Abstract

The vortex wave that carries orbital angular momentum has attracted much attention due to the fact that it can provide an extra degree of freedom for optical communication, imaging and other applications. In spite of this, the method of OAM generation at high frequency still suffers from limitations, such as chromatic aberration and low efficiency. In this paper, an azimuthally symmetric electromagnetic metasurface with wide bandwidth is designed, fabricated and experimentally demonstrated to efficiently convert a left-handed (right-handed) circularly polarized incident plane wave (with a spin angular momentum (SAM) of ћ) to a right-handed (left-handed) circularly polarized vortex wave with OAM. The design methodology based on the field equivalence principle is discussed in detail. The simulation and measurement results confirm that the proposed method provides an effective way for generating OAM-carrying vortex wave with comparative performance across a broad bandwidth.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Metasurface-based broadband orbital angular momentum generator in millimeter wave region

Fan Bi, Zhongling Ba, and Xiong Wang
Opt. Express 26(20) 25693-25705 (2018)

Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces

Shixing Yu, Long Li, and Na Kou
Opt. Mater. Express 7(9) 3312-3321 (2017)

Dual-band vortex beam generation with different OAM modes using single-layer metasurface

Chen Ji, Jiakun Song, Cheng Huang, Xiaoyu Wu, and Xiangang Luo
Opt. Express 27(1) 34-44 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experiment test,” New J. Phys. 14(3), 033001 (2012).
    [Crossref]
  2. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref] [PubMed]
  3. S. Zheng, X. Hui, J. Zhu, H. Chi, X. Jin, S. Yu, and X. Zhang, “Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture,” Opt. Express 23(9), 12251–12257 (2015).
    [Crossref] [PubMed]
  4. L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
    [Crossref]
  5. L. Torner, J. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express 13(3), 873–881 (2005).
    [Crossref] [PubMed]
  6. A. Lehmuskero, Y. Li, P. Johansson, and M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014).
    [Crossref] [PubMed]
  7. S. Tao, X. C. Yuan, J. Lin, X. Peng, and H. Niu, “Fractional optical vortex beam induced rotation of particles,” Opt. Express 13(20), 7726–7731 (2005).
    [Crossref] [PubMed]
  8. M. Li, S. Yan, B. Yao, Y. Liang, M. Lei, and Y. Yang, “Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization,” Phys. Lett. A 380(1-2), 311–315 (2016).
    [Crossref]
  9. S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1530–1536 (2015).
    [Crossref]
  10. Y. Gong, R. Wang, Y. Deng, B. Zhang, N. Wang, N. Li, and P. Wang, “Generation and Transmission of OAM-Carrying Vortex Beams Using Circular Antenna Array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
    [Crossref]
  11. Z. Zhang, S. Xiao, Y. Li, and B. Z. Wang, “A Circularly Polarized Multimode Patch Antenna for the Generation of Multiple Orbital Angular Momentum Modes,” IEEE AntennasWireless Propag. Lett. 16, 521–524 (2017).
  12. Y. Pan, S. Zhang, J. Zheng, Y. Li, X. Jin, H. Chi, and X. Zhang, “Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna,” IEEE AntennasWireless Propag. Lett. 16, 385–388 (2017).
  13. J. J. Chen, Q. N. Lu, F. F. Dong, J. J. Yang, and M. Huang, “Wireless OAM transmission system based on elliptical microstrip patch antenna,” Opt. Express 24(11), 11531–11538 (2016).
    [Crossref] [PubMed]
  14. R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM Flat-Plate Antenna in the Millimeter Frequency Band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
    [Crossref]
  15. M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
    [Crossref]
  16. L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
    [Crossref] [PubMed]
  17. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, Fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
    [Crossref]
  18. M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antenn. Propag. 65(1), 396–400 (2017).
    [Crossref]
  19. K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
    [Crossref] [PubMed]
  20. K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
    [Crossref]
  21. M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
    [Crossref] [PubMed]
  22. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
    [Crossref] [PubMed]
  23. F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
    [Crossref]
  24. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of plannar grids and high-impedance surfaces comprising metal strips or pateches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
    [Crossref]
  25. M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
    [Crossref]
  26. B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
    [Crossref]

