Abstract

We propose and demonstrate the integration of 850 nm GaAs-based metal-semiconductor-metal (MSM) photodetectors (PDs) based on transfer printing for application in photonic interposers. Both devices that directly interface with a multimode optical fiber (with device dimensions of 70 μm × 70 μm) as well as devices that interface with a SiN waveguide layer through a grating coupler (with device dimensions of 30 μm × 30 μm) are demonstrated. The dark currents are measured to be 22 nA and 7.2 nA at 2 V bias for the larger and smaller PDs respectively. For 850 nm wavelength, the external responsivities are measured to be 0.117 A/W and 0.1 A/W at 2 V bias. 20 GHz bandwidth is measured. Open 40 Gb/s eye diagrams are realized.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices

J. O’Callaghan, R. Loi, E. E. Mura, B. Roycroft, A. J. Trindade, K. Thomas, A. Gocalinska, E. Pelucchi, J. Zhang, G. Roelkens, C. A. Bower, and B. Corbett
Opt. Mater. Express 7(12) 4408-4414 (2017)

Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser

Jing Zhang, Bahawal Haq, James O’Callaghan, Angieska Gocalinska, Emanuele Pelucchi, António José Trindade, Brian Corbett, Geert Morthier, and Gunther Roelkens
Opt. Express 26(7) 8821-8830 (2018)

High-alignment-accuracy transfer printing of passive silicon waveguide structures

Nan Ye, Grigorij Muliuk, Antonio Jose Trindade, Chris Bower, Jing Zhang, Sarah Uvin, Dries Van Thourhout, and Gunther Roelkens
Opt. Express 26(2) 2023-2032 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Alduino and M. Paniccia, “Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
    [Crossref]
  2. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
    [Crossref] [PubMed]
  3. A Narasimha, S. Abdaila, C. Bradbury, A. Clark, J. Clymore, J. Coyne, A. Dahl, S. Gloeckner, A. Gruenberg, D. Guckenberger, S. Gutierrez, M. Harrison, D. Kucharski, K. Leap, R. LeBlanc, V. Liang, M. Mack, D. Martinez, G. Masini, A. Mekis, R. Menigoz, C. Ogden, M. Peterson, T. Pinguet, J. Redman, J. Rodriguez, S. Sahni, M. Sharp, T. J. Sleboda, D. Song, V. Wang, B. Welch, J. Witzens, W. Xu, K. Vokoyama and P. D. DobbeIaere “An ultra low power CMOS photonics technology platform for H/S optoelectronic transceivers at less than $1 per Gbps,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2010), paper OMV4.
  4. N. Ophir, K. Padmaraju, A. Biberman, L. Chen, K. Preston, M. Lipson, and K. Bergman, “First demonstration of error-free operation of a full silicon on-chip photonic link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2011), paper OWZ3.
    [Crossref]
  5. P. Dong, Y. K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100Gb/s Silicon Photonic Network-on-Chip,” J. Opt. Commun. Netw. 7(1), A37–A43 (2015).
    [Crossref]
  6. Y. Urino, T. Usuki, J. Fujikata, M. Ishizaka, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa, “High-density and wide-bandwidth optical interconnects with silicon optical interposers,” Photon. Res. 2(3), A1–A7 (2014).
    [Crossref]
  7. A. Hayakawa, M. Kibune, A. Toda, S. Tanaka, T. Simoyama, Y. Chen, T. Akiyama, S. Okumura, T. Baba, T. Akahoshi, S. Ueno, M. Kazunori, M. Imai, J. H. Jiang, P. Thachile, T. Riad, S. Sekiguchi, S. Akiyama, Y. Tanaka, K. Morito, D. Mizutani, T. Mori, T. Yamamoto, and H. Ebe, “A 25 Gbps silicon photonic transmitter and receiver with a bridge structure for CPU interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th1G.2.
    [Crossref]
  8. G. Chen, Y. Yu, and X. Zhang, “Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection,” Opt. Lett. 41(15), 3543–3546 (2016).
    [Crossref] [PubMed]
  9. D. Liang, G. Roelkens, R. Baets, and J. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(12), 1782–1802 (2010).
    [Crossref]
  10. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  11. X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-Power and High-Speed Heterogeneously Integrated Waveguide-Coupled Photodiodes on Silicon-on-Insulator,” J. Lightwave Technol. 34(1), 73–78 (2016).
    [Crossref]
  12. C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8× 8× 40 Gbps fully integrated silicon photonic network on chip,” Optica 3(7), 785–786 (2016).
    [Crossref]
  13. S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm,” Laser Photonics Rev. 12(2), 1700206 (2018).
    [Crossref]
  14. G. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, “Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits,” Opt. Express 13(25), 10102–10108 (2005).
    [Crossref] [PubMed]
  15. E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
    [Crossref]
  16. A. De Groote, P. Cardile, A. Z. Subramanian, A. M. Fecioru, C. Bower, D. Delbeke, R. Baets, and G. Roelkens, “Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express 24(13), 13754–13762 (2016).
    [Crossref] [PubMed]
  17. B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
    [Crossref]
  18. G. Muliuk, N. Ye, J. Zhang, A. Abbasi, A. Trindade, C. Bower, D. Van Thourhout, and G. Roelkens, “Transfer Print Integration of 40Gbps Germanium Photodiodes onto Silicon Photonic ICs,” in 43th European Conference on Optical Communication (ECOC 2017) (2017), paper Th.PDP.C.4.
  19. B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” J. Lightwave Technol. 22(9), 2128–2134 (2004).
    [Crossref]
  20. M. Currie, F. Quaranta, A. Cola, E. M. Gallo, and B. Nabet, “Low-temperature grown GaAs heterojunction metal-semiconductor-metal photodetectors improve speed and efficiency,” Appl. Phys. Lett. 99(20), 203502 (2011).
    [Crossref]
  21. J. Brouckaert, “Integration of photodetectors on silicon photonic integrated circuits (PICs) for spectroscopic applications,” Ph.D. dissertation, Dept. Inform. Technol., Ghent Univ., Ghent, Belgium, Oct. 2010.
  22. J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27(3), 737–752 (1991).
    [Crossref]
  23. G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
    [Crossref]

