Abstract

We demonstrate a single-pixel imaging (SPI) method that can achieve pixel resolution beyond the physical limitation of the spatial light modulator (SLM), by adopting sinusoidal amplitude modulation and frequency filtering. Through light field analysis, we observe that the induced intensity with a squared value of the amplitude contains higher frequency components. By filtering out the zero frequency of the sinusoidal amplitude in the Fourier domain, we can separate out the higher frequency components, which enables SPI with higher resolving ability and thus beyond the limitation of the SLM. Further, to address the speed issue in grayscale spatial light modulation, we propose a fast implementation scheme with tens-of-kilohertz refresh rate. Specifically, we use a digital micromirror device (DMD) working at the full frame rate to conduct binarized sinusoidal patterning in the spatial domain and pinhole filtering eliminating the binarization error in the Fourier domain. For experimental validation, we build a single-pixel microscope to retrieve 1200 × 1200-pixel images via a sub-megapixel DMD, and the setup achieves comparable performance to array sensor microscopy and provides additional sectioning ability.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-wavelength spatial frequency domain diffuse optical tomography using single-pixel imaging based on lock-in photon counting

Tongxin Li, Zhuanping Qin, Xi Hou, Mai Dan, Jiao Li, Limin Zhang, Zhongxing Zhou, and Feng Gao
Opt. Express 27(16) 23138-23156 (2019)

Computational-weighted Fourier single-pixel imaging via binary illumination

Jian Huang, Dongfeng Shi, Kee Yuan, Shunxing Hu, and Yingjian Wang
Opt. Express 26(13) 16547-16559 (2018)

Radon single-pixel imaging with projective sampling

Shi Dongfeng, Huang Jian, Meng Wenwen, Yin Kaixin, Sun Baoqing, Wang Yingjian, Yuan Kee, Xie Chenbo, Liu Dong, and Zhu Wenyue
Opt. Express 27(10) 14594-14609 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
    [Crossref]
  2. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref] [PubMed]
  3. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref]
  4. N. Huynh, E. Zhang, M. Betcke, S. Arridge, P. Beard, and B. Cox, “Single-pixel optical camera for video rate ultrasonic imaging,” Optica 3, 26–29 (2016).
    [Crossref]
  5. B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2, 405–450 (2010).
    [Crossref]
  6. J. Greenberg, K. Krishnamurthy, and D. Brady, “Compressive single-pixel snapshot x-ray diffraction imaging,” Opt. Lett. 39, 111–114 (2014).
    [Crossref]
  7. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
    [Crossref]
  8. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
    [Crossref]
  9. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
    [Crossref]
  10. E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
    [Crossref] [PubMed]
  11. V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
    [Crossref] [PubMed]
  12. L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25, 4975–4984 (2017).
    [Crossref] [PubMed]
  13. G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25, 2998–3005 (2017).
    [Crossref] [PubMed]
  14. G. A. Howland, P. B. Dixon, and J. C. Howell, “Photon-counting compressive sensing laser radar for 3D imaging,” Appl. Opt. 50, 5917–5920 (2011).
    [Crossref] [PubMed]
  15. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
    [Crossref]
  16. F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
    [Crossref] [PubMed]
  17. C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133–138 (2016).
    [Crossref]
  18. R. Szeliski, “Image alignment and stitching: A tutorial,” Found. Trends. Comput. Graph. Vis. 2, 1–104 (2006).
    [Crossref]
  19. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
    [Crossref] [PubMed]
  20. M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
    [Crossref] [PubMed]
  21. S. Tetsuno, K. Shibuya, and T. Iwata, “Subpixel-shift cyclic-hadamard microscopic imaging using a pseudo-inverse-matrix procedure,” Opt. Express 25, 3420–3432 (2017).
    [Crossref] [PubMed]
  22. R. D. Juday, “Correlation with a spatial light modulator having phase and amplitude cross coupling,” Appl. Opt. 28, 4865–4869 (1989).
    [Crossref] [PubMed]
  23. D. Engström, G. Milewski, J. Bengtsson, and S. Galt, “Diffraction-based determination of the phase modulation for general spatial light modulators,” Appl. Opt. 45, 7195–7204 (2006).
    [Crossref] [PubMed]
  24. S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40, 5407–5410 (2015).
    [Crossref] [PubMed]
  25. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
    [Crossref] [PubMed]
  26. A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
    [Crossref] [PubMed]
  27. R. Floyd and L. Steinberg, “An adaptive algorithm for spatial greyscale,” Proc. Soc. Inf. Disp. 17, 75–77 (1976).
  28. Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast fourier single-pixel imaging via binary illumination,” Sci. Rep. 7, 12029 (2017).
    [Crossref] [PubMed]
  29. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 2008).
  30. C. Li, “An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing,” Master’s thesis, Rice University (2010).
  31. F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
    [Crossref] [PubMed]
  32. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
    [Crossref] [PubMed]
  33. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
    [Crossref] [PubMed]
  34. R. A. Ulichney, “Dithering with blue noise,” Proc. IEEE 76, 56–79 (1988).
    [Crossref]
  35. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
    [Crossref] [PubMed]
  36. P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
    [Crossref] [PubMed]
  37. Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
    [Crossref] [PubMed]
  38. M. Strupler, E. D. Montigny, D. Morneau, and C. Boudoux, “Rapid spectrally encoded fluorescence imaging using a wavelength-swept source,” Opt. Lett. 35, 1737–1739 (2010).
    [Crossref] [PubMed]