2018 (1)

2017 (5)

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

Y. Gong, R. Wang, Y. Deng, B. Zhang, N. Wang, N. Li, and P. Wang, “Generation and Transmission of OAM-Carrying Vortex Beams Using Circular Antenna Array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Z. Zhang, S. Xiao, Y. Li, and B. Z. Wang, “A Circularly Polarized Multimode Patch Antenna for the Generation of Multiple Orbital Angular Momentum Modes,” IEEE AntennasWireless Propag. Lett. 16, 521–524 (2017).

Y. Pan, S. Zhang, J. Zheng, Y. Li, X. Jin, H. Chi, and X. Zhang, “Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna,” IEEE AntennasWireless Propag. Lett. 16, 385–388 (2017).

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antenn. Propag. 65(1), 396–400 (2017).
[Crossref]

2016 (4)

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, Fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

J. J. Chen, Q. N. Lu, F. F. Dong, J. J. Yang, and M. Huang, “Wireless OAM transmission system based on elliptical microstrip patch antenna,” Opt. Express 24(11), 11531–11538 (2016).
[Crossref] [PubMed]

M. Li, S. Yan, B. Yao, Y. Liang, M. Lei, and Y. Yang, “Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization,” Phys. Lett. A 380(1-2), 311–315 (2016).
[Crossref]

2015 (5)

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1530–1536 (2015).
[Crossref]

S. Zheng, X. Hui, J. Zhu, H. Chi, X. Jin, S. Yu, and X. Zhang, “Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture,” Opt. Express 23(9), 12251–12257 (2015).
[Crossref] [PubMed]

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

2014 (5)

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM Flat-Plate Antenna in the Millimeter Frequency Band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

A. Lehmuskero, Y. Li, P. Johansson, and M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014).
[Crossref] [PubMed]

2012 (1)

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experiment test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

2008 (2)

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of plannar grids and high-impedance surfaces comprising metal strips or pateches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

2005 (2)

2002 (1)

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

Ahmed, N.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Bao, C.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experiment test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Brousseau, C.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM Flat-Plate Antenna in the Millimeter Frequency Band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Burokur, S. N.

Cao, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Carrasco, S.

Chen, J. J.

Chen, L.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
[Crossref]

Chen, N.

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antenn. Propag. 65(1), 396–400 (2017).
[Crossref]

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

Cheng, L.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

Chi, H.

Y. Pan, S. Zhang, J. Zheng, Y. Li, X. Jin, H. Chi, and X. Zhang, “Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna,” IEEE AntennasWireless Propag. Lett. 16, 385–388 (2017).

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1530–1536 (2015).
[Crossref]

S. Zheng, X. Hui, J. Zhu, H. Chi, X. Jin, S. Yu, and X. Zhang, “Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture,” Opt. Express 23(9), 12251–12257 (2015).
[Crossref] [PubMed]

Clerc, M.

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

Deng, Y.

Y. Gong, R. Wang, Y. Deng, B. Zhang, N. Wang, N. Li, and P. Wang, “Generation and Transmission of OAM-Carrying Vortex Beams Using Circular Antenna Array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Ding, X.

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref] [PubMed]

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

Dong, F. F.

Emile, O.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM Flat-Plate Antenna in the Millimeter Frequency Band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Franke-Arnold, S.

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Gao, P.

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Gong, Y.

Y. Gong, R. Wang, Y. Deng, B. Zhang, N. Wang, N. Li, and P. Wang, “Generation and Transmission of OAM-Carrying Vortex Beams Using Circular Antenna Array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Goussetis, G.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of plannar grids and high-impedance surfaces comprising metal strips or pateches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Granet, G.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of plannar grids and high-impedance surfaces comprising metal strips or pateches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Gu, M.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Hao, Z. C.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

Hong, M.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Hong, W.

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

Hu, C.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Huang, C.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Huang, H.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Huang, M.

Hui, X.

