Abstract

Soliton self-compression is demonstrated during the propagation of high spatial modes in hollow core fibers in the near-infrared spectral region, taking advantage of their negative dispersion response. We have found that there is always an optimum spatial mode to observe this phenomenon, compressing the pulses down to the single-cycle regime without needing any external compression device and with a consequent increase in the output peak power. Our result is relevant for any ultrashort laser application in which few- or single-cycle pulses are crucial.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spatiotemporal-dressed optical solitons in hollow-core capillaries

Boris A. López-Zubieta, Enrique Conejero Jarque, Íñigo J. Sola, and Julio San Roman
OSA Continuum 1(3) 930-938 (2018)

High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber

Alexander M. Heidt, Jan Rothhardt, Alexander Hartung, Hartmut Bartelt, Erich G. Rohwer, Jens Limpert, and Andreas Tünnermann
Opt. Express 19(15) 13873-13879 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Ahmed H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
    [Crossref]
  2. W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
    [Crossref]
  3. P.B. Corkum and F. Krausz, “Attosecond science,” Nature Physics 3, 381–387 (2007).
    [Crossref]
  4. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
    [Crossref]
  5. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 (1964).
    [Crossref]
  6. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996)
    [Crossref]
  7. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
    [Crossref] [PubMed]
  8. F. Silva, B. Alonso, W. Holgado, R. Romero, J. San Roman, E. Conejero Jarque, H. Koop, V. Pervak, H. Crespo, and I. J. Sola, “Strategies for achieving intense single-cycle pulses with in-line post-compression setups,” Opt. Lett. 43, 337 (2018).
    [Crossref] [PubMed]
  9. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537 (1999).
    [Crossref] [PubMed]
  10. O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19, 19142–19149 (2011)
    [Crossref] [PubMed]
  11. J. C. Travers, W. Chang, J. Nold, N.Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. 28, A11–A26 (2011).
    [Crossref]
  12. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
    [Crossref] [PubMed]
  13. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,” Opt. Express 15, 13404–13414 (2007).
    [Crossref] [PubMed]
  14. A. A. Ishaaya, B. Shim, C. J. Hensley, S. E. Schrauth, A. L. Gaeta, and K. W. Koch, “Efficient excitation of polarization vortices in a photonic bandgap fiber with ultrashort laser pulses,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThV3.
  15. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 1617972–17981 (2008).
    [Crossref] [PubMed]
  16. F. Tani, J. C. Travers, and P. St. J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagome photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
    [Crossref]
  17. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983).
    [Crossref] [PubMed]
  18. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153–6159 (2005).
    [Crossref] [PubMed]
  19. E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
    [Crossref] [PubMed]
  20. M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, and K. Nagasaka, “Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: constant gas pressure versus differential gas pressure,” J. Opt. Soc. Am. B 20, 2002–2011 (2003).
    [Crossref]
  21. G.P. Agrawal, Nonlinear Fiber Optics, 3rd. edition (Academic, 2001).

2018 (2)

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

F. Silva, B. Alonso, W. Holgado, R. Romero, J. San Roman, E. Conejero Jarque, H. Koop, V. Pervak, H. Crespo, and I. J. Sola, “Strategies for achieving intense single-cycle pulses with in-line post-compression setups,” Opt. Lett. 43, 337 (2018).
[Crossref] [PubMed]

2014 (1)

2011 (2)

2008 (1)

2007 (2)

2005 (2)

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153–6159 (2005).
[Crossref] [PubMed]

2003 (2)

M. Nurhuda, A. Suda, K. Midorikawa, M. Hatayama, and K. Nagasaka, “Propagation dynamics of femtosecond laser pulses in a hollow fiber filled with argon: constant gas pressure versus differential gas pressure,” J. Opt. Soc. Am. B 20, 2002–2011 (2003).
[Crossref]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

2000 (1)

Ahmed H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537 (1999).
[Crossref] [PubMed]

1997 (1)

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996)
[Crossref]

1983 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

Abdolvand, A.

Agrawal, G.P.

G.P. Agrawal, Nonlinear Fiber Optics, 3rd. edition (Academic, 2001).

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537 (1999).
[Crossref] [PubMed]

Alonso, B.

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

F. Silva, B. Alonso, W. Holgado, R. Romero, J. San Roman, E. Conejero Jarque, H. Koop, V. Pervak, H. Crespo, and I. J. Sola, “Strategies for achieving intense single-cycle pulses with in-line post-compression setups,” Opt. Lett. 43, 337 (2018).
[Crossref] [PubMed]

Baer, C. R. E.

Benabid, F.

Biener, G.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537 (1999).
[Crossref] [PubMed]

Campbell, G. H.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Chang, W.

J. C. Travers, W. Chang, J. Nold, N.Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. 28, A11–A26 (2011).
[Crossref]

Chen, J. S. Y.

Cheng, Y.

Conejero Jarque, E.