2017 (5)

2016 (5)

2015 (7)

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
[Crossref] [PubMed]

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40, 5407–5410 (2015).
[Crossref] [PubMed]

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref] [PubMed]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
[Crossref] [PubMed]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (2)

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2, 405–450 (2010).
[Crossref]

M. Strupler, E. D. Montigny, D. Morneau, and C. Boudoux, “Rapid spectrally encoded fluorescence imaging using a wavelength-swept source,” Opt. Lett. 35, 1737–1739 (2010).
[Crossref] [PubMed]

2009 (2)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

2008 (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

2006 (2)

2004 (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref] [PubMed]

1989 (1)

1988 (1)

R. A. Ulichney, “Dithering with blue noise,” Proc. IEEE 76, 56–79 (1988).
[Crossref]

1976 (1)

R. Floyd and L. Steinberg, “An adaptive algorithm for spatial greyscale,” Proc. Soc. Inf. Disp. 17, 75–77 (1976).

Andrés, P.

Arridge, S.

Aspden, R. S.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Bartoo, A. C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Beard, P.

Bell, J. E.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Bengtsson, J.

Betcke, M.

Boudoux, C.

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref] [PubMed]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Bowman, R.

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Bowman, R. W.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Boyd, R. W.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Bozinovic, N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Brady, D.

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Caravaca-Aguirre, A. M.

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Chu, K. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Clemente, P.

Climent, V.

Conkey, D. B.

Cox, B.

Daudet, L.

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Dixon, P. B.

Drémeau, A.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Durán, V.

Edgar, M. P.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25, 2998–3005 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Engström, D.

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2, 405–450 (2010).
[Crossref]

Floyd, R.

R. Floyd and L. Steinberg, “An adaptive algorithm for spatial greyscale,” Proc. Soc. Inf. Disp. 17, 75–77 (1976).

Ford, T. N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Galt, S.

Gibson, G. M.

Gigan, S.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 2008).

Greenberg, J.

Hempler, N.

Hourtoule, C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Howell, J. C.

Howland, G. A.

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Huynh, N.

Intes, X.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

Irles, E.

Iwata, T.

Juday, R. D.

Katz, O.

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Kim, K.

Krishna, S.

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133–138 (2016).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Krishnamurthy, K.

Krzakala, F.

Lamb, R.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Lancis, J.

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Li, C.

C. Li, “An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing,” Master’s thesis, Rice University (2010).

Lim, D.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Liutkus, A.

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Maker, G. T.