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1530–1536 (2015).
[Crossref]

S. Zheng, X. Hui, J. Zhu, H. Chi, X. Jin, S. Yu, and X. Zhang, “Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture,” Opt. Express 23(9), 12251–12257 (2015).
[Crossref] [PubMed]

Jack, B.

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Jiang, L. J.

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antenn. Propag. 65(1), 396–400 (2017).
[Crossref]

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

Jin, X.

Y. Pan, S. Zhang, J. Zheng, Y. Li, X. Jin, H. Chi, and X. Zhang, “Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna,” IEEE AntennasWireless Propag. Lett. 16, 385–388 (2017).

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1530–1536 (2015).
[Crossref]

S. Zheng, X. Hui, J. Zhu, H. Chi, X. Jin, S. Yu, and X. Zhang, “Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture,” Opt. Express 23(9), 12251–12257 (2015).
[Crossref] [PubMed]

Johansson, P.

Käll, M.

Kennedy, J.

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

Lavery, M. P. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Lehmuskero, A.

Lei, J.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
[Crossref]

Lei, M.

M. Li, S. Yan, B. Yao, Y. Liang, M. Lei, and Y. Yang, “Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization,” Phys. Lett. A 380(1-2), 311–315 (2016).
[Crossref]

Li, L.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, Fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Li, M.

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antenn. Propag. 65(1), 396–400 (2017).
[Crossref]

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

M. Li, S. Yan, B. Yao, Y. Liang, M. Lei, and Y. Yang, “Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization,” Phys. Lett. A 380(1-2), 311–315 (2016).
[Crossref]

Li, N.

Y. Gong, R. Wang, Y. Deng, B. Zhang, N. Wang, N. Li, and P. Wang, “Generation and Transmission of OAM-Carrying Vortex Beams Using Circular Antenna Array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Li, X.

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Li, Y.

Y. Pan, S. Zhang, J. Zheng, Y. Li, X. Jin, H. Chi, and X. Zhang, “Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna,” IEEE AntennasWireless Propag. Lett. 16, 385–388 (2017).

Z. Zhang, S. Xiao, Y. Li, and B. Z. Wang, “A Circularly Polarized Multimode Patch Antenna for the Generation of Multiple Orbital Angular Momentum Modes,” IEEE AntennasWireless Propag. Lett. 16, 521–524 (2017).

A. Lehmuskero, Y. Li, P. Johansson, and M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014).
[Crossref] [PubMed]

Liang, Y.

M. Li, S. Yan, B. Yao, Y. Liang, M. Lei, and Y. Yang, “Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization,” Phys. Lett. A 380(1-2), 311–315 (2016).
[Crossref]

Lin, J.

Lioubtchenko, D.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of plannar grids and high-impedance surfaces comprising metal strips or pateches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Lu, M.

Lu, Q. N.

Luo, J.

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

Luo, X.

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Luukkonen, O.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of plannar grids and high-impedance surfaces comprising metal strips or pateches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Ma, X.

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Mahdjoubi, K.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM Flat-Plate Antenna in the Millimeter Frequency Band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Mari, E.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experiment test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Menard, A.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM Flat-Plate Antenna in the Millimeter Frequency Band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Molisch, A. F.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Niemiec, R.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM Flat-Plate Antenna in the Millimeter Frequency Band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Niu, H.

Padgett, M. J.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Pan, Y.

Y. Pan, S. Zhang, J. Zheng, Y. Li, X. Jin, H. Chi, and X. Zhang, “Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna,” IEEE AntennasWireless Propag. Lett. 16, 385–388 (2017).

Peng, X.

Pu, M.

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Qin, F.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Raisanen, A. V.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of plannar grids and high-impedance surfaces comprising metal strips or pateches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Ratni, B.

Ren, H.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Ren, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Romanato, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experiment test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Romero, J.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
[Crossref]

Sha, W. E. I.

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antenn. Propag. 65(1), 396–400 (2017).
[Crossref]

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

Shi, G.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, Fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Shi, Y.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, Fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Simovski, C.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of plannar grids and high-impedance surfaces comprising metal strips or pateches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experiment test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Tamburini, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experiment test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Tang, K.

