Abstract

An experimental system to observe the inner phenomenon of keyhole and molten pool through glass plate by high speed camera and spectrometer in high power density laser welding was set up. Two circular flows in the molten pool were observed by high speed camera, which transferred the mass from the front to the rear of the keyhole to keep the mass balance. Temperature distribution in the molten pool was firstly detected by spectrometer, which indicated that the circular flows acted as the cooling system to take heat away from the keyhole. The porosity formation process was also observed and the mechanism was discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser

Mingjun Zhang, Genyu Chen, Yu Zhou, and Shichun Li
Opt. Express 21(17) 19997-20004 (2013)

Status analysis of keyhole bottom in laser-MAG hybrid welding process

Lin Wang, Xiangdong Gao, and Ziqin Chen
Opt. Express 26(1) 347-355 (2018)

Ultra high power (100  kW) fiber laser welding of steel

Yousuke Kawahito, Hongze Wang, Seiji Katayama, and Daichi Sumimori
Opt. Lett. 43(19) 4667-4670 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. A. David and T. Debroy, “Current issues and problems in welding science,” Science 257(5069), 497–502 (1992).
    [Crossref] [PubMed]
  2. M. Sieben and F. Brunnecker, “Welding: Welding plastic with lasers,” Nat. Photonics 3(5), 270–272 (2009).
    [Crossref]
  3. C. Ma, L. Chen, C. Cao, and X. Li, “Nanoparticle-induced unusual melting and solidification behaviours of metals,” Nat. Commun. 8, 14178 (2017).
    [Crossref] [PubMed]
  4. H. Wei, J. Elmer, and T. DebRoy, “Crystal growth during keyhole mode laser welding,” Acta Mater. 133, 10–20 (2017).
    [Crossref]
  5. H. L. Wei, J. Mazumder, and T. DebRoy, “Evolution of solidification texture during additive manufacturing,” Sci. Rep. 5(1), 16446 (2015).
    [Crossref] [PubMed]
  6. D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
    [Crossref] [PubMed]
  7. J. Oliveira, B. Panton, Z. Zeng, C. Andrei, Y. Zhou, R. Miranda, and F. B. Fernandes, “Laser joining of NiTi to Ti6Al4V using a Niobium interlayer,” Acta Mater. 105, 9–15 (2016).
    [Crossref]
  8. S. Katayama, Handbook of Laser Welding Technologies (Elsevier, 2013).
  9. H. Wang, M. Nakanishi, and Y. Kawahito, “Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser,” J. Mater. Process. Technol. 249, 193–201 (2017).
    [Crossref]
  10. J. Zou, N. Ha, R. Xiao, Q. Wu, and Q. Zhang, “Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding,” Opt. Express 25(15), 17650–17656 (2017).
    [Crossref] [PubMed]
  11. M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through X-ray Phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
    [Crossref]
  12. A. Matsunawa, J.-D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl. 10(6), 247–254 (1998).
    [Crossref]
  13. R. Fabbro, “Melt pool and keyhole behaviour analysis for deep penetration laser welding,” J. Phys. D Appl. Phys. 43(44), 445501 (2010).
    [Crossref]
  14. S. Tsukamoto, “High speed imaging technique Part 2–High speed imaging of power beam welding phenomena,” Sci. Technol. Weld. Join. 16(1), 44–55 (2011).
    [Crossref]
  15. A. Kaplan, “Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence,” Appl. Phys. Lett. 101(15), 151605 (2012).
    [Crossref]
  16. L. Ang, Y. Lau, R. Gilgenbach, and H. Spindler, “Analysis of laser absorption on a rough metal surface,” Appl. Phys. Lett. 70(6), 696–698 (1997).
    [Crossref]
  17. L. Zhang, J. Zhang, A. Gumenyuk, M. Rethmeier, and S. Na, “Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser,” J. Mater. Process. Technol. 214(8), 1710–1720 (2014).
    [Crossref]
  18. Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, “Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,” Int. J. Heat Mass Tran. 66, 879–888 (2013).
    [Crossref]
  19. S. Pang, W. Chen, and W. Wang, “A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 45(6), 2808–2818 (2014).
    [Crossref]
  20. R. Lin, H. P. Wang, F. Lu, J. Solomon, and B. E. Carlson, “Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys,” Int. J. Heat Mass Tran. 108, 244–256 (2017).
    [Crossref]
  21. S. Li, G. Chen, M. Zhang, Y. Zhou, and Y. Zhang, “Dynamic keyhole profile during high-power deep-penetration laser welding,” J. Mater. Process. Technol. 214(3), 565–570 (2014).
    [Crossref]
  22. M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
    [Crossref] [PubMed]
  23. M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
    [Crossref]
  24. Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata, and M. Tanaka, “Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems,” Scr. Mater. 65(12), 1085–1088 (2011).
    [Crossref]
  25. Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
    [Crossref]
  26. H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
    [Crossref]
  27. G. Shen, M. L. Rivers, Y. Wang, and S. R. Sutton, “Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature,” Rev. Sci. Instrum. 72(2), 1273–1282 (2001).
    [Crossref]
  28. L. R. Benedetti and P. Loubeyre, “Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell,” High Press. Res. 24(4), 423–445 (2004).
    [Crossref]
  29. C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, and H. C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater. 126, 251–263 (2017).
    [Crossref]
  30. J. L. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “On the mechanism of porosity formation during welding of titanium alloys,” Acta Mater. 60(6-7), 3215–3225 (2012).
    [Crossref]
  31. J. Blecher, T. Palmer, and T. Debroy, “Porosity in Thick Section Alloy 690 Welds–Experiments, Modeling, Mechanism, and Remedy,” Weld. J. 95(1), 17S–26S (2016).
  32. J. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “Hydrogen transport and rationalization of porosity formation during welding of titanium alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 43(2), 582–591 (2012).
    [Crossref]
  33. Q. Deng, A. Anilkumar, and T. Wang, “The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool,” J. Fluid Mech. 578, 119–138 (2007).
    [Crossref]

