Abstract

Ultra-broadband strong absorption over 92% covering the infrared wavelength range of 1~6μm is demonstrated by using the tapered hyperbolic Au-SiO2 multilayer waveguides on glass substrates. Such broadband absorption is formed by the stop-light modes at various wavelengths located at different waveguide widths. A planar hyperbolic waveguide model is built to determine the stop-light modes by considering both forward and backward guided modes. The stop-light modes located inside the Au-SiO2 multilayer waveguide are simulated at the absorption peaks by reducing the Au loss. Tapered multilayer waveguides with varying top widths are further simulated, fabricated and measured, indicating the almost linear relation between the waveguide width and the stop-light wavelength. Moreover, the broadband absorption of tapered waveguide is proved to be angle-insensitive and polarization-independent, and the heat generation and temperature increase are also discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband infrared absorbers with stacked double chromium ring resonators

Huixu Deng, Liliana Stan, David A. Czaplewski, Jie Gao, and Xiaodong Yang
Opt. Express 25(23) 28295-28304 (2017)

Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators

Zhigang Li, Liliana Stan, David A. Czaplewski, Xiaodong Yang, and Jie Gao
Opt. Express 26(5) 5616-5631 (2018)

Suspended LRSPP for the development of highly integrated active plasmonic devices

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, F. Arteaga-Sierra, M. Torres-Cisneros, P. L. Likamwa, and J. J. Sánchez-Mondragón
Opt. Express 27(6) 8858-8870 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
    [PubMed]
  3. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [Crossref] [PubMed]
  4. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  5. H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 035102 (2014).
    [Crossref]
  6. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  7. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  8. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  9. H. Deng, L. Stan, D. A. Czaplewski, J. Gao, and X. Yang, “Broadband infrared absorbers with stacked double chromium ring resonators,” Opt. Express 25(23), 28295–28304 (2017).
    [Crossref]
  10. W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate,” Opt. Lett. 39(2), 331–334 (2014).
    [Crossref] [PubMed]
  11. J. W. Dong, G. Q. Liang, Y. H. Chen, and H. Z. Wang, “Robust absorption broadband in one-dimensional metallic-dielectric quasi-periodic structure,” Opt. Express 14(5), 2014–2020 (2006).
    [Crossref] [PubMed]
  12. N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(1), 3203 (2013).
    [Crossref] [PubMed]
  13. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
    [Crossref] [PubMed]
  14. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  15. F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
    [Crossref]
  16. D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
    [Crossref] [PubMed]
  17. H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
    [Crossref] [PubMed]
  18. J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
    [Crossref]
  19. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett. 36(13), 2530–2532 (2011).
    [Crossref] [PubMed]
  20. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
    [Crossref]
  21. G. Xu, T. Pan, T. Zang, and J. Sun, “Characteristics of guided waves in indefinite-medium waveguides,” Opt. Commun. 281(10), 2819–2825 (2008).
    [Crossref]

2017 (1)

2015 (1)

2014 (6)

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate,” Opt. Lett. 39(2), 331–334 (2014).
[Crossref] [PubMed]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 035102 (2014).
[Crossref]

2013 (3)

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref] [PubMed]

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(1), 3203 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

2011 (3)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Opt. Lett. 36(13), 2530–2532 (2011).
[Crossref] [PubMed]

2009 (2)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
[Crossref] [PubMed]

2008 (1)

G. Xu, T. Pan, T. Zang, and J. Sun, “Characteristics of guided waves in indefinite-medium waveguides,” Opt. Commun. 281(10), 2819–2825 (2008).
[Crossref]

2006 (1)

Agrawal, M.

Aközbek, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(1), 3203 (2013).
[Crossref] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Bloemer, M. J.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(1), 3203 (2013).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Campione, S.

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Capolino, F.

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Chen, L.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Chen, Y. H.

Cheng, H.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate,” Opt. Lett. 39(2), 331–334 (2014).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Czaplewski, D.

Czaplewski, D. A.

D’Aguanno, G.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(1), 3203 (2013).
[Crossref] [PubMed]

Deng, H.

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Dong, J. W.

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gan, Q.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref] [PubMed]

Gao, J.

Guclu, C.

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

Guo, L. J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Hao, Y.

He, S.

W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate,” Opt. Lett. 39(2), 331–334 (2014).
[Crossref] [PubMed]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate,” Opt. Lett. 39(2), 331–334 (2014).
[Crossref] [PubMed]

Hu, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref] [PubMed]

Ji, D.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref] [PubMed]

Ji, T.

Jin, Y.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Kaplan, A. F.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Kidwai, O.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Li, B.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Li, Z.

Liang, G. Q.

Lin, Y.

W. Wang, Y. Cui, Y. He, Y. Hao, Y. Lin, X. Tian, T. Ji, and S. He, “Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate,” Opt. Lett. 39(2), 331–334 (2014).
[Crossref] [PubMed]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Liu, K.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Mattiucci, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(1), 3203 (2013).
[Crossref] [PubMed]

Mo, L.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Pan, T.