Tao, S.

Thidé, B.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experiment test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Torner, L.

Torres, J.

Tretyakov, S. A.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of plannar grids and high-impedance surfaces comprising metal strips or pateches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Tur, M.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Wang, B. Z.

Z. Zhang, S. Xiao, Y. Li, and B. Z. Wang, “A Circularly Polarized Multimode Patch Antenna for the Generation of Multiple Orbital Angular Momentum Modes,” IEEE AntennasWireless Propag. Lett. 16, 521–524 (2017).

Wang, C.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Wang, N.

Y. Gong, R. Wang, Y. Deng, B. Zhang, N. Wang, N. Li, and P. Wang, “Generation and Transmission of OAM-Carrying Vortex Beams Using Circular Antenna Array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Wang, P.

Y. Gong, R. Wang, Y. Deng, B. Zhang, N. Wang, N. Li, and P. Wang, “Generation and Transmission of OAM-Carrying Vortex Beams Using Circular Antenna Array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Wang, R.

Y. Gong, R. Wang, Y. Deng, B. Zhang, N. Wang, N. Li, and P. Wang, “Generation and Transmission of OAM-Carrying Vortex Beams Using Circular Antenna Array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Wang, Y.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Willner, A. E.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Wu, Q.

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref] [PubMed]

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

Xiao, S.

Z. Zhang, S. Xiao, Y. Li, and B. Z. Wang, “A Circularly Polarized Multimode Patch Antenna for the Generation of Multiple Orbital Angular Momentum Modes,” IEEE AntennasWireless Propag. Lett. 16, 521–524 (2017).

Xie, G.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Yan, S.

M. Li, S. Yan, B. Yao, Y. Liang, M. Lei, and Y. Yang, “Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization,” Phys. Lett. A 380(1-2), 311–315 (2016).
[Crossref]

Yan, Y.

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Yang, J.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Yang, J. J.

Yang, Y.

M. Li, S. Yan, B. Yao, Y. Liang, M. Lei, and Y. Yang, “Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization,” Phys. Lett. A 380(1-2), 311–315 (2016).
[Crossref]

Yao, B.

M. Li, S. Yan, B. Yao, Y. Liang, M. Lei, and Y. Yang, “Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization,” Phys. Lett. A 380(1-2), 311–315 (2016).
[Crossref]

Yu, H.

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

Yu, S.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, Fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Zheng, X. Hui, J. Zhu, H. Chi, X. Jin, S. Yu, and X. Zhang, “Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture,” Opt. Express 23(9), 12251–12257 (2015).
[Crossref] [PubMed]

Yuan, X. C.

Yuan, Y.

Zhang, B.

Y. Gong, R. Wang, Y. Deng, B. Zhang, N. Wang, N. Li, and P. Wang, “Generation and Transmission of OAM-Carrying Vortex Beams Using Circular Antenna Array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

Zhang, D.

Zhang, F.

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

Zhang, K.

K. Zhang, Y. Yuan, D. Zhang, X. Ding, B. Ratni, S. N. Burokur, M. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351–1360 (2018).
[Crossref] [PubMed]

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

Zhang, L.

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

Zhang, S.

Y. Pan, S. Zhang, J. Zheng, Y. Li, X. Jin, H. Chi, and X. Zhang, “Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna,” IEEE AntennasWireless Propag. Lett. 16, 385–388 (2017).

Zhang, X.

Y. Pan, S. Zhang, J. Zheng, Y. Li, X. Jin, H. Chi, and X. Zhang, “Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna,” IEEE AntennasWireless Propag. Lett. 16, 385–388 (2017).

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1530–1536 (2015).
[Crossref]

S. Zheng, X. Hui, J. Zhu, H. Chi, X. Jin, S. Yu, and X. Zhang, “Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture,” Opt. Express 23(9), 12251–12257 (2015).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, S. Xiao, Y. Li, and B. Z. Wang, “A Circularly Polarized Multimode Patch Antenna for the Generation of Multiple Orbital Angular Momentum Modes,” IEEE AntennasWireless Propag. Lett. 16, 521–524 (2017).