2017 (8)

C. Ma, L. Chen, C. Cao, and X. Li, “Nanoparticle-induced unusual melting and solidification behaviours of metals,” Nat. Commun. 8, 14178 (2017).
[Crossref] [PubMed]

H. Wei, J. Elmer, and T. DebRoy, “Crystal growth during keyhole mode laser welding,” Acta Mater. 133, 10–20 (2017).
[Crossref]

H. Wang, M. Nakanishi, and Y. Kawahito, “Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser,” J. Mater. Process. Technol. 249, 193–201 (2017).
[Crossref]

J. Zou, N. Ha, R. Xiao, Q. Wu, and Q. Zhang, “Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding,” Opt. Express 25(15), 17650–17656 (2017).
[Crossref] [PubMed]

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through X-ray Phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

R. Lin, H. P. Wang, F. Lu, J. Solomon, and B. E. Carlson, “Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys,” Int. J. Heat Mass Tran. 108, 244–256 (2017).
[Crossref]

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, and H. C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater. 126, 251–263 (2017).
[Crossref]

2016 (2)

J. Blecher, T. Palmer, and T. Debroy, “Porosity in Thick Section Alloy 690 Welds–Experiments, Modeling, Mechanism, and Remedy,” Weld. J. 95(1), 17S–26S (2016).

J. Oliveira, B. Panton, Z. Zeng, C. Andrei, Y. Zhou, R. Miranda, and F. B. Fernandes, “Laser joining of NiTi to Ti6Al4V using a Niobium interlayer,” Acta Mater. 105, 9–15 (2016).
[Crossref]

2015 (3)

H. L. Wei, J. Mazumder, and T. DebRoy, “Evolution of solidification texture during additive manufacturing,” Sci. Rep. 5(1), 16446 (2015).
[Crossref] [PubMed]

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

2014 (3)

S. Pang, W. Chen, and W. Wang, “A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 45(6), 2808–2818 (2014).
[Crossref]

S. Li, G. Chen, M. Zhang, Y. Zhou, and Y. Zhang, “Dynamic keyhole profile during high-power deep-penetration laser welding,” J. Mater. Process. Technol. 214(3), 565–570 (2014).
[Crossref]

L. Zhang, J. Zhang, A. Gumenyuk, M. Rethmeier, and S. Na, “Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser,” J. Mater. Process. Technol. 214(8), 1710–1720 (2014).
[Crossref]

2013 (3)

Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, “Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,” Int. J. Heat Mass Tran. 66, 879–888 (2013).
[Crossref]

M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
[Crossref] [PubMed]

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

2012 (3)

J. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “Hydrogen transport and rationalization of porosity formation during welding of titanium alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 43(2), 582–591 (2012).
[Crossref]

J. L. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “On the mechanism of porosity formation during welding of titanium alloys,” Acta Mater. 60(6-7), 3215–3225 (2012).
[Crossref]

A. Kaplan, “Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence,” Appl. Phys. Lett. 101(15), 151605 (2012).
[Crossref]

2011 (2)

Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata, and M. Tanaka, “Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems,” Scr. Mater. 65(12), 1085–1088 (2011).
[Crossref]