F. Silva, B. Alonso, W. Holgado, R. Romero, J. San Roman, E. Conejero Jarque, H. Koop, V. Pervak, H. Crespo, and I. J. Sola, “Strategies for achieving intense single-cycle pulses with in-line post-compression setups,” Opt. Lett. 43, 337 (2018).
[Crossref] [PubMed]

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

Corkum, P.B.

P.B. Corkum and F. Krausz, “Attosecond science,” Nature Physics 3, 381–387 (2007).
[Crossref]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537 (1999).
[Crossref] [PubMed]

Crespo, H.

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

F. Silva, B. Alonso, W. Holgado, R. Romero, J. San Roman, E. Conejero Jarque, H. Koop, V. Pervak, H. Crespo, and I. J. Sola, “Strategies for achieving intense single-cycle pulses with in-line post-compression setups,” Opt. Lett. 43, 337 (2018).
[Crossref] [PubMed]

De Silvestri, S.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996)
[Crossref]

Euser, T. G.

Ferencz, K.

Frank, A.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Gaeta, A. L.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153–6159 (2005).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

A. A. Ishaaya, B. Shim, C. J. Hensley, S. E. Schrauth, A. L. Gaeta, and K. W. Koch, “Efficient excitation of polarization vortices in a photonic bandgap fiber with ultrashort laser pulses,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThV3.

Gallagher, M. T.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153–6159 (2005).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Gonzalez-Galicia, M. A.

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Hasman, E.

Hatayama, M.

Heckl, O. H.

Hensley, C. J.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153–6159 (2005).
[Crossref] [PubMed]

A. A. Ishaaya, B. Shim, C. J. Hensley, S. E. Schrauth, A. L. Gaeta, and K. W. Koch, “Efficient excitation of polarization vortices in a photonic bandgap fiber with ultrashort laser pulses,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThV3.

Holgado, W.

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

F. Silva, B. Alonso, W. Holgado, R. Romero, J. San Roman, E. Conejero Jarque, H. Koop, V. Pervak, H. Crespo, and I. J. Sola, “Strategies for achieving intense single-cycle pulses with in-line post-compression setups,” Opt. Lett. 43, 337 (2018).
[Crossref] [PubMed]

Ishaaya, A. A.

A. A. Ishaaya, B. Shim, C. J. Hensley, S. E. Schrauth, A. L. Gaeta, and K. W. Koch, “Efficient excitation of polarization vortices in a photonic bandgap fiber with ultrashort laser pulses,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThV3.

Joly, N.Y.

J. C. Travers, W. Chang, J. Nold, N.Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. 28, A11–A26 (2011).
[Crossref]

Kaminski, C. F.

Keller, U.

King, W. E.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Kleiner, V.

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537 (1999).
[Crossref] [PubMed]

Koch, K. W.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153–6159 (2005).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

A. A. Ishaaya, B. Shim, C. J. Hensley, S. E. Schrauth, A. L. Gaeta, and K. W. Koch, “Efficient excitation of polarization vortices in a photonic bandgap fiber with ultrashort laser pulses,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThV3.

Koop, H.

Krausz, F.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537 (1999).
[Crossref] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

Midorikawa, K.

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Muller, D.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Nagasaka, K.

Nisoli, M.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996)
[Crossref]

Niv, A.

Nold, J.

J. C. Travers, W. Chang, J. Nold, N.Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. 28, A11–A26 (2011).
[Crossref]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 1617972–17981 (2008).
[Crossref] [PubMed]

Nurhuda, M.

Ouzounov, D. G.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153–6159 (2005).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Pervak, V.

Reed, B.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537 (1999).
[Crossref] [PubMed]

Romero, R.

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

F. Silva, B. Alonso, W. Holgado, R. Romero, J. San Roman, E. Conejero Jarque, H. Koop, V. Pervak, H. Crespo, and I. J. Sola, “Strategies for achieving intense single-cycle pulses with in-line post-compression setups,” Opt. Lett. 43, 337 (2018).
[Crossref] [PubMed]

Russell, P. St. J.

F. Tani, J. C. Travers, and P. St. J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagome photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N.Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. 28, A11–A26 (2011).
[Crossref]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express 1617972–17981 (2008).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537 (1999).
[Crossref] [PubMed]

San Roman, J.

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

F. Silva, B. Alonso, W. Holgado, R. Romero, J. San Roman, E. Conejero Jarque, H. Koop, V. Pervak, H. Crespo, and I. J. Sola, “Strategies for achieving intense single-cycle pulses with in-line post-compression setups,” Opt. Lett. 43, 337 (2018).
[Crossref] [PubMed]

Saraceno, C. J.

Sartania, S.

Scharrer, M.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

Schmerge, J. F.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Schrauth, S. E.

A. A. Ishaaya, B. Shim, C. J. Hensley, S. E. Schrauth, A. L. Gaeta, and K. W. Koch, “Efficient excitation of polarization vortices in a photonic bandgap fiber with ultrashort laser pulses,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThV3.

Shim, B.

A. A. Ishaaya, B. Shim, C. J. Hensley, S. E. Schrauth, A. L. Gaeta, and K. W. Koch, “Efficient excitation of polarization vortices in a photonic bandgap fiber with ultrashort laser pulses,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThV3.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Silva, F.