Zhao, Z.

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Zheng, J.

Y. Pan, S. Zhang, J. Zheng, Y. Li, X. Jin, H. Chi, and X. Zhang, “Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna,” IEEE AntennasWireless Propag. Lett. 16, 385–388 (2017).

Zheng, S.

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1530–1536 (2015).
[Crossref]

S. Zheng, X. Hui, J. Zhu, H. Chi, X. Jin, S. Yu, and X. Zhang, “Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture,” Opt. Express 23(9), 12251–12257 (2015).
[Crossref] [PubMed]

Zhou, X.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, Fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, Fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhu, J.

Adv. Funct. Mater. (1)

F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, “All-Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions,” Adv. Funct. Mater. 27(47), 1704295 (2017).
[Crossref]

Appl. Phys. Lett. (1)

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, Fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM Flat-Plate Antenna in the Millimeter Frequency Band,” IEEE Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

IEEE AntennasWireless Propag. Lett. (2)

Z. Zhang, S. Xiao, Y. Li, and B. Z. Wang, “A Circularly Polarized Multimode Patch Antenna for the Generation of Multiple Orbital Angular Momentum Modes,” IEEE AntennasWireless Propag. Lett. 16, 521–524 (2017).

Y. Pan, S. Zhang, J. Zheng, Y. Li, X. Jin, H. Chi, and X. Zhang, “Generation of Orbital Angular Momentum Radio Waves Based on Dielectric Resonator Antenna,” IEEE AntennasWireless Propag. Lett. 16, 385–388 (2017).

IEEE Trans. Antenn. Propag. (4)

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies,” IEEE Trans. Antenn. Propag. 65(1), 396–400 (2017).
[Crossref]

S. Zheng, X. Hui, X. Jin, H. Chi, and X. Zhang, “Transmission Characteristics of a Twisted Radio Wave Based on Circular Traveling-Wave Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1530–1536 (2015).
[Crossref]

Y. Gong, R. Wang, Y. Deng, B. Zhang, N. Wang, N. Li, and P. Wang, “Generation and Transmission of OAM-Carrying Vortex Beams Using Circular Antenna Array,” IEEE Trans. Antenn. Propag. 65(6), 2940–2949 (2017).
[Crossref]

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of plannar grids and high-impedance surfaces comprising metal strips or pateches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

IEEE Trans. Evol. Comput. (1)

M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).
[Crossref]

J. Appl. Phys. (1)

M. Li, N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency,” J. Appl. Phys. 119(6), 064506 (2016).
[Crossref]

Light Sci. Appl. (1)

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light Sci. Appl. 3(3), e153 (2014).
[Crossref]

Nat. Commun. (1)

Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, and A. E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

New J. Phys. (3)

K. Zhang, X. Ding, L. Zhang, and Q. Wu, “Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions,” New J. Phys. 16(10), 103020 (2014).
[Crossref]

B. Jack, M. J. Padgett, and S. Franke-Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experiment test,” New J. Phys. 14(3), 033001 (2012).
[Crossref]

Opt. Express (6)

Phys. Lett. A (1)

M. Li, S. Yan, B. Yao, Y. Liang, M. Lei, and Y. Yang, “Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization,” Phys. Lett. A 380(1-2), 311–315 (2016).
[Crossref]

Sci. Adv. (1)

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref] [PubMed]

Sci. Rep. (2)

L. Cheng, W. Hong, and Z. C. Hao, “Generation of electromagnetic waves with arbitrary orbital angular momentum modes,” Sci. Rep. 4(1), 4814 (2015).
[Crossref] [PubMed]

