 (2013).
[Crossref] [PubMed]

Liu, X.-L.

Maddalena, P.

S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, “Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 778–782 (2017).
[Crossref]

Malhotra, B. D.

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

Marshall, O. P.

Martucci, A.

M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, and A. Martucci, “Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor,” Carbon 69, 452–459 (2014).
[Crossref]

Mehta, B.

B. Mehta, K. D. Benkstein, S. Semancik, and M. E. Zaghloul, “Gas sensing with bare and graphene-covered optical nano-antenna structures,” Sci. Rep. 6(1), 21287 (2016).
[Crossref] [PubMed]

Minkov, D. A.

D. A. Minkov, “Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum,” J. Phys. D Appl. Phys. 22(8), 1157–1161 (1989).
[Crossref]

Mori-Sánchez, P.

A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of density functional theory,” Science 321(5890), 792–794 (2008).
[Crossref] [PubMed]

Nair, R. R.

Nanda, S. S.

S. S. Nanda, D. K. Yi, and K. Kim, “Study of antibacterial mechanism of graphene oxide using Raman spectroscopy,” Sci. Rep. 6(1), 28443 (2016).
[Crossref] [PubMed]

Nardone, M.

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Ni, Z. H.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Orabona, E.

S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, “Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 778–782 (2017).
[Crossref]

Oren, S.

S. Tabassum, Q. Wang, W. Wang, S. Oren, M. A. Ali, R. Kumar, and L. Dong, “Plasmonic crystal gas sensor incorporating graphene oxide for detection of volatile organic compounds,” in Proceedings of IEEE 29th International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 913–916.
[Crossref]

Ottaviano, L.

M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, and A. Martucci, “Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor,” Carbon 69, 452–459 (2014).
[Crossref]

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Palermo, V.

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Panda, A.

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

Park, J. S.

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

Park, Y.-M.

G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim, “Graphene-based nitrogen dioxide gas sensors,” Curr. Appl. Phys. 10(4), 1002–1004 (2010).
[Crossref]

Pei, S. Z.

S. H. Fei, W. Can, S. Z. Pei, Z. Y. Liang, J. K. Juan, and Y. G. Zhen, “Transparent conductive reduced grahene oxide thin films produced by spray coating,” Sci. China Phys. Mech. Astron. 58(1), 014202 (2015).

Pelton, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Perrozzi, F.

M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, and A. Martucci, “Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor,” Carbon 69, 452–459 (2014).
[Crossref]

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Piner, R.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Poelman, D.

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

Prezioso, S.

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Raghupathy, B. P. C.

R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, “Solvothermal synthesis of Zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes,” Elect. Acta 178, 647–657 (2015).
[Crossref]

Rahim, F. M. A.

K. A. Aly and F. M. A. Rahim, “Effect of Sn addition on the optical constants of Ge-Sb-S thin films based only on their measured reflectance spectra,” J. Alloys Compd. 561, 284–290 (2013).
[Crossref]

Ramachandran, R.

R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, “Solvothermal synthesis of Zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes,” Elect. Acta 178, 647–657 (2015).
[Crossref]

Rao, Y.-J.

Ristau, D.

Ruoff, R. S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Santucci, S.

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Saranya, M.

R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, “Solvothermal synthesis of Zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes,” Elect. Acta 178, 647–657 (2015).
[Crossref]

Schöche, S.

S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, “Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 778–782 (2017).
[Crossref]

Semancik, S.

B. Mehta, K. D. Benkstein, S. Semancik, and M. E. Zaghloul, “Gas sensing with bare and graphene-covered optical nano-antenna structures,” Sci. Rep. 6(1), 21287 (2016).
[Crossref] [PubMed]

Shen, Z. X.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Shi, G.

W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A Mater. Energy Sustain. 1(35), 10078–10091 (2013).
[Crossref]

Singh, C.

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

Sinitskii, A.

A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale 5(12), 5426–5434 (2013).
[Crossref] [PubMed]

Smet, P. F.

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

Song, J.-K.

S.-H. Hong and J.-K. Song, “Comment on “Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide” and Thin-Film Interference from Dried Graphene Oxide Film,” Small 13(15), 1603125 (2017).
[Crossref] [PubMed]

Srivastava, S.

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

Stankovich, S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Sumana, G.

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

Sysoev, V.

A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale 5(12), 5426–5434 (2013).
[Crossref] [PubMed]

Tabassum, S.

