Abstract

We numerically investigate the transmission of the antiresonant-reflection-based terahertz (THz) pipe waveguide in which the cladding layer is very thin or the cladding index is close to one. It is found that robustness of the waveguide confinement is maintained when the cladding thickness is small, while the guiding ability deteriorates when the cladding index approaches to one. Hence, to increase the effective bandwidth of the pipe waveguide, reducing the cladding thickness is more desirable. Moreover, we also examine the effective bandwidth under the condition that the pipe waveguide is subject to a fixed ratio of core diameter to cladding thickness. Numerical result indicates that, as the ratio increases, the effective bandwidth increases as well.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characteristics of bent terahertz antiresonant reflecting pipe waveguides

Chih-Hsien Lai, Teng Chang, and Yi-Siang Yeh
Opt. Express 22(7) 8460-8472 (2014)

Low-index terahertz pipe waveguides

Chih-Hsien Lai, Yu-Chun Hsueh, Hung-Wen Chen, Yuh-jing Huang, Hung-chun Chang, and Chi-Kuang Sun
Opt. Lett. 34(21) 3457-3459 (2009)

Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding

Chih-Hsien Lai, Borwen You, Ja-Yu Lu, Tze-An Liu, Jin-Long Peng, Chi-Kuang Sun, and Hung-chun Chang
Opt. Express 18(1) 309-322 (2010)

References

  • View by:
  • |
  • |
  • |

  1. E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
    [Crossref] [PubMed]
  3. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  4. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
    [Crossref] [PubMed]
  5. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5‒6), 315–340 (2013).
  6. V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
    [Crossref]
  7. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  8. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
    [Crossref] [PubMed]
  9. J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004).
    [Crossref] [PubMed]
  10. F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. A Math. Phys. Eng. Sci. 364(1849), 3439–3462 (2006).
    [Crossref] [PubMed]
  11. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [Crossref]
  12. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  13. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref] [PubMed]
  14. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref] [PubMed]
  15. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  16. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
    [Crossref] [PubMed]
  17. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  18. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19(3), 211–227 (2000).
    [Crossref]
  19. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
    [Crossref] [PubMed]
  20. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  21. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  22. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
    [Crossref] [PubMed]
  23. F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4400610 (2016).
    [Crossref]
  24. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
    [Crossref]
  25. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [Crossref] [PubMed]
  26. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref] [PubMed]
  27. E. Nguema, D. Férachou, G. Humbert, J. L. Auguste, and J. M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett. 36(10), 1782–1784 (2011).
    [Crossref] [PubMed]
  28. A. Mazhorova, A. Markov, B. Ung, M. Rozé, S. Gorgutsa, and M. Skorobogatiy, “Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz,” J. Opt. Soc. Am. B 29(8), 2116–2123 (2012).
    [Crossref]
  29. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
    [Crossref] [PubMed]
  30. C.-H. Du and Y.-P. Chiou, “Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry,” IEEE Photonics Technol. Lett. 24(11), 894–896 (2012).
    [Crossref]
  31. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  32. M. F. Xiao, J. Liu, W. Zhang, J. L. Shen, and Y. D. Huang, “THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique,” Opt. Commun. 298, 101–105 (2013).
    [Crossref]
  33. B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
    [Crossref] [PubMed]
  34. B. You and J.-Y. Lu, “Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide,” Opt. Express 24(16), 18013–18023 (2016).
    [Crossref] [PubMed]
  35. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
    [Crossref]
  36. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
    [Crossref]

2017 (1)

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

2016 (2)

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4400610 (2016).
[Crossref]

B. You and J.-Y. Lu, “Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide,” Opt. Express 24(16), 18013–18023 (2016).
[Crossref] [PubMed]

2015 (1)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

2014 (2)

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

2013 (3)

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5‒6), 315–340 (2013).