M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, and X. Luo, “Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping,” Sci. Rep. 5(1), 9822 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Front view of the metasurface consists of metal loops. (b) Photograph of the fabricated metasurface. (c) Back view of the metasurface consists of metal patches. (d) Side view of the proposed device (four cascaded metasurfaces) which can convert an LH (RH) circularly polarized incident plane wave into a RH (LH) circularly polarized vortex wave.
Fig. 2
Fig. 2 (a) The general schematic of the proposed achromatic metasurface unit cell. (b) The magnitude (S21(dB)) and phase responses of the metasurface cell under different polarization states. (c) The PCR of the proposed metasurface unit cell.
Fig. 3
Fig. 3 (a) The equivalent circuit model for x-polarized incident wave. (b) The equivalent circuit model for y-polarized incident wave.
Fig. 4
Fig. 4 (a) and (c) The simulated (by HFSS) transmission coefficients of the proposed metasurface under x-polarization and y-polarization. (b) and (d) The calculated (based on the equivalent circuit model) transmission coefficients of the proposed metasurface under x-polarization and y-polarization.
Fig. 5
Fig. 5 Simulated phase (upper row) and amplitude (bottom row) distributions of the transmitted electric field at different frequencies for vortex wave with topological l = 2, (a) and (e) 6GHz; (b) and (f) 8GHz; (c) and (g) 10GHz; (d) and (h) 12GHz.
Fig. 6
Fig. 6 Experimental system configuration for measuring the vortex wavefront using the near-field scanning technique.
Fig. 7
Fig. 7 Measured phase (upper row) and amplitude (bottom row) distributions of the transmitted electric field at different frequencies for vortex wave with topological l = 2, (a) and (e) 8GHz; (b) and (f) 9GHz; (c) and (g) 10GHz; (d) and (h) 11GHz.
Fig. 8
Fig. 8 Simulated and measured efficiencies and polarization conversion ratios of the proposed metasurface-based OAM generator.
Fig. 9
Fig. 9 OAM spectra of the transmitted wave at 8GHz, 9GHz, and 10GHz.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

( E tx E ty )=( J xx J xy J yx J yy )( E ix E iy )
Λ= 1 2 ( 1 1 i i )
( E left t E right t )= Λ 1 JΛ( E left i E right i )= J c ( E left i E right i )
J c kφ = ( cos(kφ) sin(kφ) sin(kφ) cos(kφ) ) 1 J c ( cos(kφ) sin(kφ) sin(kφ) cos(kφ) )
J c kφ = 1 2 ( J xx + J yy ( J xx J yy ) e j2kφ ( J xx J yy ) e j2kφ J xx + J yy )
C pi = ε 0 ε eff 2a π ln( 1 sin( π(a b i ) 4a ) )
L pi = μ 0 μ eff a 2π ln( 1 sin( π w i a ) )
T x =[ A x B x C x D x ]= i=1 N [ 1 0 jω C pi 1 ] [ A 0 B 0 C 0 D 0 ][ A i B i C i D i ]
T y =[ A y B y C y D y ]= i=1 N [ 1 0 jω C pi 1 ] [ A 0 B 0 C 0 D 0 ][ 1 0 1/jω L pi 1 ][ A i B i C i D i ]
[ A 0 B 0 C 0 D 0 ]=[ cos( 2πt λ 1 ) j Z 1 sin( 2πt λ 1 ) j sin( 2πt λ 1 ) Z 1 cos( 2πt λ 1 ) ]
[ A i B i C i D i ]=[ cos( 2π h i λ ) j Z 0 sin( 2π h i λ ) j sin( 2π h i λ ) Z 0 cos( 2π h i λ ) ]
J xx (ω, C p1 ... C pN , L p1 ... L pN , h 1 ... h N )= 2 A x + B x Z 0 + C x Z 0 + D x
J yy (ω, C p1 ... C pN , L p1 ... L pN , h 1 ... h N )= 2 A y + B y Z 0 + C y Z 0 + D y
v i k+1 =u v i k +pRand*(Lbes t i k x i k )+qRand*(Gbes t i k x i k )
x i k+1 = x i k + v i k+1
x=[ b 1 ... b N , w 1 ... w N , h 1 ... h N ]
Fitness=max(1| J xx |)+max(1| J yy |)+max(| arg( J xx )arg( J yy )π |)
A l = 1 2π 0 2π ψ(φ) dφ e jlφ
ψ(φ)= l A l e jlφ

Metrics