S. Tabassum, R. Kumar, and L. Dong, “Plasmonic crystal based gas sensor towards an optical nose design,” IEEE Sens. J. 17(19), 6210–6223 (2017).
[Crossref]

S. Tabassum, R. Kumar, and L. Dong, “Nanopatterned optical fiber tip for guided mode resonance and application to gas sensing,” IEEE Sens. J. 17(22), 7262–7272 (2017).
[Crossref]

S. Tabassum, Q. Wang, W. Wang, S. Oren, M. A. Ali, R. Kumar, and L. Dong, “Plasmonic crystal gas sensor incorporating graphene oxide for detection of volatile organic compounds,” in Proceedings of IEEE 29th International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 913–916.
[Crossref]

M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar, and L. Dong, “Plasmonic-electrochemical dual modality microfluidic sensor for cancer biomarker detection,” in Proceedings of IEEE 30th International Conference on Micro Electro Mechanical Systems (IEEE, 2017), pp. 390–393.

Thackray, B.

Treossi, E.

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

Turner, A. P. F.

H. Li, J. He, S. Li, and A. P. F. Turner, “Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3,” Biosens. Bioelectron. 43(1), 25–29 (2013).
[Crossref] [PubMed]

Turner, M.

S. Al-Zangana, M. Iliut, G. Boran, M. Turner, A. Vijayaraghavan, and I. Dierking, “Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide,” Sci. Rep. 6(1), 31885 (2016).
[Crossref] [PubMed]

Turowski, M.

Varezhnikov, A.

A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale 5(12), 5426–5434 (2013).
[Crossref] [PubMed]

Vaupel, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Vijayaraghavan, A.

S. Al-Zangana, M. Iliut, G. Boran, M. Turner, A. Vijayaraghavan, and I. Dierking, “Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide,” Sci. Rep. 6(1), 31885 (2016).
[Crossref] [PubMed]

Wang, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Wang, Q.

M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar, and L. Dong, “Plasmonic-electrochemical dual modality microfluidic sensor for cancer biomarker detection,” in Proceedings of IEEE 30th International Conference on Micro Electro Mechanical Systems (IEEE, 2017), pp. 390–393.

S. Tabassum, Q. Wang, W. Wang, S. Oren, M. A. Ali, R. Kumar, and L. Dong, “Plasmonic crystal gas sensor incorporating graphene oxide for detection of volatile organic compounds,” in Proceedings of IEEE 29th International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 913–916.
[Crossref]

Wang, W.

S. Tabassum, Q. Wang, W. Wang, S. Oren, M. A. Ali, R. Kumar, and L. Dong, “Plasmonic crystal gas sensor incorporating graphene oxide for detection of volatile organic compounds,” in Proceedings of IEEE 29th International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 913–916.
[Crossref]

Wang, Y.

M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar, and L. Dong, “Plasmonic-electrochemical dual modality microfluidic sensor for cancer biomarker detection,” in Proceedings of IEEE 30th International Conference on Micro Electro Mechanical Systems (IEEE, 2017), pp. 390–393.

Wilson, P.

A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale 5(12), 5426–5434 (2013).
[Crossref] [PubMed]

Wlodarski, W.

M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, and A. Martucci, “Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor,” Carbon 69, 452–459 (2014).
[Crossref]

Wu, Y.

Wu, Y. H.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Yang, J. H.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Yang, S. S.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Yang, W.

A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of density functional theory,” Science 321(5890), 792–794 (2008).
[Crossref] [PubMed]

Yao, B.-C.

Yi, D. K.

S. S. Nanda, D. K. Yi, and K. Kim, “Study of antibacterial mechanism of graphene oxide using Raman spectroscopy,” Sci. Rep. 6(1), 28443 (2016).
[Crossref] [PubMed]

Yoon, H. J.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Yu, C.-B.

Yu, T.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Yuan, W.

W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A Mater. Energy Sustain. 1(35), 10078–10091 (2013).
[Crossref]

Zaghloul, M. E.

B. Mehta, K. D. Benkstein, S. Semancik, and M. E. Zaghloul, “Gas sensing with bare and graphene-covered optical nano-antenna structures,” Sci. Rep. 6(1), 21287 (2016).
[Crossref] [PubMed]

Zhen, Y. G.

S. H. Fei, W. Can, S. Z. Pei, Z. Y. Liang, J. K. Juan, and Y. G. Zhen, “Transparent conductive reduced grahene oxide thin films produced by spray coating,” Sci. China Phys. Mech. Astron. 58(1), 014202 (2015).

Zhou, Z.