2018 (1)

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm,” Laser Photonics Rev. 12(2), 1700206 (2018).
[Crossref]

2017 (1)

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

2016 (4)

2015 (2)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

P. Dong, Y. K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100Gb/s Silicon Photonic Network-on-Chip,” J. Opt. Commun. Netw. 7(1), A37–A43 (2015).
[Crossref]

2014 (1)

2013 (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

2011 (1)

M. Currie, F. Quaranta, A. Cola, E. M. Gallo, and B. Nabet, “Low-temperature grown GaAs heterojunction metal-semiconductor-metal photodetectors improve speed and efficiency,” Appl. Phys. Lett. 99(20), 203502 (2011).
[Crossref]

2010 (1)

D. Liang, G. Roelkens, R. Baets, and J. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(12), 1782–1802 (2010).
[Crossref]

2007 (1)

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

2005 (1)

2004 (2)

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” J. Lightwave Technol. 22(9), 2128–2134 (2004).
[Crossref]

1996 (1)

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

1991 (1)

J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27(3), 737–752 (1991).
[Crossref]

Alduino, A.

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Arakawa, Y.

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Baets, R.

Barrette, J. P.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Beling, A.

Bogaerts, W.

Bower, C.

Bowers, J.

D. Liang, G. Roelkens, R. Baets, and J. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(12), 1782–1802 (2010).
[Crossref]

Bowers, J. E.

C. Zhang, S. Zhang, J. D. Peters, and J. E. Bowers, “8× 8× 40 Gbps fully integrated silicon photonic network on chip,” Optica 3(7), 785–786 (2016).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Bozada Christopher, A.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Brouckaert, J.

Buhl, L. L.

Campbell, J. C.

Cardile, P.

Cerny, C. L. A.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Chen, G.

Chen, Y.

Chen, Y. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Chen, Y. K.

Cho, H. S.

Cola, A.

M. Currie, F. Quaranta, A. Cola, E. M. Gallo, and B. Nabet, “Low-temperature grown GaAs heterojunction metal-semiconductor-metal photodetectors improve speed and efficiency,” Appl. Phys. Lett. 99(20), 203502 (2011).
[Crossref]

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Corbett, B.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Currie, M.

M. Currie, F. Quaranta, A. Cola, E. M. Gallo, and B. Nabet, “Low-temperature grown GaAs heterojunction metal-semiconductor-metal photodetectors improve speed and efficiency,” Appl. Phys. Lett. 99(20), 203502 (2011).
[Crossref]

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

De Groote, A.

Delbeke, D.

DeSalvo, G. C.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Dettmer, R. W.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Dong, P.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Dumon, P.

Ebel, J. L.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Fecioru, A. M.

Fish, G.

Fujikata, J.

Gallo, E. M.