M. F. Xiao, J. Liu, W. Zhang, J. L. Shen, and Y. D. Huang, “THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique,” Opt. Commun. 298, 101–105 (2013).
[Crossref]

2012 (4)

2011 (5)

2010 (1)

2009 (1)

2008 (1)

2007 (2)

2006 (3)

2005 (1)

2004 (1)

2003 (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

2002 (2)

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

2000 (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19(3), 211–227 (2000).
[Crossref]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

1964 (1)

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abeeluck, A. K.

Alam, S.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Anthony, J.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Argyros, A.

Auguste, J. L.

Baddela, N. K.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Bang, O.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

Bao, H.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

Benabid, F.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. A Math. Phys. Eng. Sci. 364(1849), 3439–3462 (2006).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Biriukov, A. S.

Birks, T.

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Blondy, J. M.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Bouwmans, G.

Bowden, B.

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Chang, H.-C.

Chen, H.-W.

Chiou, Y.-P.

C.-H. Du and Y.-P. Chiou, “Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry,” IEEE Photonics Technol. Lett. 24(11), 894–896 (2012).
[Crossref]

Couny, F.

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

de Waardt, H.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Dianov, E. M.

Du, C.-H.

C.-H. Du and Y.-P. Chiou, “Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry,” IEEE Photonics Technol. Lett. 24(11), 894–896 (2012).
[Crossref]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Eggleton, B. J.

Farr, L.

Férachou, D.

Fokoua, E. R. N.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Gorgutsa, S.

Gray, D. R.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Hand, D.

Harrington, J. A.

Hayden, L. M.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Hayes, J. R.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Headley, C.

Hsueh, Y.-C.

Hu, J.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Huang, Y. D.

M. F. Xiao, J. Liu, W. Zhang, J. L. Shen, and Y. D. Huang, “THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique,” Opt. Commun. 298, 101–105 (2013).
[Crossref]

Huang, Y.-J.

Humbert, G.

Jen, A. K.-Y.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Jepsen, P. U.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

Jones, J.

Jung, Y.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Knight, J.

Knight, J. C.

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4400610 (2016).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kosolapov, A. F.

Kuschnerov, M.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Lai, C.-H.

Large, M. C. J.

Leonhardt, R.

Light, P. S.

Litchinitser, N. M.

Liu, J.

M. F. Xiao, J. Liu, W. Zhang, J. L. Shen, and Y. D. Huang, “THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique,” Opt. Commun. 298, 101–105 (2013).
[Crossref]

Liu, T.-A.

Lu, J.-Y.

Luo, J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Mangan, B.

Marcatili, E.

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Markov, A.

Mason, M.

Mazhorova, A.

Menyuk, C. R.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Mitrofanov, O.

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Nguema, E.

Nielsen, K.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

Parmigiani, F. R.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Peng, J.-L.

Petrovich, M. N.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5‒6), 315–340 (2013).

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[Crossref] [PubMed]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Pla, J.

Plotnichenko, V. G.

Poletti, F.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5‒6), 315–340 (2013).

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[Crossref] [PubMed]

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Pryamikov, A. D.

Richardson, D. J.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5‒6), 315–340 (2013).

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[Crossref] [PubMed]

Roberts, P.

Roberts, P. J.

Rozé, M.

Russell, P.

Russell, P. S. J.

P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

Sabert, H.

Schmeltzer, R.

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Semjonov, S. L.

Setti, V.

Shen, J. L.

M. F. Xiao, J. Liu, W. Zhang, J. L. Shen, and Y. D. Huang, “THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique,” Opt. Commun. 298, 101–105 (2013).
[Crossref]

Shephard, J.

Skorobogatiy, M.

Sleiffer, V. A. J. M.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

St J Russell, P.

Sun, C.-K.

Surof, J.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Tomlinson, A.

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Ung, B.

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Vallejo, F. A.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

van Brakel, A.

Veljanovski, V.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Vincetti, L.

Wadsworth, W. J.

Wang, Y. Y.

Wei, C.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Weiblen, R. J.

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Wheeler, N. V.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

Williams, D.

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Wong, N. H.-L.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Wooler, J. P.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

Xiao, M. F.