Malcolm, G. P.

Martina, D.

Martínez-León, L.

Mertz, J.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Milewski, G.

Mitchell, K. J.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

Montigny, E. D.

Montoya, J.

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133–138 (2016).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Mori, Y.

Morneau, D.

Morris, P. A.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

Nadell, C. C.

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Padgett, M. J.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25, 2998–3005 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

Padilla, W. J.

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133–138 (2016).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Park, Y.

Phillips, D. B.

Pian, Q.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

Piestun, R.

Radwell, N.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
[Crossref]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Salvador-Balaguer, E.

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref] [PubMed]

Santos, S.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Schülke, C.

Shapiro, J. H.

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2, 405–450 (2010).
[Crossref]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref] [PubMed]

Shibuya, K.

Shin, S.

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref] [PubMed]

Singh, S. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Sinsuebphon, N.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Soldevila, F.

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
[Crossref] [PubMed]

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref] [PubMed]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
[Crossref] [PubMed]

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref] [PubMed]

Steinberg, L.

R. Floyd and L. Steinberg, “An adaptive algorithm for spatial greyscale,” Proc. Soc. Inf. Disp. 17, 75–77 (1976).

Strupler, M.

Sun, B.

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25, 2998–3005 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Sun, M. J.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref] [PubMed]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Szeliski, R.

R. Szeliski, “Image alignment and stitching: A tutorial,” Found. Trends. Comput. Graph. Vis. 2, 1–104 (2006).
[Crossref]

Tajahuerce, E.

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Tetsuno, S.

Ulichney, R. A.

R. A. Ulichney, “Dithering with blue noise,” Proc. IEEE 76, 56–79 (1988).
[Crossref]

Uribe-Patarroyo, N.

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
[Crossref] [PubMed]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Wang, X.

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast fourier single-pixel imaging via binary illumination,” Sci. Rep. 7, 12029 (2017).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, C. C. Nadell, J. Montoya, S. Krishna, and W. J. Padilla, “Frequency-division-multiplexed single-pixel imaging with metamaterials,” Optica 3, 133–138 (2016).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Welsh, S. S.

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

Yao, R.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

Yoon, J.

Zhang, E.

Zhang, Z.

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast fourier single-pixel imaging via binary illumination,” Sci. Rep. 7, 12029 (2017).
[Crossref] [PubMed]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Zheng, G.

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast fourier single-pixel imaging via binary illumination,” Sci. Rep. 7, 12029 (2017).
[Crossref] [PubMed]

Zhong, J.

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast fourier single-pixel imaging via binary illumination,” Sci. Rep. 7, 12029 (2017).
[Crossref] [PubMed]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

B. I. Erkmen and J. H. Shapiro, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. Photonics 2, 405–450 (2010).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[Crossref]

Found. Trends. Comput. Graph. Vis. (1)

R. Szeliski, “Image alignment and stitching: A tutorial,” Found. Trends. Comput. Graph. Vis. 2, 1–104 (2006).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

IEEE Trans. Image Process (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14, 030502 (2009).
[Crossref] [PubMed]

Nat. Commun. (3)

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6, 5913 (2015).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
[Crossref] [PubMed]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012).
[Crossref] [PubMed]

Opt. Express (8)

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[Crossref] [PubMed]

A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, and L. Daudet, “Reference-less measurement of the transmission matrix of a highly scattering material using a dmd and phase retrieval techniques,” Opt. Express 23, 11898–11911 (2015).
[Crossref] [PubMed]

E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
[Crossref] [PubMed]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23, 14424–14433 (2015).
[Crossref] [PubMed]

L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25, 4975–4984 (2017).
[Crossref] [PubMed]

G. M. Gibson, B. Sun, M. P. Edgar, D. B. Phillips, N. Hempler, G. T. Maker, G. P. Malcolm, and M. J. Padgett, “Real-time imaging of methane gas leaks using a single-pixel camera,” Opt. Express 25, 2998–3005 (2017).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476–10485 (2016).
[Crossref] [PubMed]