M. Currie, F. Quaranta, A. Cola, E. M. Gallo, and B. Nabet, “Low-temperature grown GaAs heterojunction metal-semiconductor-metal photodetectors improve speed and efficiency,” Appl. Phys. Lett. 99(20), 203502 (2011).
[Crossref]

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Gillespie, J. K.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Gu, T.

Gustavsson, J.

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm,” Laser Photonics Rev. 12(2), 1700206 (2018).
[Crossref]

Ha, S. W.

Haglund, E. P.

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm,” Laser Photonics Rev. 12(2), 1700206 (2018).
[Crossref]

Havasy, C. K.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Horikawa, T.

Ishizaka, M.

Jacob-Mitos, M.

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jenkins, T. J.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Kang, S.

Khang, D.-Y.

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Kumari, S.

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm,” Laser Photonics Rev. 12(2), 1700206 (2018).
[Crossref]

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Larsson, A.

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm,” Laser Photonics Rev. 12(2), 1700206 (2018).
[Crossref]

Lee, K. J.

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Liang, D.

D. Liang, G. Roelkens, R. Baets, and J. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(12), 1782–1802 (2010).
[Crossref]

Lin, S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Liu, D.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Loi, R.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Look, D. C.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Ma, Z.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Menard, E.

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Nabet, B.

M. Currie, F. Quaranta, A. Cola, E. M. Gallo, and B. Nabet, “Low-temperature grown GaAs heterojunction metal-semiconductor-metal photodetectors improve speed and efficiency,” Appl. Phys. Lett. 99(20), 203502 (2011).
[Crossref]

Nakamura, T.

Nakano, K.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Neilson, D. T.

Norberg, E.

Nötzel, R.

Nuzzo, R. G.

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Paniccia, M.

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Park, H. H.

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Peters, J. D.

Pettiford, C. I.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Quach, T. K.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Quaranta, F.

M. Currie, F. Quaranta, A. Cola, E. M. Gallo, and B. Nabet, “Low-temperature grown GaAs heterojunction metal-semiconductor-metal photodetectors improve speed and efficiency,” Appl. Phys. Lett. 99(20), 203502 (2011).
[Crossref]

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Ramaswamy, A.

Rhee, B. H.

Rho, B. S.

Roelkens, G.

Rogers, J. A.

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

Schumacher, H.

J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27(3), 737–752 (1991).
[Crossref]

Sewell, J. S.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Sinsky, J. H.

Smit, M.

Soole, J. B. D.

J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27(3), 737–752 (1991).
[Crossref]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Subramanian, A. Z.

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Taillaert, D.

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Urino, Y.

Usuki, T.

Van Thourhout, D.

Via, G. D.

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Xie, X.

Yamada, K.

Yang, Z.

Yu, Y.

Zhang, C.

Zhang, S.

Zhang, X.

Zhou, Q.

Zhou, W.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Appl. Phys. Lett. (2)

E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, “A printable form of silicon for high performance thin film transistors on plastic substrates,” Appl. Phys. Lett. 84(26), 5398–5400 (2004).
[Crossref]

M. Currie, F. Quaranta, A. Cola, E. M. Gallo, and B. Nabet, “Low-temperature grown GaAs heterojunction metal-semiconductor-metal photodetectors improve speed and efficiency,” Appl. Phys. Lett. 99(20), 203502 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

J. B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photodetectors for long wavelength optical communications,” IEEE J. Quantum Electron. 27(3), 737–752 (1991).
[Crossref]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

J. Electrochem. Soc. (1)

G. C. DeSalvo, A. Bozada Christopher, J. L. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Pettiford, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet chemical digital etching of GaAs at room temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Laser Photonics Rev. (1)

S. Kumari, E. P. Haglund, J. Gustavsson, A. Larsson, G. Roelkens, and R. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm,” Laser Photonics Rev. 12(2), 1700206 (2018).
[Crossref]

Materials (Basel) (1)

D. Liang, G. Roelkens, R. Baets, and J. Bowers, “Hybrid integrated platforms for silicon photonics,” Materials (Basel) 3(12), 1782–1802 (2010).
[Crossref]

Nat. Photonics (1)

A. Alduino and M. Paniccia, “Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Nature (1)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528(7583), 534–538 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Photon. Res. (1)

Prog. Quantum Electron. (1)

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron. 52, 1–17 (2017).
[Crossref]

Other (5)

G. Muliuk, N. Ye, J. Zhang, A. Abbasi, A. Trindade, C. Bower, D. Van Thourhout, and G. Roelkens, “Transfer Print Integration of 40Gbps Germanium Photodiodes onto Silicon Photonic ICs,” in 43th European Conference on Optical Communication (ECOC 2017) (2017), paper Th.PDP.C.4.