S. Tsukamoto, “High speed imaging technique Part 2–High speed imaging of power beam welding phenomena,” Sci. Technol. Weld. Join. 16(1), 44–55 (2011).
[Crossref]

2010 (1)

R. Fabbro, “Melt pool and keyhole behaviour analysis for deep penetration laser welding,” J. Phys. D Appl. Phys. 43(44), 445501 (2010).
[Crossref]

2009 (1)

M. Sieben and F. Brunnecker, “Welding: Welding plastic with lasers,” Nat. Photonics 3(5), 270–272 (2009).
[Crossref]

2007 (1)

Q. Deng, A. Anilkumar, and T. Wang, “The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool,” J. Fluid Mech. 578, 119–138 (2007).
[Crossref]

2004 (1)

L. R. Benedetti and P. Loubeyre, “Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell,” High Press. Res. 24(4), 423–445 (2004).
[Crossref]

2001 (1)

G. Shen, M. L. Rivers, Y. Wang, and S. R. Sutton, “Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature,” Rev. Sci. Instrum. 72(2), 1273–1282 (2001).
[Crossref]

1998 (1)

A. Matsunawa, J.-D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl. 10(6), 247–254 (1998).
[Crossref]

1997 (1)

L. Ang, Y. Lau, R. Gilgenbach, and H. Spindler, “Analysis of laser absorption on a rough metal surface,” Appl. Phys. Lett. 70(6), 696–698 (1997).
[Crossref]

1992 (1)

S. A. David and T. Debroy, “Current issues and problems in welding science,” Science 257(5069), 497–502 (1992).
[Crossref] [PubMed]

Andrei, C.

J. Oliveira, B. Panton, Z. Zeng, C. Andrei, Y. Zhou, R. Miranda, and F. B. Fernandes, “Laser joining of NiTi to Ti6Al4V using a Niobium interlayer,” Acta Mater. 105, 9–15 (2016).
[Crossref]

Ang, L.

L. Ang, Y. Lau, R. Gilgenbach, and H. Spindler, “Analysis of laser absorption on a rough metal surface,” Appl. Phys. Lett. 70(6), 696–698 (1997).
[Crossref]

Anilkumar, A.

Q. Deng, A. Anilkumar, and T. Wang, “The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool,” J. Fluid Mech. 578, 119–138 (2007).
[Crossref]

Basoalto, H. C.

C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, and H. C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater. 126, 251–263 (2017).
[Crossref]

Benedetti, L. R.

L. R. Benedetti and P. Loubeyre, “Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell,” High Press. Res. 24(4), 423–445 (2004).
[Crossref]

Blecher, J.

J. Blecher, T. Palmer, and T. Debroy, “Porosity in Thick Section Alloy 690 Welds–Experiments, Modeling, Mechanism, and Remedy,” Weld. J. 95(1), 17S–26S (2016).

Borgonia, J.-P.

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

Brooks, J. W.

C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, and H. C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater. 126, 251–263 (2017).
[Crossref]

Brunnecker, F.

M. Sieben and F. Brunnecker, “Welding: Welding plastic with lasers,” Nat. Photonics 3(5), 270–272 (2009).
[Crossref]

Cao, C.

C. Ma, L. Chen, C. Cao, and X. Li, “Nanoparticle-induced unusual melting and solidification behaviours of metals,” Nat. Commun. 8, 14178 (2017).
[Crossref] [PubMed]

Carlson, B. E.

R. Lin, H. P. Wang, F. Lu, J. Solomon, and B. E. Carlson, “Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys,” Int. J. Heat Mass Tran. 108, 244–256 (2017).
[Crossref]

Chen, G.

S. Li, G. Chen, M. Zhang, Y. Zhou, and Y. Zhang, “Dynamic keyhole profile during high-power deep-penetration laser welding,” J. Mater. Process. Technol. 214(3), 565–570 (2014).
[Crossref]

M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
[Crossref] [PubMed]

Chen, L.

C. Ma, L. Chen, C. Cao, and X. Li, “Nanoparticle-induced unusual melting and solidification behaviours of metals,” Nat. Commun. 8, 14178 (2017).
[Crossref] [PubMed]

Chen, M.

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

Chen, W.

S. Pang, W. Chen, and W. Wang, “A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 45(6), 2808–2818 (2014).
[Crossref]

David, S. A.

S. A. David and T. Debroy, “Current issues and problems in welding science,” Science 257(5069), 497–502 (1992).
[Crossref] [PubMed]

DebRoy, T.

