Abstract

A long-period fiber grating (LPFG) mode converter based on a two-mode polarization-maintaining photonic crystal fiber (PM-PCF) is proposed and demonstrated. The mode converters realize conversions between the LP01 modes and LP11a modes with parallel polarization directions. Different from typical conventional mode converters, the PM-PCF-LPFG mode converters most notably can separate out two linearly polarized LP11a modes at different wavelengths. The highest mode-conversion efficiency is more than 99%. In addition, the bandwidth of the mode converter is adjustable by changing the grating number of the LPFG.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mode converter based on the long-period fiber gratings written in the two-mode fiber

Yunhe Zhao, Yunqi Liu, Liang Zhang, Chenyi Zhang, Jianxiang Wen, and Tingyun Wang
Opt. Express 24(6) 6186-6195 (2016)

Ultra-broadband mode converters based on length-apodized long-period waveguide gratings

Wen Wang, Jieyun Wu, Kaixin Chen, Wei Jin, and Kin Seng Chiang
Opt. Express 25(13) 14341-14350 (2017)

1.3  μm fiber grating in a thin-core fiber for LP01–LP11 mode converters and sensing ability

Rongxin Tong, Hangzhou Yang, Kai Lu, Yen-Sian Lee, Kok-Sing Lim, Harith Ahmad, and Manli Hu
Appl. Opt. 58(16) 4358-4364 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhao, Y. Liu, C. Zhang, L. Zhang, G. Zheng, C. Mou, J. Wen, and T. Wang, “All-fiber mode converter based on long-period fiber gratings written in few-mode fiber,” Opt. Lett. 42(22), 4708–4711 (2017).
    [Crossref] [PubMed]
  2. J. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
    [Crossref]
  3. S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
    [Crossref]
  4. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 x 6 MIMO Processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [Crossref]
  5. M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, and G. Charlet, “Mode division multiplexing of 2 × 100Gb/s channels using an LCOS based spatial modulator,” J. Lightwave Technol. 30(4), 618–623 (2012).
    [Crossref]
  6. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Asymmetric parallel waveguide with mode conversion for mode and wavelength division multiplexing transmission,” in Proc. The Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC2012), paper OTu1l.4.
    [Crossref]
  7. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
    [Crossref] [PubMed]
  8. T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, and L. Zhang, “Narrow bandwidth passively mode locked picosecond Erbium doped fiber laser using a 45 degrees tilted fiber grating device,” Opt. Express 25(14), 16708–16714 (2017).
    [Crossref] [PubMed]
  9. K. J. Park, K. Y. Song, Y. K. Kim, J. H. Lee, and B. Y. Kim, “Broadband mode division multiplexer using all-fiber mode selective couplers,” Opt. Express 24(4), 3543–3549 (2016).
    [Crossref] [PubMed]
  10. B. Huang, N. K. Fontaine, R. Ryf, B. Guan, S. G. Leon-Saval, R. Shubochkin, Y. Sun, R. Lingle, and G. Li, “All-fiber mode-group-selective photonic lantern using graded-index multimode fibers,” Opt. Express 23(1), 224–234 (2015).
    [Crossref] [PubMed]
  11. Y. Gao, J. Sun, G. Chen, and C. Sima, “Demonstration of simultaneous mode conversion and demultiplexing for mode and wavelength division multiplexing systems based on tilted few-mode fiber Bragg gratings,” Opt. Express 23(8), 9959–9967 (2015).
    [Crossref] [PubMed]
  12. Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
    [Crossref]
  13. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27(9), 698–700 (2002).
    [Crossref] [PubMed]
  14. A. Iadicicco, R. Ranjan, F. Esposito, and S. Campopiano, “Arc-induced long period gratings in polarization-maintaining panda fiber,” IEEE Photonics Technol. Lett. 29(18), 1533–1536 (2017).
  15. C. D. Poole, H. M. Presby, and J. P. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30(17), 1437–1438 (1994).
    [Crossref]
  16. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
    [Crossref] [PubMed]
  17. T. Wang, F. Wang, F. Shi, F. F. Pang, S. J. Huang, T. Y. Wang, and X. L. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
    [Crossref]
  18. G. Bellanca, N. Riesen, A. Argyros, S. G. Leon-Saval, R. Lwin, A. Parini, J. D. Love, and P. Bassi, “Holey fiber mode-selective couplers,” Opt. Express 23(15), 18888–18896 (2015).
    [Crossref] [PubMed]
  19. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, “Wavelength-independent all-fiber mode converters,” Opt. Lett. 32(4), 328–330 (2007).
    [Crossref] [PubMed]
  20. Z. J. Zhang, Y. Tsuji, M. Eguchi, and C. P. Chen, “Design of polarization converter based on photonic crystal fiber with anisotropic lattice core consisting of circular holes,” J. Opt. Soc. Am. B 34(10), 2227–2232 (2017).
    [Crossref]
  21. G. Masri, S. Shahal, A. Klein, H. Duadi, and M. Fridman, “Polarization dependence of asymmetric off-resonance long period fiber gratings,” Opt. Express 24(26), 29843–29851 (2016).
    [Crossref] [PubMed]
  22. X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
    [Crossref]
  23. J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
    [Crossref]
  24. N. Andermahr and C. Fallnich, “Optically induced long-period fiber gratings for guided mode conversion in few-mode fibers,” Opt. Express 18(5), 4411–4416 (2010).
    [Crossref] [PubMed]
  25. Y. Wang, L. Xiao, D. N. Wang, and W. Jin, “In-fiber polarizer based on a long-period fiber grating written on photonic crystal fiber,” Opt. Lett. 32(9), 1035–1037 (2007).
    [Crossref] [PubMed]

