Abstract

We demonstrate a compact high-resolution spectrometer scheme using two plane gratings. In this approach, the rays are first diffracted by a fixed grating, then incident on a rotating grating at the Littrow diffraction angle, and are finally diffracted and reflected back to the fixed grating again. Thus, triple dispersion (TD) occurs during measurement, increasing the resolution. The formulae of this compact high-resolution spectrometer are rigorously derived. A design simulation with two gratings of 1050 lines/mm is performed and discussed. In addition, a prototype of this spectrometer has been built and tested. Its spectral resolution reaches a precision of 36 pm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact broadband high-resolution infrared spectrometer with a dihedral reflector

Yajun Pang, Yinxin Zhang, Huaidong Yang, Zhanhua Huang, and Guofan Jin
Opt. Express 25(13) 14960-14967 (2017)

Compact high-resolution Littrow conical diffraction spectrometer

Qinghua Yang
Appl. Opt. 55(18) 4801-4807 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
    [Crossref]
  2. E. Ye, A. H. Atabaki, N. Han, and R. J. Ram, “Miniature, sub-nanometer resolution Talbot spectrometer,” Opt. Lett. 41(11), 2434–2437 (2016).
    [Crossref] [PubMed]
  3. W. Neumann, Fundamentals of Dispersive Optical Spectroscopy Systems (SPIE, 2014), Chap. 2.
  4. L. Xu, K. Chen, Q. He, and G. Jin, “Design of free form mirrors in Czerny-Turner spectrometers to suppress astigmatism,” Appl. Opt. 48(15), 2871–2879 (2009).
    [Crossref] [PubMed]
  5. E. S. Lee, “Spectral resolution enhancement without increasing the number of grooves in grating-based spectrometers,” Opt. Lett. 36(24), 4803–4805 (2011).
    [Crossref] [PubMed]
  6. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007).
    [Crossref] [PubMed]
  7. Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
    [Crossref]
  8. J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” J. Lightwave Technol. 24(11), 4162–4171 (2006).
    [Crossref]
  9. M. Lindrum and B. Nickel, “Wavelength calibration of optical multichannel detectors in combination with single- and double-grating monochromators,” Appl. Spectrosc. 43(8), 1427–1431 (1989).
    [Crossref]
  10. S. B. Utter, J. R. C. López-Urrutia, P. Beiersdorfer, and E. Träbert, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
    [Crossref]
  11. T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
    [Crossref]
  12. ZEMAX Development Corporation, Zemax Optical Design Program User’s Guide, June (2009).

2016 (1)

2013 (1)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

2011 (1)

2010 (1)

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

2009 (1)

2007 (1)

2006 (1)

2005 (1)

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

2002 (1)

S. B. Utter, J. R. C. López-Urrutia, P. Beiersdorfer, and E. Träbert, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
[Crossref]

1989 (1)

Atabaki, A. H.

Beiersdorfer, P.

S. B. Utter, J. R. C. López-Urrutia, P. Beiersdorfer, and E. Träbert, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
[Crossref]

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Chen, J. K.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Chen, K.

Chen, L. Y.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Chen, Y. R.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Choi, H. Y.

Chung, Y. C.

Emadi, A.

Grabarnik, S.

Han, N.

Han, T.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

He, Q.

Jin, G.

Kong, Y. F.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Lee, E. S.

Lee, J. H.

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Lindrum, M.

Loktev, M.

López-Urrutia, J. R. C.

S. B. Utter, J. R. C. López-Urrutia, P. Beiersdorfer, and E. Träbert, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
[Crossref]

Miao, J.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Nickel, B.

Pan, Z.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Qiu, J. H.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Ram, R. J.

Redding, B.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Shin, S. K.

Sokolova, E.

Sun, B.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Träbert, E.

S. B. Utter, J. R. C. López-Urrutia, P. Beiersdorfer, and E. Träbert, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
[Crossref]

Utter, S. B.

