Abstract

A method for fabricating diffractive holographic optical diffusers is reported, allowing a high degree of control of the resulting diffuser characteristics. The method consists of recording a laser speckle pattern using a single carrier beam, with controlled speckle size and shape, in an acrylamide-based volume photopolymer. The multiple interferences that create the speckle pattern form the hologram. Results are presented verifying the diffusers are volume holographic in nature and the speckle pattern is recorded accurately in the photopolymer. Diffusers recorded by this method are analysed to characterise the optical performance of the diffusers and to illustrate their beam-shaping capabilities, particularly in producing asymmetric beam outputs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of a photopolymer holographic lens for collimation of light from a green light-emitting diode

Sanjay Keshri, Kevin Murphy, Vincent Toal, Izabela Naydenova, and Suzanne Martin
Appl. Opt. 57(22) E163-E172 (2018)

Full-color holographic diffuser using time-scheduled iterative exposure

Mei-Lan Piao, Ki-Chul Kwon, Hoon-Jong Kang, Kwon-Yeon Lee, and Nam Kim
Appl. Opt. 54(16) 5252-5259 (2015)

Improvement of printing efficiency in holographic stereogram printing with the combination of a field lens and holographic diffuser

Jian Su, Xingpeng Yan, Yingqing Huang, Xiaoyu Jiang, Yibei Chen, and Teng Zhang
Appl. Opt. 57(25) 7159-7166 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am. 52(10), 1123–1130 (1962).
    [Crossref]
  2. V. Toal, Introduction to Holography(CRC Press, 2011).
  3. M. A. Ferrara, F. Borbone, V. Striano, and G. Coppola, “Characterization of photopolymers as optical recording materials by means of digital holography microscopy,” Proc. SPIE 8792, 87920Z (2013).
    [Crossref]
  4. S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33(12), 3942–3946 (1994).
    [Crossref]
  5. P. Bañares-Palacios, S. Álvarez-Álvarez, J. Marín-Sáez, M.-V. Collados, D. Chemisana, and J. Atencia, “Broadband behavior of transmission volume holographic optical elements for solar concentration,” Opt. Express 23(11), A671–A681 (2015).
    [Crossref] [PubMed]
  6. H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
    [Crossref]
  7. A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymers for Holographic Optical Elements in astronomy,” Proc. SPIE 10233, 1023316 (2017).
    [Crossref]
  8. S. I. Kim, Y. S. Choi, Y. N. Ham, C. Y. Park, and J. M. Kim, “Holographic diffuser by use of a silver halide sensitized gelatin process,” Appl. Opt. 42(14), 2482–2491 (2003).
    [Crossref] [PubMed]
  9. R. Ahmed, A. K. Yetisen, A. El Khourya, and H. Butt, “Printable ink lenses, diffusers, and 2D gratings,” Nanoscale 9, 266–276 (2017).
    [Crossref]
  10. M. L. Piao, K. C. Kwon, H. J. Kang, K. Y. Lee, and N. Kim, “Full-color holographic diffuser using time-scheduled iterative exposure,” Appl. Opt. 54(16), 5252–5259 (2015).
    [Crossref] [PubMed]
  11. S. Wadle and R. Lakes, “Holographic Diffusers: Diffusers with low backscatter,” J. Mod. Opt. 42, 1387–1396 (1995).
    [Crossref]
  12. J. Park, J. Y. Cho, C. Park, K. Lee, H. Lee, Y. H. Cho, and Y. Park, “Scattering Optical Elements: Stand-alone optical elements exploiting multiple light scattering,” ACS Nano 10, 6871–6876 (2016).
    [Crossref] [PubMed]
  13. K. A. O’Donnell and E. R. Mendez, “Experimental study of scattering from characterized random surfaces,” J. Opt. Soc. Am. A 4(7), 1194–1205 (1987).
    [Crossref]
  14. T. P. Jannson, D. G. Pelka, and T. M. Aye, “GRIN type diffuser based on volume holographic material,” U.S. Patent 5,365,354 (1994).
  15. J. Loicq, K. Fleury-Frenette, and D. Vandormael, “Method for manufacturing an improved optical layer of a light emitting device, and light emitting device with surface nano-micro texturation based on radiation speckle lithography,” European PatentEP2458412A1 (2012).
  16. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976).
    [Crossref]
  17. J. C. Dainty, “The statistics of speckle patterns,” in Progress in OpticsXIV, (North Holland, 1977).
    [Crossref]
  18. I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide–based photopolymer surface,” Opt. Express 13(13), 4878–4889 (2005).
    [Crossref] [PubMed]
  19. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
    [Crossref] [PubMed]
  20. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010).
    [Crossref]