2017 (6)

2016 (3)

2015 (4)

2014 (1)

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

2012 (4)

2010 (1)

2007 (2)

2002 (2)

S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27(9), 698–700 (2002).
[Crossref] [PubMed]

X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
[Crossref]

1994 (1)

C. D. Poole, H. M. Presby, and J. P. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30(17), 1437–1438 (1994).
[Crossref]

Andermahr, N.

Argyros, A.

Astruc, M.

Bassi, P.

Bellanca, G.

Bennion, I.

X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
[Crossref]

Bigo, S.

Birks, T. A.

Bolle, C.

Boutin, A.

Bowers, J. E.

Brindel, P.

Burrows, E. C.

Campopiano, S.

A. Iadicicco, R. Ranjan, F. Esposito, and S. Campopiano, “Arc-induced long period gratings in polarization-maintaining panda fiber,” IEEE Photonics Technol. Lett. 29(18), 1533–1536 (2017).

Charlet, G.

Chen, C.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Chen, C. P.

Chen, G.

Chen, Q. D.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Chen, Z. Y.

Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
[Crossref]

Chiang, K. S.

J. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

Dai, D.

Dong, J.

J. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

Duadi, H.

Eguchi, M.

Esmaeelpour, M.

Esposito, F.

A. Iadicicco, R. Ranjan, F. Esposito, and S. Campopiano, “Arc-induced long period gratings in polarization-maintaining panda fiber,” IEEE Photonics Technol. Lett. 29(18), 1533–1536 (2017).

Essiambre, R. J.

Fallnich, C.

Fontaine, N. K.

Fridman, M.

Gao, Y.

Ge, D. W.

Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
[Crossref]

Gnauck, A. H.

Gross, S.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Guan, B.

Guo, J. C.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

He, Y. Q.

Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
[Crossref]

Huang, B.

Huang, S. J.

Iadicicco, A.

A. Iadicicco, R. Ranjan, F. Esposito, and S. Campopiano, “Arc-induced long period gratings in polarization-maintaining panda fiber,” IEEE Photonics Technol. Lett. 29(18), 1533–1536 (2017).

Jin, W.

Kim, B. Y.

Kim, Y. K.

Klein, A.

Koebele, C.

Lai, K.

Lee, J. H.

Leon-Saval, S. G.

Li, G.

Li, J. H.

Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
[Crossref]

Li, Z. B.

Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
[Crossref]

Lingle, R.

Liu, Y.

Liu, Z.

Love, J. D.

G. Bellanca, N. Riesen, A. Argyros, S. G. Leon-Saval, R. Lwin, A. Parini, J. D. Love, and P. Bassi, “Holey fiber mode-selective couplers,” Opt. Express 23(15), 18888–18896 (2015).
[Crossref] [PubMed]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Lwin, R.