H. Wei, J. Elmer, and T. DebRoy, “Crystal growth during keyhole mode laser welding,” Acta Mater. 133, 10–20 (2017).
[Crossref]

J. Blecher, T. Palmer, and T. Debroy, “Porosity in Thick Section Alloy 690 Welds–Experiments, Modeling, Mechanism, and Remedy,” Weld. J. 95(1), 17S–26S (2016).

H. L. Wei, J. Mazumder, and T. DebRoy, “Evolution of solidification texture during additive manufacturing,” Sci. Rep. 5(1), 16446 (2015).
[Crossref] [PubMed]

S. A. David and T. Debroy, “Current issues and problems in welding science,” Science 257(5069), 497–502 (1992).
[Crossref] [PubMed]

Deng, Q.

Q. Deng, A. Anilkumar, and T. Wang, “The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool,” J. Fluid Mech. 578, 119–138 (2007).
[Crossref]

Dillon, R. P.

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

Doi, Y.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Elmer, J.

H. Wei, J. Elmer, and T. DebRoy, “Crystal growth during keyhole mode laser welding,” Acta Mater. 133, 10–20 (2017).
[Crossref]

Fabbro, R.

R. Fabbro, “Melt pool and keyhole behaviour analysis for deep penetration laser welding,” J. Phys. D Appl. Phys. 43(44), 445501 (2010).
[Crossref]

Fernandes, F. B.

J. Oliveira, B. Panton, Z. Zeng, C. Andrei, Y. Zhou, R. Miranda, and F. B. Fernandes, “Laser joining of NiTi to Ti6Al4V using a Niobium interlayer,” Acta Mater. 105, 9–15 (2016).
[Crossref]

Fujii, H.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata, and M. Tanaka, “Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems,” Scr. Mater. 65(12), 1085–1088 (2011).
[Crossref]

Gebelin, J.-C.

J. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “Hydrogen transport and rationalization of porosity formation during welding of titanium alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 43(2), 582–591 (2012).
[Crossref]

J. L. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “On the mechanism of porosity formation during welding of titanium alloys,” Acta Mater. 60(6-7), 3215–3225 (2012).
[Crossref]

Gilgenbach, R.

L. Ang, Y. Lau, R. Gilgenbach, and H. Spindler, “Analysis of laser absorption on a rough metal surface,” Appl. Phys. Lett. 70(6), 696–698 (1997).
[Crossref]

Gumenyuk, A.

L. Zhang, J. Zhang, A. Gumenyuk, M. Rethmeier, and S. Na, “Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser,” J. Mater. Process. Technol. 214(8), 1710–1720 (2014).
[Crossref]

Ha, N.

Hofmann, D. C.

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

Huang, J.

J. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “Hydrogen transport and rationalization of porosity formation during welding of titanium alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 43(2), 582–591 (2012).
[Crossref]

Huang, J. L.

J. L. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “On the mechanism of porosity formation during welding of titanium alloys,” Acta Mater. 60(6-7), 3215–3225 (2012).
[Crossref]

Kaplan, A.

A. Kaplan, “Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence,” Appl. Phys. Lett. 101(15), 151605 (2012).
[Crossref]

Katayama, S.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

A. Matsunawa, J.-D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl. 10(6), 247–254 (1998).
[Crossref]

Kawahito, Y.

H. Wang, M. Nakanishi, and Y. Kawahito, “Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser,” J. Mater. Process. Technol. 249, 193–201 (2017).
[Crossref]

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through X-ray Phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata, and M. Tanaka, “Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems,” Scr. Mater. 65(12), 1085–1088 (2011).
[Crossref]

Kawakami, H.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through X-ray Phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

Kenjereš, S.

Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, “Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,” Int. J. Heat Mass Tran. 66, 879–888 (2013).
[Crossref]

Kidess, A.

Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, “Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,” Int. J. Heat Mass Tran. 66, 879–888 (2013).
[Crossref]

Kim, J.-D.

A. Matsunawa, J.-D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl. 10(6), 247–254 (1998).
[Crossref]

Kleijn, C.

Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, “Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,” Int. J. Heat Mass Tran. 66, 879–888 (2013).
[Crossref]

Kolodziejska, J.

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

Lan, D.

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

Lau, Y.

L. Ang, Y. Lau, R. Gilgenbach, and H. Spindler, “Analysis of laser absorption on a rough metal surface,” Appl. Phys. Lett. 70(6), 696–698 (1997).
[Crossref]

Li, S.

S. Li, G. Chen, M. Zhang, Y. Zhou, and Y. Zhang, “Dynamic keyhole profile during high-power deep-penetration laser welding,” J. Mater. Process. Technol. 214(3), 565–570 (2014).
[Crossref]

M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
[Crossref] [PubMed]

Li, X.