S. B. Utter, J. R. C. López-Urrutia, P. Beiersdorfer, and E. Träbert, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
[Crossref]

Vdovin, G.

Willner, A. E.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Wolffenbuttel, R.

Wu, Y. H.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Xu, C. H.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Xu, L.

Ye, E.

Yu, C.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Zheng, Y. X.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Zhou, P.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Spectrosc. (1)

J. Lightwave Technol. (1)

Nat. Photonics (1)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7(9), 746–751 (2013).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (1)

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[Crossref]

Opt. Lett. (2)

Rev. Sci. Instrum. (2)

S. B. Utter, J. R. C. López-Urrutia, P. Beiersdorfer, and E. Träbert, “Design and implementation of a high-resolution, high-efficiency optical spectrometer,” Rev. Sci. Instrum. 73(11), 3737–3741 (2002).
[Crossref]

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multigrating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[Crossref]

Other (2)

ZEMAX Development Corporation, Zemax Optical Design Program User’s Guide, June (2009).

W. Neumann, Fundamentals of Dispersive Optical Spectroscopy Systems (SPIE, 2014), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 TD spectrometer system.
Fig. 2
Fig. 2 Diffraction light paths in TD spectrometer: Red line: λ 0 ; Green line: λ 0 + Δ λ .
Fig. 3
Fig. 3 Wavelength scanning principle.
Fig. 4
Fig. 4 Two-wavelength light path.
Fig. 5
Fig. 5 Layout of the designed TD spectrometer.
Fig. 6
Fig. 6 Spot diagram of the TD spectrometer (RMS radius of the spot at 1550 nm is 0.15 μm).
Fig. 7
Fig. 7 TD spectrometer simulation results compared with theoretical calculation results of Eq. (8).
Fig. 8
Fig. 8 Single-pass spectrometer simulation results compared with theoretical calculation results of Eq. (4).
Fig. 9
Fig. 9 Relationship between the rotation angle of the rotating grating and wavelength: R2, the coefficient of determination; RMSE, the root-mean-square error.
Fig. 10
Fig. 10 The prototype of the TD spectrometer.
Fig. 11
Fig. 11 Absolute efficiency curve of the plane grating.
Fig. 12
Fig. 12 The laser spectrum as measured using the prototype TD spectrometer.

Tables (1)

Tables Icon

Table 1 Simulation Parameters

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d ( sin α + sin β ) = m λ ,
d ( sin α 1 + sin β 1 ) = m λ 0 ,
d [ sin α 1 + sin ( β 1 + Δ β 1 ) ] = m ( λ 0 + Δ λ ) ,
Δ β 1 Δ λ = m d cos β 1 .
d ( sin α 2 + sin α 2 ) = m λ 0 ,
d [ sin ( α 2 Δ β 1 ) + sin ( α 2 + Δ β 2 ) ] = m ( λ 0 + Δ λ ) ,
d [ sin ( β 1 Δ β 2 ) + sin ( α 1 + Δ β 3 ) ] = m ( λ 0 + Δ λ ) ,
Δ β 3 Δ λ = 2 m d cos α 1 + m cos β 1 d cos α 2 cos α 1 .
[ β 1 ( λ 2 ) β 1 ( λ 1 ) ] + [ 90 ° α 2 ( λ 1 ) ] + [ 90 ° + α 2 ( λ 2 ) ] + [ 180 ° θ ] = 360 ° .
θ = β 1 ( λ 2 ) + α 2 ( λ 2 ) β 1 ( λ 1 ) α 2 ( λ 1 ) .
β 1 ( λ 1 ) + α 2 ( λ ) 1 = β 1 ( λ 2 ) + α 2 ( λ 2 ) .
f ( λ ) = β 1 ( λ ) + α 2 ( λ ) = arc sin [ m λ / d sin ( α 1 ) ] + arc sin [ m λ / 2 d ] .
R i n s t r u m e n t = D R l i n e a r ,

Metrics