Mardoyan, H.

Masri, G.

McCurdy, A. H.

Meester, J. P.

C. D. Poole, H. M. Presby, and J. P. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30(17), 1437–1438 (1994).
[Crossref]

Mou, C.

Mumtaz, S.

Pang, F. F.

Parini, A.

Park, K. J.

Peckham, D. W.

Poole, C. D.

C. D. Poole, H. M. Presby, and J. P. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30(17), 1437–1438 (1994).
[Crossref]

Presby, H. M.

C. D. Poole, H. M. Presby, and J. P. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30(17), 1437–1438 (1994).
[Crossref]

Provost, L.

Ramachandran, S.

Randel, S.

Ranjan, R.

A. Iadicicco, R. Ranjan, F. Esposito, and S. Campopiano, “Arc-induced long period gratings in polarization-maintaining panda fiber,” IEEE Photonics Technol. Lett. 29(18), 1533–1536 (2017).

Ren, F.

Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
[Crossref]

Riesen, N.

G. Bellanca, N. Riesen, A. Argyros, S. G. Leon-Saval, R. Lwin, A. Parini, J. D. Love, and P. Bassi, “Holey fiber mode-selective couplers,” Opt. Express 23(15), 18888–18896 (2015).
[Crossref] [PubMed]

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Ryf, R.

Salsi, M.

Shahal, S.

Shi, F.

Shu, X. W.

X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
[Crossref]

Shubochkin, R.

Sierra, A.

Sillard, P.

Sima, C.

Song, K. Y.

Sperti, D.

Sun, H. B.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Sun, J.

Sun, Y.

Tang, Y.

Tran, P.

Tsuji, Y.

Verluise, F.

Wadsworth, W. J.

Wang, C.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Wang, D. N.

Wang, F.

Wang, T.

Wang, T. Y.

Wang, Y.

Wang, Z.

Wen, J.

Winzer, P. J.

Withford, M. J.

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Witkowska, A.

Wu, Z. Y.

Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
[Crossref]

Xiao, L.

Yan, M.

Yan, Z.

Yang, R.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Yang, R. Z.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Yu, J. Y.

Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
[Crossref]

Yu, Y. S.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Zeng, X. L.

Zhang, C.

Zhang, L.

Zhang, X. L.

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

Zhang, Y. C.

Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
[Crossref]

Zhang, Z. J.

Zhao, Y.

Zheng, G.

Zhou, K.

Electron. Lett. (1)

C. D. Poole, H. M. Presby, and J. P. Meester, “Two-mode fibre spatial-mode converter using periodic core deformation,” Electron. Lett. 30(17), 1437–1438 (1994).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. Dong and K. S. Chiang, “Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings,” IEEE Photonics Technol. Lett. 27(9), 1006–1009 (2015).
[Crossref]

A. Iadicicco, R. Ranjan, F. Esposito, and S. Campopiano, “Arc-induced long period gratings in polarization-maintaining panda fiber,” IEEE Photonics Technol. Lett. 29(18), 1533–1536 (2017).

J. C. Guo, Y. S. Yu, X. L. Zhang, C. Chen, R. Yang, C. Wang, R. Z. Yang, Q. D. Chen, and H. B. Sun, “Compact long-period fiber gratings with resonance at second-order diffraction,” IEEE Photonics Technol. Lett. 24(16), 1393–1395 (2012).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photonics Rev. 8(5), L81–L85 (2014).
[Crossref]

Opt. Commun. (2)

Z. Y. Wu, J. H. Li, F. Ren, D. W. Ge, Y. C. Zhang, J. Y. Yu, Z. B. Li, Z. Y. Chen, and Y. Q. He, “Reconfigurable all-fiber mode exchange enabled by mechanically induced LPFG for short-reach MDM networks,” Opt. Commun. 403, 240–244 (2017).
[Crossref]

X. W. Shu, L. Zhang, and I. Bennion, “Fabrication and characterisation of ultra-long-period fibre gratings,” Opt. Commun. 203(3–6), 277–281 (2002).
[Crossref]

Opt. Express (9)