C. Ma, L. Chen, C. Cao, and X. Li, “Nanoparticle-induced unusual melting and solidification behaviours of metals,” Nat. Commun. 8, 14178 (2017).
[Crossref] [PubMed]

Lin, R.

R. Lin, H. P. Wang, F. Lu, J. Solomon, and B. E. Carlson, “Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys,” Int. J. Heat Mass Tran. 108, 244–256 (2017).
[Crossref]

Liu, Z.-K.

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

Loubeyre, P.

L. R. Benedetti and P. Loubeyre, “Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell,” High Press. Res. 24(4), 423–445 (2004).
[Crossref]

Lu, F.

R. Lin, H. P. Wang, F. Lu, J. Solomon, and B. E. Carlson, “Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys,” Int. J. Heat Mass Tran. 108, 244–256 (2017).
[Crossref]

Ma, C.

C. Ma, L. Chen, C. Cao, and X. Li, “Nanoparticle-induced unusual melting and solidification behaviours of metals,” Nat. Commun. 8, 14178 (2017).
[Crossref] [PubMed]

Matsunawa, A.

A. Matsunawa, J.-D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl. 10(6), 247–254 (1998).
[Crossref]

Mazumder, J.

H. L. Wei, J. Mazumder, and T. DebRoy, “Evolution of solidification texture during additive manufacturing,” Sci. Rep. 5(1), 16446 (2015).
[Crossref] [PubMed]

Miranda, R.

J. Oliveira, B. Panton, Z. Zeng, C. Andrei, Y. Zhou, R. Miranda, and F. B. Fernandes, “Laser joining of NiTi to Ti6Al4V using a Niobium interlayer,” Acta Mater. 105, 9–15 (2016).
[Crossref]

Miyagi, M.

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through X-ray Phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

Mizutani, M.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

A. Matsunawa, J.-D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl. 10(6), 247–254 (1998).
[Crossref]

Morisada, Y.

Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata, and M. Tanaka, “Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems,” Scr. Mater. 65(12), 1085–1088 (2011).
[Crossref]

Na, S.

L. Zhang, J. Zhang, A. Gumenyuk, M. Rethmeier, and S. Na, “Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser,” J. Mater. Process. Technol. 214(8), 1710–1720 (2014).
[Crossref]

Nakamura, H.

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

Nakanishi, M.

H. Wang, M. Nakanishi, and Y. Kawahito, “Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser,” J. Mater. Process. Technol. 249, 193–201 (2017).
[Crossref]

Nakata, K.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata, and M. Tanaka, “Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems,” Scr. Mater. 65(12), 1085–1088 (2011).
[Crossref]

Nishimoto, K.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

Oliveira, J.

J. Oliveira, B. Panton, Z. Zeng, C. Andrei, Y. Zhou, R. Miranda, and F. B. Fernandes, “Laser joining of NiTi to Ti6Al4V using a Niobium interlayer,” Acta Mater. 105, 9–15 (2016).
[Crossref]

Otis, R.

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

Palmer, T.

J. Blecher, T. Palmer, and T. Debroy, “Porosity in Thick Section Alloy 690 Welds–Experiments, Modeling, Mechanism, and Remedy,” Weld. J. 95(1), 17S–26S (2016).

Pang, S.

S. Pang, W. Chen, and W. Wang, “A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 45(6), 2808–2818 (2014).
[Crossref]

Panton, B.

J. Oliveira, B. Panton, Z. Zeng, C. Andrei, Y. Zhou, R. Miranda, and F. B. Fernandes, “Laser joining of NiTi to Ti6Al4V using a Niobium interlayer,” Acta Mater. 105, 9–15 (2016).
[Crossref]

Panwisawas, C.

C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, and H. C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater. 126, 251–263 (2017).
[Crossref]

Perumal, B.

C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, and H. C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater. 126, 251–263 (2017).
[Crossref]

Reed, R. C.

J. L. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “On the mechanism of porosity formation during welding of titanium alloys,” Acta Mater. 60(6-7), 3215–3225 (2012).
[Crossref]

J. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “Hydrogen transport and rationalization of porosity formation during welding of titanium alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 43(2), 582–591 (2012).
[Crossref]

Rethmeier, M.

L. Zhang, J. Zhang, A. Gumenyuk, M. Rethmeier, and S. Na, “Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser,” J. Mater. Process. Technol. 214(8), 1710–1720 (2014).
[Crossref]

Richardson, I.

Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, “Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,” Int. J. Heat Mass Tran. 66, 879–888 (2013).
[Crossref]

Rivers, M. L.