S. Tetsuno, K. Shibuya, and T. Iwata, “Subpixel-shift cyclic-hadamard microscopic imaging using a pseudo-inverse-matrix procedure,” Opt. Express 25, 3420–3432 (2017).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (3)

Proc. IEEE (1)

R. A. Ulichney, “Dithering with blue noise,” Proc. IEEE 76, 56–79 (1988).
[Crossref]

Proc. Soc. Inf. Disp. (1)

R. Floyd and L. Steinberg, “An adaptive algorithm for spatial greyscale,” Proc. Soc. Inf. Disp. 17, 75–77 (1976).

Sci. Rep. (4)

Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Fast fourier single-pixel imaging via binary illumination,” Sci. Rep. 7, 12029 (2017).
[Crossref] [PubMed]

F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andrés, and J. Lancis, “Computational imaging with a balanced detector,” Sci. Rep. 6, 29181 (2016).
[Crossref] [PubMed]

M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
[Crossref]

F. Soldevila, E. Salvador-Balaguer, P. Clemente, E. Tajahuerce, and J. Lancis, “High-resolution adaptive imaging with a single photodiode,” Sci. Rep. 5, 14300 (2015).
[Crossref] [PubMed]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref] [PubMed]

Other (2)

J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 2008).

C. Li, “An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing,” Master’s thesis, Rice University (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The scheme of single-pixel imaging. After being modulated by an SLM, the spatially resolved light encodes the sample information and then is recorded by a single-pixel detector. (b) By adopting amplitude modulation with sinusoidal function (only a single fundamental frequency), we can generate a different intensity pattern Igray with sharper ridges (including both fundamental frequency and doubled frequency). In the Fourier domain, we propose to block the zero-frequency of the sinusoidally modulated light Ugray, which generates an intensity pattern Idouble with denser fringes (including only the doubled component).
Fig. 2
Fig. 2 (a) shows the principle of our frequency extension method, which can retrieve (2f x 0 , 2f y 0 ) frequency of the scene from (f x 0 , f y 0 ) modulation by an SLM. (b) and (c) show imaging results of a dog pylorus slice without and with our frequency extension method. As the white dashed rectangle highlight, frequency extension brings broader spatial spectrum. Correspondingly, our method retrieves richer details in the spatial domain, as demonstrated by the region framed by the solid rectangle. We show the amplitude of the spatial spectrum on a logarithm scale for better visibility. All spectrum power and spatial intensity are normalized to range 0 ∼ 1. Scale bar: 50 μm.
Fig. 3
Fig. 3 Highlighted key techniques in the manuscript. In the theoretical model, we use a grayscale SLM to generate continuous sinusoidal amplitudes. In the implementation, we use a DMD combined with pinhole filtering to replace the grayscale SLM for higher modulation rate.
Fig. 4
Fig. 4 (a) The scheme of the proposed system. (b) Region configuration in the DMD. The total pixel number of a .7 DMD is 1024 × 768. We use the left 640 × 640-pixel region to display dithered sinusoidal patterns, and the right 384 × 384-pixel region to display pinhole masks. The radius of each pinhole is 15 pixels in DMD, which is about 200 μm in the space. Symbol key: L, lens; CM, concave mirror; TL, tube lens; Obj, objective.
Fig. 5