A. Hayakawa, M. Kibune, A. Toda, S. Tanaka, T. Simoyama, Y. Chen, T. Akiyama, S. Okumura, T. Baba, T. Akahoshi, S. Ueno, M. Kazunori, M. Imai, J. H. Jiang, P. Thachile, T. Riad, S. Sekiguchi, S. Akiyama, Y. Tanaka, K. Morito, D. Mizutani, T. Mori, T. Yamamoto, and H. Ebe, “A 25 Gbps silicon photonic transmitter and receiver with a bridge structure for CPU interconnects,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th1G.2.
[Crossref]

A Narasimha, S. Abdaila, C. Bradbury, A. Clark, J. Clymore, J. Coyne, A. Dahl, S. Gloeckner, A. Gruenberg, D. Guckenberger, S. Gutierrez, M. Harrison, D. Kucharski, K. Leap, R. LeBlanc, V. Liang, M. Mack, D. Martinez, G. Masini, A. Mekis, R. Menigoz, C. Ogden, M. Peterson, T. Pinguet, J. Redman, J. Rodriguez, S. Sahni, M. Sharp, T. J. Sleboda, D. Song, V. Wang, B. Welch, J. Witzens, W. Xu, K. Vokoyama and P. D. DobbeIaere “An ultra low power CMOS photonics technology platform for H/S optoelectronic transceivers at less than $1 per Gbps,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2010), paper OMV4.

N. Ophir, K. Padmaraju, A. Biberman, L. Chen, K. Preston, M. Lipson, and K. Bergman, “First demonstration of error-free operation of a full silicon on-chip photonic link,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2011), paper OWZ3.
[Crossref]

J. Brouckaert, “Integration of photodetectors on silicon photonic integrated circuits (PICs) for spectroscopic applications,” Ph.D. dissertation, Dept. Inform. Technol., Ghent Univ., Ghent, Belgium, Oct. 2010.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic structure of the chip-scale optical interconnection based on transfer printed PDs and VCSELs (EIC: electronic integrated circuit; C4: C4 solder balls; MMF: multimode fiber; black line: electrical path; red line: optical path).
Fig. 2
Fig. 2 (a) The schematic structure of the MSM PD. f s : finger spacing; f w : finger width; L: length; A: the total area of the active PD region; t: thickness. The MSM PDs (b) interfacing to multimode fiber and (c) a SiN waveguide.
Fig. 3
Fig. 3 The simulated (a) capacitance and (b) bandwidth as a function of finger spacing for three different finger widths for the smaller and larger MSM PDs.
Fig. 4
Fig. 4 Process flow for realizing and transfer printing MSM PDs. (a) GaAs epi stack; (b) removing the sacrificial layers; (c) metal fingers deposition; (d) patterning of mesa; (e) patterning of the release layer; (f) top view of the coupon after tether definition; (g) release etch of the devices; (h) device pick-up; (i) printing onto the target substrate; (j) removing the photoresist encapsulation; (k) patterning the DVS-BCB and deposition of the probe pads.
Fig. 5
Fig. 5 Microscope images of the transfer printed (a) larger normal incidence PD with butterfly alignment markers in between the probe pads and (b) waveguide-coupled MSM PDs.
Fig. 6
Fig. 6 The measured dark currents for (a) larger normal incidence and (b) small waveguide-coupled MSM PDs; the measured responsivity for (c) larger normal incidence and (d) small waveguide-coupled MSM PDs.
Fig. 7
Fig. 7 (a) Small signal measurement setup. VCSEL: vertical cavity surface emitting laser; DUT: device under test; VNA: vector network analyzer. (b) The measured normalized S21 curve of the MSM PD (para-1) under 2 V bias.
Fig. 8
Fig. 8 (a) Setup of the large signal measurement. AWG: arbitrary waveform generator; PC: computer; RF amp: radio frequency amplifier; DSA: digital signal analyzer. (b) The measured (b) eye diagrams and (c) BER for different bit rates under 2V bias.

Tables (1)

Tables Icon

Table 1 Combination of f s and f w values used in the experiments

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C= K(k) K(k') ε 0 (1+ ε r ) A f s + f w = K(k) K(k') ε 0 (1+ ε r )(N1)L
K(k)= 0 π/2 1 (1 k 2 sin 2 φ) dφ
k= tan 2 [ π f w 4( f s + f w ) ]
k'= 1 k 2

Metrics