G. Shen, M. L. Rivers, Y. Wang, and S. R. Sutton, “Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature,” Rev. Sci. Instrum. 72(2), 1273–1282 (2001).
[Crossref]

Roberts, S.

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

Saldi, Z.

Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, “Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,” Int. J. Heat Mass Tran. 66, 879–888 (2013).
[Crossref]

Seto, N.

A. Matsunawa, J.-D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl. 10(6), 247–254 (1998).
[Crossref]

Shapiro, A. A.

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

Shen, G.

G. Shen, M. L. Rivers, Y. Wang, and S. R. Sutton, “Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature,” Rev. Sci. Instrum. 72(2), 1273–1282 (2001).
[Crossref]

Shoubu, T.

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through X-ray Phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

Sieben, M.

M. Sieben and F. Brunnecker, “Welding: Welding plastic with lasers,” Nat. Photonics 3(5), 270–272 (2009).
[Crossref]

Solomon, J.

R. Lin, H. P. Wang, F. Lu, J. Solomon, and B. E. Carlson, “Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys,” Int. J. Heat Mass Tran. 108, 244–256 (2017).
[Crossref]

Spindler, H.

L. Ang, Y. Lau, R. Gilgenbach, and H. Spindler, “Analysis of laser absorption on a rough metal surface,” Appl. Phys. Lett. 70(6), 696–698 (1997).
[Crossref]

Strangwood, M.

J. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “Hydrogen transport and rationalization of porosity formation during welding of titanium alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 43(2), 582–591 (2012).
[Crossref]

J. L. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “On the mechanism of porosity formation during welding of titanium alloys,” Acta Mater. 60(6-7), 3215–3225 (2012).
[Crossref]

Suh, J. O.

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

Sutton, S. R.

G. Shen, M. L. Rivers, Y. Wang, and S. R. Sutton, “Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature,” Rev. Sci. Instrum. 72(2), 1273–1282 (2001).
[Crossref]

Tanaka, M.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata, and M. Tanaka, “Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems,” Scr. Mater. 65(12), 1085–1088 (2011).
[Crossref]

Tsukamoto, S.

S. Tsukamoto, “High speed imaging technique Part 2–High speed imaging of power beam welding phenomena,” Sci. Technol. Weld. Join. 16(1), 44–55 (2011).
[Crossref]

Turner, N.

C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, and H. C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater. 126, 251–263 (2017).
[Crossref]

Turner, R. P.

C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, and H. C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater. 126, 251–263 (2017).
[Crossref]

Uemura, Y.

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Wang, H.

H. Wang, M. Nakanishi, and Y. Kawahito, “Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser,” J. Mater. Process. Technol. 249, 193–201 (2017).
[Crossref]

Wang, H. P.

R. Lin, H. P. Wang, F. Lu, J. Solomon, and B. E. Carlson, “Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys,” Int. J. Heat Mass Tran. 108, 244–256 (2017).
[Crossref]

Wang, T.

Q. Deng, A. Anilkumar, and T. Wang, “The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool,” J. Fluid Mech. 578, 119–138 (2007).
[Crossref]

Wang, W.

S. Pang, W. Chen, and W. Wang, “A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 45(6), 2808–2818 (2014).
[Crossref]

Wang, Y.

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

G. Shen, M. L. Rivers, Y. Wang, and S. R. Sutton, “Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature,” Rev. Sci. Instrum. 72(2), 1273–1282 (2001).
[Crossref]

Ward, R. M.

C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, and H. C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater. 126, 251–263 (2017).
[Crossref]

Warnken, N.

J. L. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “On the mechanism of porosity formation during welding of titanium alloys,” Acta Mater. 60(6-7), 3215–3225 (2012).
[Crossref]

J. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “Hydrogen transport and rationalization of porosity formation during welding of titanium alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 43(2), 582–591 (2012).
[Crossref]

Wei, H.

H. Wei, J. Elmer, and T. DebRoy, “Crystal growth during keyhole mode laser welding,” Acta Mater. 133, 10–20 (2017).
[Crossref]

Wei, H. L.

H. L. Wei, J. Mazumder, and T. DebRoy, “Evolution of solidification texture during additive manufacturing,” Sci. Rep. 5(1), 16446 (2015).
[Crossref] [PubMed]

Wu, Q.

Xiao, R.

Yu, G.

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

Zeng, Z.

J. Oliveira, B. Panton, Z. Zeng, C. Andrei, Y. Zhou, R. Miranda, and F. B. Fernandes, “Laser joining of NiTi to Ti6Al4V using a Niobium interlayer,” Acta Mater. 105, 9–15 (2016).
[Crossref]

Zhang, J.