T. Wang, Z. Yan, C. Mou, Z. Liu, Y. Liu, K. Zhou, and L. Zhang, “Narrow bandwidth passively mode locked picosecond Erbium doped fiber laser using a 45 degrees tilted fiber grating device,” Opt. Express 25(14), 16708–16714 (2017).
[Crossref] [PubMed]

N. Andermahr and C. Fallnich, “Optically induced long-period fiber gratings for guided mode conversion in few-mode fibers,” Opt. Express 18(5), 4411–4416 (2010).
[Crossref] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
[Crossref] [PubMed]

B. Huang, N. K. Fontaine, R. Ryf, B. Guan, S. G. Leon-Saval, R. Shubochkin, Y. Sun, R. Lingle, and G. Li, “All-fiber mode-group-selective photonic lantern using graded-index multimode fibers,” Opt. Express 23(1), 224–234 (2015).
[Crossref] [PubMed]

Y. Gao, J. Sun, G. Chen, and C. Sima, “Demonstration of simultaneous mode conversion and demultiplexing for mode and wavelength division multiplexing systems based on tilted few-mode fiber Bragg gratings,” Opt. Express 23(8), 9959–9967 (2015).
[Crossref] [PubMed]

G. Bellanca, N. Riesen, A. Argyros, S. G. Leon-Saval, R. Lwin, A. Parini, J. D. Love, and P. Bassi, “Holey fiber mode-selective couplers,” Opt. Express 23(15), 18888–18896 (2015).
[Crossref] [PubMed]

K. J. Park, K. Y. Song, Y. K. Kim, J. H. Lee, and B. Y. Kim, “Broadband mode division multiplexer using all-fiber mode selective couplers,” Opt. Express 24(4), 3543–3549 (2016).
[Crossref] [PubMed]

Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
[Crossref] [PubMed]

G. Masri, S. Shahal, A. Klein, H. Duadi, and M. Fridman, “Polarization dependence of asymmetric off-resonance long period fiber gratings,” Opt. Express 24(26), 29843–29851 (2016).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (1)

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Asymmetric parallel waveguide with mode conversion for mode and wavelength division multiplexing transmission,” in Proc. The Optical Fiber Communication Conference and Exposition/ National Fiber Optic Engineers Conference (OFC/NFOEC2012), paper OTu1l.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) SEM image and schematic of the cross-section of the PM-PCF, (b) Calculated grating periods for the LP01 and LP11 mode coupling at resonance wavelengths; the insets are the calculated electric field distributions of the six vector modes.
Fig. 2
Fig. 2 Experimental setup to fabricate LPFG in PM-PCF. PC: polarization controller, BBS: broadband source, OSA: optical spectrum analyzer, DC: data cable, SMF: single mode fiber, PM-PCF: polarization-maintaining photonic crystal fiber.
Fig. 3
Fig. 3 Transmission spectra of the CO2-laser-notched LPFG with the grating period of 253 µm and number of 40 (a) with the increasing scanning circles; (b) at the 3rd scanning circle with three different states of polarization of input light.
Fig. 4
Fig. 4 Transmission spectra of the CO2-laser-notched LPFG for two orthogonal polarization states of input light and the corresponding PDL spectra for a grating pitch of 245 µm and grating number of (a) 30 (7.35-mm long), (b) 15 (3.68-mm long).
Fig. 5
Fig. 5 Experimental setup to characterize the polarization state of the LP01 and LP11 modes. TL: tunable laser, PC: polarization controller.
Fig. 6
Fig. 6 Intensity distributions at the output PM-PCF and patterns rotated with the polarizer (a) at 1454 nm; (b) at 1532 nm; (c) at 1560 nm. The black arrows indicate the polarizer axis.
Fig. 7
Fig. 7 The calculated grating pitches for LP01 and LP11a mode 2nd order coupling at resonance wavelength.
Fig. 8
Fig. 8 Temperature variations of the resonance wavelengths and LPFG contrasts (a) at the shorter resonance wavelength and (b) at the longer resonance wavelength (grating period is 253 µm and grating number is 40).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ res =( n eff,01 n eff,11 )Λ.
λ res =( n eff,01 n eff,11 ) Λ 2 .

Metrics