Fig. 5 Experimental validation of the proposed frequency filtering method. (a) The Floyd-Steinberg dithered (FD) sinusoidal pattern with fx = fy = 25. (b)(c)(d) The results after applying different pinhole masks to the spatial spectrum of the pattern in (a). 1st row: the pinhole mask. 2nd row: the filtered spatial spectrum. 3rd: generated fringes on the sample plane. 4th row: the theoretical prediction of the fringes by previous analysis. Both dithered patterning and filtering are implemented at the full frame rate of the DMD.
Fig. 6
Fig. 6 (a), (b), (c) Imaging results of the 1951 USAF Resolution Test Target using dithered binary patterns, pinhole filtered dithered patterns and direct grayscale sinusoidal patterns, respectively. Insects show the enlarged regions marked by the red boxes. SSIM are labeled below the results of the spatial domain. The spectral spectrums are shown in the bottom. Here we show the amplitude of the spatial spectrum on a logarithm scale for better visibility, and all the spectrum strength are normalized from 0 to 1.
Fig. 7
Fig. 7 (a) Imaging results of a 1951 USAF resolution chart. The region of Group 6, Element 1 is zoomed in and shown in the inset. (b) The profiles along the red and blue line segments in the inset of (a) as well as the average intensity distribution (the second row). Scale bar: 1 mm in (a) and 50 μm in the inset of (a).
Fig. 8
Fig. 8 (a) The megapixel imaging results of a dog taste buds slice. Scale bar: 500 μm. (b), (c) Higher-magnification views of regions marked by the white boxes in (a), with increasing pixel counts. The right-most column shows the ground truth captured by a wide-field microscope with background subtraction. Scale bar: 50 μm.
Fig. 9
Fig. 9 (a), (b) and (c) show imaging results of a rabbit’s vein section using our system, a confocal microscope and a wide-field microscope, respectively. The right column shows the enlarged regions marked by the white boxes in (a), (b) and (c). Scale bar: 100 μm in the left column and 10 μm in the right column.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U gray ( x 0 , y 0 , ϕ ) = 1 + cos ( 2 π f x x 0 + 2 π f y y 0 + ϕ ) , I gray ( x 0 , y 0 , ϕ ) = | U gray ( x 0 , y 0 , ϕ ) | 2 = 3 2 + 2 cos ( 2 π f x x 0 + 2 π f y y 0 + ϕ ) + 1 2 cos ( 2 π 2 f x x 0 + 2 π 2 f y y 0 + 2 ϕ ) ,
T ( f x , f y , ϕ ) = N env + Ω | U gray ( x 0 , y 0 , ϕ ) S ( x 0 , y 0 ) | 2 d x 0 d y 0 , = N env + Ω I gray ( x 0 , y 0 , ϕ ) S ( x 0 , y 0 ) 2 d x 0 d y 0 ,
T ( f x , f y , 0 ) T ( f x , f y , π ) + j ( T ( f x , f y , π 2 ) T ( f x , f y , 3 π 2 ) ) = 4 [ S ( x 0 , y 0 ) 2 , f x , f y ] .
U double ( x 0 , y 0 , ϕ ) = cos ( 2 π f x x 0 + 2 π f y y 0 + ϕ ) I double ( x 0 , y 0 , ϕ ) = 1 2 + 1 2 cos ( 2 π 2 f x x 0 + 2 π 2 f y y 0 + 2 ϕ ) .
T ( f x , f y , 0 ) T ( f x , f y , π 2 ) + j ( T ( f x , f y , π 4 ) T ( f x , f y , 3 π 4 ) ) = [ S ( x 0 , y 0 ) 2 , 2 f x , 2 f y ] .
U binary ( x 0 , y 0 , ϕ ) = FD { 1 + cos ( 2 π f x x 0 + 2 π f y y 0 + ϕ ) } ,
U ^ binary = δ ( ξ , η ) + 1 2 δ ( ξ + λ f x f 1 , η + λ f y f 1 ) e j ϕ + 1 2 δ ( ξ λ f x f 1 , η λ f y f 1 ) e j ϕ + N bin ( ξ , η ) ,
T total ( f x , f y , ϕ ) = N env + Ω S out ( x 0 , y 0 ) 2 d x 0 d y 0 + Ω | [ 1 + cos ( 2 π f x x 0 + 2 π f y y 0 + ϕ ) ] S in ( x 0 , y 0 ) | 2 d x 0 d y 0 ,
T total ( f x , f y , 0 ) T total ( f x , f y , π ) + j ( T total ( f x , f y , π 2 ) T total ( f x , f y , 3 π 2 ) ) = 4 [ S in ( x 0 , y 0 ) 2 , f x , f y ] ,

Metrics