L. Zhang, J. Zhang, A. Gumenyuk, M. Rethmeier, and S. Na, “Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser,” J. Mater. Process. Technol. 214(8), 1710–1720 (2014).
[Crossref]

Zhang, L.

L. Zhang, J. Zhang, A. Gumenyuk, M. Rethmeier, and S. Na, “Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser,” J. Mater. Process. Technol. 214(8), 1710–1720 (2014).
[Crossref]

Zhang, M.

S. Li, G. Chen, M. Zhang, Y. Zhou, and Y. Zhang, “Dynamic keyhole profile during high-power deep-penetration laser welding,” J. Mater. Process. Technol. 214(3), 565–570 (2014).
[Crossref]

M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
[Crossref] [PubMed]

Zhang, Q.

Zhang, Y.

S. Li, G. Chen, M. Zhang, Y. Zhou, and Y. Zhang, “Dynamic keyhole profile during high-power deep-penetration laser welding,” J. Mater. Process. Technol. 214(3), 565–570 (2014).
[Crossref]

Zhao, C.

Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, “Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,” Int. J. Heat Mass Tran. 66, 879–888 (2013).
[Crossref]

Zheng, Z.

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

Zhou, Y.

J. Oliveira, B. Panton, Z. Zeng, C. Andrei, Y. Zhou, R. Miranda, and F. B. Fernandes, “Laser joining of NiTi to Ti6Al4V using a Niobium interlayer,” Acta Mater. 105, 9–15 (2016).
[Crossref]

S. Li, G. Chen, M. Zhang, Y. Zhou, and Y. Zhang, “Dynamic keyhole profile during high-power deep-penetration laser welding,” J. Mater. Process. Technol. 214(3), 565–570 (2014).
[Crossref]

M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
[Crossref] [PubMed]

Zou, J.

Acta Mater. (4)

H. Wei, J. Elmer, and T. DebRoy, “Crystal growth during keyhole mode laser welding,” Acta Mater. 133, 10–20 (2017).
[Crossref]

J. Oliveira, B. Panton, Z. Zeng, C. Andrei, Y. Zhou, R. Miranda, and F. B. Fernandes, “Laser joining of NiTi to Ti6Al4V using a Niobium interlayer,” Acta Mater. 105, 9–15 (2016).
[Crossref]

C. Panwisawas, B. Perumal, R. M. Ward, N. Turner, R. P. Turner, J. W. Brooks, and H. C. Basoalto, “Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling,” Acta Mater. 126, 251–263 (2017).
[Crossref]

J. L. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “On the mechanism of porosity formation during welding of titanium alloys,” Acta Mater. 60(6-7), 3215–3225 (2012).
[Crossref]

Appl. Phys. Lett. (3)

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

A. Kaplan, “Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence,” Appl. Phys. Lett. 101(15), 151605 (2012).
[Crossref]

L. Ang, Y. Lau, R. Gilgenbach, and H. Spindler, “Analysis of laser absorption on a rough metal surface,” Appl. Phys. Lett. 70(6), 696–698 (1997).
[Crossref]

High Press. Res. (1)

L. R. Benedetti and P. Loubeyre, “Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell,” High Press. Res. 24(4), 423–445 (2004).
[Crossref]

Int. J. Heat Mass Tran. (2)

Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, “Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel,” Int. J. Heat Mass Tran. 66, 879–888 (2013).
[Crossref]

R. Lin, H. P. Wang, F. Lu, J. Solomon, and B. E. Carlson, “Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys,” Int. J. Heat Mass Tran. 108, 244–256 (2017).
[Crossref]

J. Fluid Mech. (1)

Q. Deng, A. Anilkumar, and T. Wang, “The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool,” J. Fluid Mech. 578, 119–138 (2007).
[Crossref]

J. Laser Appl. (2)

H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium,” J. Laser Appl. 27(3), 032012 (2015).
[Crossref]

A. Matsunawa, J.-D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl. 10(6), 247–254 (1998).
[Crossref]

J. Mater. Process. Technol. (4)

L. Zhang, J. Zhang, A. Gumenyuk, M. Rethmeier, and S. Na, “Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser,” J. Mater. Process. Technol. 214(8), 1710–1720 (2014).
[Crossref]

S. Li, G. Chen, M. Zhang, Y. Zhou, and Y. Zhang, “Dynamic keyhole profile during high-power deep-penetration laser welding,” J. Mater. Process. Technol. 214(3), 565–570 (2014).
[Crossref]

H. Wang, M. Nakanishi, and Y. Kawahito, “Effects of welding speed on absorption rate in partial and full penetration welding of stainless steel with high brightness and high power laser,” J. Mater. Process. Technol. 249, 193–201 (2017).
[Crossref]