M. F. Xiao, J. Liu, W. Zhang, J. L. Shen, and Y. D. Huang, “THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique,” Opt. Commun. 298, 101–105 (2013).
[Crossref]

You, B.

Yu, C.-P.

Yu, F.

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4400610 (2016).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

Zhang, W.

M. F. Xiao, J. Liu, W. Zhang, J. L. Shen, and Y. D. Huang, “THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique,” Opt. Commun. 298, 101–105 (2013).
[Crossref]

Zhou, X.-H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Adv. Opt. Photonics (1)

C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Bell Syst. Tech. J. (1)

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Fiber Integr. Opt. (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19(3), 211–227 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 4400610 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C.-H. Du and Y.-P. Chiou, “Higher-order full-vectorial finite-difference analysis of waveguiding structures with circular symmetry,” IEEE Photonics Technol. Lett. 24(11), 894–896 (2012).
[Crossref]

J. Appl. Phys. (1)

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

J. Lightwave Technol. (2)

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. N. Fokoua, J. P. Wooler, D. R. Gray, N. H.-L. Wong, F. R. Parmigiani, S. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32(4), 854–863 (2014).
[Crossref]

P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2(5‒6), 315–340 (2013).

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

M. F. Xiao, J. Liu, W. Zhang, J. L. Shen, and Y. D. Huang, “THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique,” Opt. Commun. 298, 101–105 (2013).
[Crossref]

Opt. Express (11)

J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004).
[Crossref] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

B. You and J.-Y. Lu, “Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide,” Opt. Express 24(16), 18013–18023 (2016).
[Crossref] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, “Robustly single mode hollow core photonic bandgap fiber,” Opt. Express 16(6), 4337–4346 (2008).
[Crossref] [PubMed]

Opt. Lett. (6)

Philos. Trans. A Math. Phys. Eng. Sci. (1)

F. Benabid, “Hollow-core photonic bandgap fibre: new light guidance for new science and technology,” Philos. Trans. A Math. Phys. Eng. Sci. 364(1849), 3439–3462 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5(1), 7620 (2015).
[Crossref] [PubMed]

Science (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Other (1)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Transverse cross-section of the THz pipe waveguide. (b) Distribution of the squared modulus of electric field (|E|2) for the pipe waveguide calculated at 2.3 THz. (c) Transmission spectrum of the pipe waveguide. The black dotted lines indicate the resonant frequencies. The red dashed line represents the threshold value αt = 0.05 cm−1. For (b) and (c), the parameters of the pipe waveguide are D = 2 mm, t = 0.3 mm, and n = 1.4
Fig. 2
Fig. 2 Based on initial parameters D = 2 mm, t = 0.3 mm, and n = 1.4, attenuation constants of the pipe waveguides with (a) decreasing cladding thickness t, and (b) decreasing cladding index n.
Fig. 3
Fig. 3 Theoretical bandwidth, effective bandwidth, and the ratio of effective bandwidth to theoretical bandwidth as functions of (a) cladding thickness t with D = 2 mm and n = 1.4, and (b) cladding index n with D = 2 mm and t = 0.3 mm.
Fig. 4
Fig. 4 Effective bandwidth of the pipe waveguide as a function of core diameter, where t = 0.0153 mm and n = 1.4.
Fig. 5
Fig. 5 Effective bandwidths of the pipe waveguide as functions of cladding thickness, where the core diameter to cladding thickness ratios are 10, 20, and 40, respectively. Cladding index is assumed to be n = 1.4. Theoretical bandwidth is also shown as a reference.
Fig. 6
Fig. 6 Attenuation constant of the pipe waveguide as a function of frequency for n = 1.4, 1.5, and 1.6. The core diameter is fixed to D = 1.224 mm. The cladding thicknesses are t = 0.0306 mm (for n = 1.4), t = 0.0268 mm (for n = 1.5), and t = 0.0240 mm (for n = 1.6), respectively. The black dashed line indicates the threshold value of attenuation constant αt = 0.05 cm−1. Inset: A zoomed plot around 7.2 THz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f m = mc 2t n 2 1 ,
B th = c 2t n 2 1 .

Metrics