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

F. Silva, B. Alonso, W. Holgado, R. Romero, J. San Roman, E. Conejero Jarque, H. Koop, V. Pervak, H. Crespo, and I. J. Sola, “Strategies for achieving intense single-cycle pulses with in-line post-compression setups,” Opt. Lett. 43, 337 (2018).
[Crossref] [PubMed]

Siwick, B. J.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Sola, I.

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

Sola, I. J.

Spielmann, C.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Stuart, B. C.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Suda, A.

Südmeyer, T.

Svelto, O.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996)
[Crossref]

Szipöcs, R.

Tani, F.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Tomlinson, W. J.

Travers, J. C.

F. Tani, J. C. Travers, and P. St. J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagome photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N.Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. 28, A11–A26 (2011).
[Crossref]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Venkateraman, N.

Wang, Y. Y.

Weber, P. M.

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

Whyte, G.

Yirmiyahu, Y.

Zewail, Ahmed H.

Ahmed H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[Crossref]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996)
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783 (1964).
[Crossref]

J. Appl. Phys. (1)

W. E. King, G. H. Campbell, A. Frank, B. Reed, J. F. Schmerge, B. J. Siwick, B. C. Stuart, and P. M. Weber, “Ultrafast electron microscopy in materials science, biology, and chemistry,” J. Appl. Phys. 97, 111101 (2005).
[Crossref]

J. Opt. Soc. Am. (1)

J. C. Travers, W. Chang, J. Nold, N.Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. 28, A11–A26 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (1)

Ahmed H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104, 5660–5694 (2000).
[Crossref]

Nature Physics (1)

P.B. Corkum and F. Krausz, “Attosecond science,” Nature Physics 3, 381–387 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980).
[Crossref]

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285, 1537 (1999).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Scientific Reports (1)

E. Conejero Jarque, J. San Roman, F. Silva, R. Romero, W. Holgado, M. A. Gonzalez-Galicia, B. Alonso, I. Sola, and H. Crespo, “Universal route to optimal few- to single-cycle pulse generation in hollow-core fiber compressors,” Scientific Reports 82256 (2018).
[Crossref] [PubMed]

Other (2)

G.P. Agrawal, Nonlinear Fiber Optics, 3rd. edition (Academic, 2001).

A. A. Ishaaya, B. Shim, C. J. Hensley, S. E. Schrauth, A. L. Gaeta, and K. W. Koch, “Efficient excitation of polarization vortices in a photonic bandgap fiber with ultrashort laser pulses,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2008), paper CThV3.

Supplementary Material (1)

NameDescription
» Visualization 1       Spatio-temporal evolution of the when coupling the optimum mode into a hollow-core fiber for three gases. We also show the evolution of the contributions of the first spatial modes during the propagation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 GVD of the four lowest spatial modes of a HCF depending on λ, for Ar at 1 bar, (left) and on pressure (P), at 800 nm, (middle). On the right, we show the wavelength dependence of the throughput energy for a 1 meter long HCF filled with 1 bar of Ar. The HCF has a core radius of 150 μm in all cases. The blue line represents the fundamental mode (m = 1), orange the first mode (m = 2), green the second mode (m = 3) and red the third mode (m = 4).
Fig. 2
Fig. 2 Evolution of the pulse duration in a HCF filled with 1 bar of air (left), Ar (middle) and Ne (right). The HCF is 100 cm (left), 70 cm (middle) and 110 cm (right) long, always with a core radius of 150 μm. The red, green, blue and magenta continuous lines represent the fundamental, second, third and fourth spatial mode. The dashed lines represent the FWHM of the Fourier Limit of the optimum case, identified with the same color code. The input pulse has 35 fs FWHM with 80 μJ (air), 75 μJ (Ar) and 0.7 mJ (Ne) of input energy. See Visualization 1 for the complete spatio-temporal evolution of the optimum case for the three gases and the role of the most relevant high-order modes in the propagation.
Fig. 3
Fig. 3 Temporal (left) and spectral (right) intensity structure of the output pulse obtained from a HCF filled with air (blue), argon (red) and neon (yellow) under optimal self-compression conditions shown in Fig. 2. The temporal intensity distribution for air and argon have been up-shifted and amplified for comparison purposes. The spectra are accompanied by the spectral phase for each case to have an idea of the compression quality.
Fig. 4
Fig. 4 Far field distribution of the output beam obtained when propagating the fundamental (left) and third spatial mode (middle) in Ar, or the second spatial mode (right) in Ne. The parameters for each case are the same as in Fig. 2. The insets represent the spatial intensity distribution (near field) at the end of the HCF for each case, showing little spatial dynamics.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β m ( ω ) = n ( ω ) ω c ( 1 + ( u m c r F n ( ω ) ω ) 2 ) , m = 1 , 2 ,
α m ( ω ) = ( u m 2 π ) 2 ( 2 π c n ( ω ) ω ) 2 1 r F 3 ν 2 + 1 ν 2 1 ; ν = n cl ( ω ) n ( ω ) ,

Metrics