M. Miyagi, Y. Kawahito, H. Kawakami, and T. Shoubu, “Dynamics of solid-liquid interface and porosity formation determined through X-ray Phase-contrast in laser welding of pure Al,” J. Mater. Process. Technol. 250, 9–15 (2017).
[Crossref]

J. Phys. D Appl. Phys. (1)

R. Fabbro, “Melt pool and keyhole behaviour analysis for deep penetration laser welding,” J. Phys. D Appl. Phys. 43(44), 445501 (2010).
[Crossref]

Metall. Mater. Trans., A Phys. Metall. Mater. Sci. (2)

S. Pang, W. Chen, and W. Wang, “A quantitative model of keyhole instability induced porosity in laser welding of titanium alloy,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 45(6), 2808–2818 (2014).
[Crossref]

J. Huang, N. Warnken, J.-C. Gebelin, M. Strangwood, and R. C. Reed, “Hydrogen transport and rationalization of porosity formation during welding of titanium alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 43(2), 582–591 (2012).
[Crossref]

Nat. Commun. (1)

C. Ma, L. Chen, C. Cao, and X. Li, “Nanoparticle-induced unusual melting and solidification behaviours of metals,” Nat. Commun. 8, 14178 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Sieben and F. Brunnecker, “Welding: Welding plastic with lasers,” Nat. Photonics 3(5), 270–272 (2009).
[Crossref]

Opt. Express (2)

Rev. Sci. Instrum. (1)

G. Shen, M. L. Rivers, Y. Wang, and S. R. Sutton, “Laser heated diamond cell system at the Advanced Photon Source for in situ X-ray measurements at high pressure and temperature,” Rev. Sci. Instrum. 72(2), 1273–1282 (2001).
[Crossref]

Sci. Rep. (2)

H. L. Wei, J. Mazumder, and T. DebRoy, “Evolution of solidification texture during additive manufacturing,” Sci. Rep. 5(1), 16446 (2015).
[Crossref] [PubMed]

D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z.-K. Liu, and J.-P. Borgonia, “Developing gradient metal alloys through radial deposition additive manufacturing,” Sci. Rep. 4(1), 5357 (2015).
[Crossref] [PubMed]

Sci. Technol. Weld. Join. (1)

S. Tsukamoto, “High speed imaging technique Part 2–High speed imaging of power beam welding phenomena,” Sci. Technol. Weld. Join. 16(1), 44–55 (2011).
[Crossref]

Science (1)

S. A. David and T. Debroy, “Current issues and problems in welding science,” Science 257(5069), 497–502 (1992).
[Crossref] [PubMed]

Scr. Mater. (1)

Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata, and M. Tanaka, “Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems,” Scr. Mater. 65(12), 1085–1088 (2011).
[Crossref]

Weld. Int. (1)

Y. Kawahito, Y. Uemura, Y. Doi, M. Mizutani, K. Nishimoto, H. Kawakami, M. Tanaka, H. Fujii, K. Nakata, and S. Katayama, “Elucidation of the effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in situ observation,” Weld. Int. 31(3), 206–213 (2017).
[Crossref]

Weld. J. (1)

J. Blecher, T. Palmer, and T. Debroy, “Porosity in Thick Section Alloy 690 Welds–Experiments, Modeling, Mechanism, and Remedy,” Weld. J. 95(1), 17S–26S (2016).

Other (1)

S. Katayama, Handbook of Laser Welding Technologies (Elsevier, 2013).

Supplementary Material (1)

NameDescription
» Visualization 1       This video shows the dynamics of keyhole and molten pool during the welding process.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of experimental system for observation and spectroscopic measurement of molten pool through glass plate during laser welding.
Fig. 2
Fig. 2 Observed dynamics of keyhole and molten pool with the time and laser center at: (a) 0 ms, 0 μm; (b) 30 ms, 3.5 μm; (c) 102 ms, 11.9 μm; (d) 112 ms, 13.1 μm; (e) 400 ms, 46.7 μm; (f) 673 ms, 78.5 μm; (g) 689 ms, 80.4 μm; (h) 900 ms, 105 μm; (i) 900 ms, 105 μm, combined with the flow routes recorded by X-ray transmission method [25] (see Visualization 1).
Fig. 3
Fig. 3 Schematic of mass balance in high power density laser welding.
Fig. 4
Fig. 4 (a) Comparison of the spectrum values; (b) measured temperature in molten pool.
Fig. 5
Fig. 5 Schematic of porosity formation process.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I λ = c 1 ε( λ ) λ 5 /[ exp( c 2 λT )1 ]

Metrics