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Zhukov, A.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94(3), 031901 (2009).
[Crossref]

Appl. Surf. Sci. (1)

S. Schöche, N. Hong, M. Khorasaninejad, A. Ambrosio, E. Orabona, P. Maddalena, and F. Capasso, “Optical properties of graphene oxide and reduced graphene oxide determined by spectroscopic ellipsometry,” Appl. Surf. Sci. 421, 778–782 (2017).
[Crossref]

Biosens. Bioelectron. (1)

H. Li, J. He, S. Li, and A. P. F. Turner, “Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3,” Biosens. Bioelectron. 43(1), 25–29 (2013).
[Crossref] [PubMed]

Carbon (1)

M. Cittadini, M. Bersani, F. Perrozzi, L. Ottaviano, W. Wlodarski, and A. Martucci, “Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor,” Carbon 69, 452–459 (2014).
[Crossref]

Chem. Rev. (1)

D. Chen, H. Feng, and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications,” Chem. Rev. 112(11), 6027–6053 (2012).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim, “Graphene-based nitrogen dioxide gas sensors,” Curr. Appl. Phys. 10(4), 1002–1004 (2010).
[Crossref]

Elect. Acta (1)

R. Ramachandran, M. Saranya, P. Kollu, B. P. C. Raghupathy, S. K. Jeong, and A. N. Grace, “Solvothermal synthesis of Zinc sulfide decorated graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes,” Elect. Acta 178, 647–657 (2015).
[Crossref]

IEEE Sens. J. (2)

S. Tabassum, R. Kumar, and L. Dong, “Plasmonic crystal based gas sensor towards an optical nose design,” IEEE Sens. J. 17(19), 6210–6223 (2017).
[Crossref]

S. Tabassum, R. Kumar, and L. Dong, “Nanopatterned optical fiber tip for guided mode resonance and application to gas sensing,” IEEE Sens. J. 17(22), 7262–7272 (2017).
[Crossref]

J. Alloys Compd. (1)

K. A. Aly and F. M. A. Rahim, “Effect of Sn addition on the optical constants of Ge-Sb-S thin films based only on their measured reflectance spectra,” J. Alloys Compd. 561, 284–290 (2013).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

W. Yuan and G. Shi, “Graphene-based gas sensors,” J. Mater. Chem. A Mater. Energy Sustain. 1(35), 10078–10091 (2013).
[Crossref]

J. Phys. Chem. C (2)

S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, and L. Ottaviano, “Graphene oxide as a practical solution to high sensitivity gas sensing,” J. Phys. Chem. C 117(20), 10683–10690 (2013).
[Crossref]

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

J. Phys. D Appl. Phys. (2)

D. Poelman and P. F. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

D. A. Minkov, “Calculation of the optical constants of a thin layer upon a transparent substrate from the reflection spectrum,” J. Phys. D Appl. Phys. 22(8), 1157–1161 (1989).
[Crossref]

Nano Lett. (1)

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7(9), 2758–2763 (2007).
[Crossref] [PubMed]

Nanoscale (1)

A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale 5(12), 5426–5434 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

RCS Adv. (1)

M. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong, and B. D. Malhotra, “Graphene oxide-metal nanocomposites for cancer biobarker detection,” RCS Adv. 7(57), 35982–35991 (2017).

Sci. China Phys. Mech. Astron. (1)

S. H. Fei, W. Can, S. Z. Pei, Z. Y. Liang, J. K. Juan, and Y. G. Zhen, “Transparent conductive reduced grahene oxide thin films produced by spray coating,” Sci. China Phys. Mech. Astron. 58(1), 014202 (2015).

Sci. Rep. (4)

B. Mehta, K. D. Benkstein, S. Semancik, and M. E. Zaghloul, “Gas sensing with bare and graphene-covered optical nano-antenna structures,” Sci. Rep. 6(1), 21287 (2016).
[Crossref] [PubMed]

S. Al-Zangana, M. Iliut, G. Boran, M. Turner, A. Vijayaraghavan, and I. Dierking, “Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide,” Sci. Rep. 6(1), 31885 (2016).
[Crossref] [PubMed]

S. Cheon, K. D. Kihm, H. Kim, G. Lim, J. S. Park, and J. S. Lee, “How to reliably determine the complex refractive index (RI) of graphene by using two independent measurement constraints,” Sci. Rep. 4(1), 6364 (2015).
[Crossref] [PubMed]

S. S. Nanda, D. K. Yi, and K. Kim, “Study of antibacterial mechanism of graphene oxide using Raman spectroscopy,” Sci. Rep. 6(1), 28443 (2016).
[Crossref] [PubMed]

Science (1)

A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of density functional theory,” Science 321(5890), 792–794 (2008).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B Chem. 157(1), 310–313 (2011).
[Crossref]

Small (1)

S.-H. Hong and J.-K. Song, “Comment on “Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide” and Thin-Film Interference from Dried Graphene Oxide Film,” Small 13(15), 1603125 (2017).
[Crossref] [PubMed]

Other (5)

J. A. Woollam Co, Inc, “A short course in ellipsometry,” https://www.nnf.ncsu.edu/sites/default/files/vase_manual_short_course.pdf .