G. Xu, T. Pan, T. Zang, and J. Sun, “Characteristics of guided waves in indefinite-medium waveguides,” Opt. Commun. 281(10), 2819–2825 (2008).
[Crossref]

Peumans, P.

Pincon, O.

Rosenmann, D.

Sergeant, N. P.

Sipe, J. E.

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Song, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

Stan, L.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sun, J.

G. Xu, T. Pan, T. Zang, and J. Sun, “Characteristics of guided waves in indefinite-medium waveguides,” Opt. Commun. 281(10), 2819–2825 (2008).
[Crossref]

Tian, X.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Wang, H.

Wang, H. Z.

Wang, L.

Wang, T.

H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 035102 (2014).
[Crossref]

Wang, W.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Xu, G.

G. Xu, T. Pan, T. Zang, and J. Sun, “Characteristics of guided waves in indefinite-medium waveguides,” Opt. Commun. 281(10), 2819–2825 (2008).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, X.

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zang, T.

G. Xu, T. Pan, T. Zang, and J. Sun, “Characteristics of guided waves in indefinite-medium waveguides,” Opt. Commun. 281(10), 2819–2825 (2008).
[Crossref]

Zeng, X.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref] [PubMed]

Zhang, N.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zhou, J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Zhukovsky, S. V.

ACS Photonics (1)

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

J. Opt. (1)

H. Deng, T. Wang, J. Gao, and X. Yang, “Metamaterial thermal emitters based on nanowire cavities for high-efficiency thermophotovoltaics,” J. Opt. 16(3), 035102 (2014).
[Crossref]

Laser Photonics Rev. (2)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Xu, T. Pan, T. Zang, and J. Sun, “Characteristics of guided waves in indefinite-medium waveguides,” Opt. Commun. 281(10), 2819–2825 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (2)

C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface,” Phys. Rev. B 86(20), 205130 (2012).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sci. Rep. (3)

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3(1), 3203 (2013).
[Crossref] [PubMed]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4(1), 4498 (2014).
[Crossref] [PubMed]

H. Hu, D. Ji, X. Zeng, K. Liu, and Q. Gan, “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” Sci. Rep. 3(1), 1249 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the tapered multilayer waveguide consisting of 13 pairs of Au-SiO2 layers. (b) SEM image of the fabricated tapered waveguide with P=1500 nm and W t =250 nm . (c) Measured (solid curves) and simulated (dashed curves) spectra of absorption A (in blue), reflection R (in red) and transmission T (in cyan)under normal incidence.
Fig. 2
Fig. 2 (a) Schematic of the 2D waveguide model where the core represents the hyperbolic waveguide based on the Au-SiO2 multilayer and the claddings represent the air. (b) Effective permittivity of the Au-SiO2 multilayer in x direction ε x (in blue) and z direction ε z (in red).
Fig. 3
Fig. 3 (a) and (b) The effective index ( n eff = n eff ' +i n eff '' ) of the forward (in blue) and backward (in red) guided modes at λ=1, 3,  and  5 μm, respectively. The green region shows the stop-light mode at λ=5 μm where the forward and backward guided modes merge at the same waveguide width W1340nm . (c) Relation between the stop-light wavelength and the corresponding waveguide width based on theory (in magenta), simulation (in blue) and experiment (in red), respectively.
Fig. 4
Fig. 4 (a) Simulated spectra of absorption A (in blue), reflection R (in red) and transmission T (in cyan) for the tapered multilayer waveguide with P=1500 nm, W t =250 nm and Au loss of γ=3 γ 0 (solid curves) and γ= γ 0 (dashed curves), respectively. (b) Magnetic field | H | distributions of the stop-light modes in the y-z plane for the tapered multilayer waveguide with γ=3 γ 0 at the absorption peaks.
Fig. 5
Fig. 5 (a)-(f) The SEM images of the fabricated tapered multilayer waveguides with P=1500 nm and W t =250, 400, 550, 750, 900 and 1050 nm, respectively. Scale bar: 1  μm .
Fig. 6
Fig. 6 (a)-(f) Measured (solid curves) and simulated (dashed curves) spectra of absorption A (in blue), reflection R (in red) and transmission T (in cyan) for the tapered multilayer waveguides with P=1500 nm and W t =250, 400, 550, 750, 900 and 1050 nm, respectively.
Fig. 7
Fig. 7 (a), (b) Configurations of TE polarization and TM polarization, respectively. (c), (d) Simulated absorption spectra of the tapered multilayer waveguide with P=1500 nm and W t =250 nm under oblique incidence for TE polarization and TM polarization, respectively.
Fig. 8
Fig. 8 Simulated heat generation density q distribution in the x-z plane for the tapered multilayer waveguide with P=1500 nm, W t =250 nm and γ=3 γ 0 at each stop-light wavelength.
Fig. 9
Fig. 9 Simulated temperature T distribution in the x-z plane for the tapered multilayer waveguide with P=1500 nm, W t =250 nm and γ=3 γ 0 at each stop-light wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ 1 W=± ε 1 ε z αW ( tan αW 2 ) ±1
( κ 1 W ) 2 + ε x ε z ( αW ) 2 = κ 0 2 W 2 ( ε x ε 1 )

Metrics