S. Tabassum, Y. Wang, J. Qu, Q. Wang, S. Oren, R. J. Weber, M. Lu, R. Kumar, and L. Dong, “Patterning of nanophotonic structures at optical fiber tip for refractive index sensing,” in Proceedings of IEEE Sensors (IEEE, 2016), pp. 1–3.

S. Tabassum, Q. Wang, W. Wang, S. Oren, M. A. Ali, R. Kumar, and L. Dong, “Plasmonic crystal gas sensor incorporating graphene oxide for detection of volatile organic compounds,” in Proceedings of IEEE 29th International Conference on Micro Electro Mechanical Systems (IEEE, 2016), pp. 913–916.
[Crossref]

M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar, and L. Dong, “Plasmonic-electrochemical dual modality microfluidic sensor for cancer biomarker detection,” in Proceedings of IEEE 30th International Conference on Micro Electro Mechanical Systems (IEEE, 2017), pp. 390–393.

M. A. Ali, S. Tabassum, Q. Wang, Y. Wang, R. Kumar, and L. Dong, “Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal,” Lab Chip (2018), doi:10.1039/C7LC01211J.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematic illustration of optical setup for characterizing the optical properties of a GO thin film. (b) Reflection spectrum R of the GO thin film in air and the envelopes R m and R m as fitted to the maxima and minima of R, respectively. (c) SEM images of GO thin film on glass: top view (left) and cross section (right). (d) Raman spectrum of GO.
Fig. 2
Fig. 2 (a) Dynamic evolution of reflectance spectra upon exposure to ammonia gas over 44 mins. (b) Zoomed-in spectra from the region denoted by red dashes in (a), emphasizing the shifts in interference fringes in response to gas exposure. Dynamic variation of (c) refractive index and (d) extinction coefficient in exposure to ammonia gas and at different wavelengths of light. Arrows denote the instants at which the GO thin film was exposed to 200, 300 and 500 ppm of ammonia gas. Shifts in (e) refractive index and (f) extinction coefficient as a function of concentration of ammonia gas.
Fig. 3
Fig. 3 Comparison of the derived complex RI of bare GO film using thin-film interference with that of ellipsometry.

Tables (1)

Tables Icon

Table 1 The calculated values of complex refractive index ( η + ik) and thickness (t) of GO are based on the fringe interference method [25]

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R= A ' ( B 1 ' cos2δ B 2 ' sin2δ)x+ C ' x 2 A '' ( B 1 '' cos2δ B 2 '' sin2δ)x+ C '' x 2 + A ''' x 2 A '' ( B 1 '' cos2δ B 2 '' sin2δ)x+ C '' x 2 * 1 D '' ( E 1 '' cos2δ E 2 '' sin2δ)x+ F '' x 2
A ' =[ (η1) 2 + k 2 ][ (η+ η s ) 2 + k 2 ] B 1 ' =2[ ( η 2 + k 2 1 )( η 2 + k 2 η s 2 )+4 k 2 η s ]  B 2 ' =4k[ η s ( η 2 + k 2 1 )( η 2 + k 2 η s 2 )] C ' =[ (η+1) 2 + k 2 ][ (η η s ) 2 + k 2 ] A '' =[ (η+1) 2 + k 2 ][ (η+ η s ) 2 + k 2 ] B 1 '' =2[ ( η 2 + k 2 1 )( η 2 + k 2 η s 2 )4 k 2 η s ]    B 2 '' =4k[ η s ( η 2 + k 2 1 )+( η 2 + k 2 η s 2 ) ] C '' =[ (η1) 2 + k 2 ][ (η η s ) 2 + k 2 ] A ''' =64 η s ( η s 1 ) 2 ( η 2 + k 2 ) 2 D''=[ (η+1) 2 + k 2 ][(η+1)(η+ η s 2 )+ k 2 ] E 1 '' =2[ ( η 2 + k 2 1 )( η 2 + k 2 η s 2 )2 k 2 ( η s 2 +1 ) ] E 2 '' =2k[ ( η 2 + k 2 η s 2 )+( η s 2 +1 )( η 2 + k 2 1 ) ] F '' =[ (η1) 2 + k 2 ][( η1 )( η η s 2 )+ k 2 ]
R M = (ad+bcx) 2 (bd+acx) 2 + g x 2 (bd+acx) 2 ( b 3 f+2abcdx+ a 3 e x 2 ) R m = (adbcx) 2 (bdacx) 2 + g x 2 (bdacx) 2 ( b 3 f2abcdx+ a 3 e x 2 )
η s = 1+ [ R m (2 R m )] 1/2 1 R m
4ηt=mλ
t= λ 1 λ 2 4( λ 1 η 2 λ 2 η 1 )
tan(ψ) e jΔ = R p R s ,

Metrics