2017 (3)

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymers for Holographic Optical Elements in astronomy,” Proc. SPIE 10233, 1023316 (2017).
[Crossref]

R. Ahmed, A. K. Yetisen, A. El Khourya, and H. Butt, “Printable ink lenses, diffusers, and 2D gratings,” Nanoscale 9, 266–276 (2017).
[Crossref]

2016 (1)

J. Park, J. Y. Cho, C. Park, K. Lee, H. Lee, Y. H. Cho, and Y. Park, “Scattering Optical Elements: Stand-alone optical elements exploiting multiple light scattering,” ACS Nano 10, 6871–6876 (2016).
[Crossref] [PubMed]

2015 (2)

2013 (1)

M. A. Ferrara, F. Borbone, V. Striano, and G. Coppola, “Characterization of photopolymers as optical recording materials by means of digital holography microscopy,” Proc. SPIE 8792, 87920Z (2013).
[Crossref]

2010 (1)

2005 (1)

2003 (1)

1997 (1)

1995 (1)

S. Wadle and R. Lakes, “Holographic Diffusers: Diffusers with low backscatter,” J. Mod. Opt. 42, 1387–1396 (1995).
[Crossref]

1994 (2)

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33(12), 3942–3946 (1994).
[Crossref]

T. P. Jannson, D. G. Pelka, and T. M. Aye, “GRIN type diffuser based on volume holographic material,” U.S. Patent 5,365,354 (1994).

1987 (1)

1976 (1)

1962 (1)

Ahmed, H.

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

Ahmed, R.

R. Ahmed, A. K. Yetisen, A. El Khourya, and H. Butt, “Printable ink lenses, diffusers, and 2D gratings,” Nanoscale 9, 266–276 (2017).
[Crossref]

Akbari, H.

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

Álvarez-Álvarez, S.

Atencia, J.

Aye, T. M.

T. P. Jannson, D. G. Pelka, and T. M. Aye, “GRIN type diffuser based on volume holographic material,” U.S. Patent 5,365,354 (1994).

Babeva, T.

Bañares-Palacios, P.

Bianco, A.

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymers for Holographic Optical Elements in astronomy,” Proc. SPIE 10233, 1023316 (2017).
[Crossref]

Borbone, F.

M. A. Ferrara, F. Borbone, V. Striano, and G. Coppola, “Characterization of photopolymers as optical recording materials by means of digital holography microscopy,” Proc. SPIE 8792, 87920Z (2013).
[Crossref]

Butt, H.

R. Ahmed, A. K. Yetisen, A. El Khourya, and H. Butt, “Printable ink lenses, diffusers, and 2D gratings,” Nanoscale 9, 266–276 (2017).
[Crossref]

Chemisana, D.

Cho, J. Y.

J. Park, J. Y. Cho, C. Park, K. Lee, H. Lee, Y. H. Cho, and Y. Park, “Scattering Optical Elements: Stand-alone optical elements exploiting multiple light scattering,” ACS Nano 10, 6871–6876 (2016).
[Crossref] [PubMed]

Cho, Y. H.

J. Park, J. Y. Cho, C. Park, K. Lee, H. Lee, Y. H. Cho, and Y. Park, “Scattering Optical Elements: Stand-alone optical elements exploiting multiple light scattering,” ACS Nano 10, 6871–6876 (2016).
[Crossref] [PubMed]

Choi, Y. S.

Collados, M.-V.

Coppola, G.

M. A. Ferrara, F. Borbone, V. Striano, and G. Coppola, “Characterization of photopolymers as optical recording materials by means of digital holography microscopy,” Proc. SPIE 8792, 87920Z (2013).
[Crossref]

Dainty, J. C.

J. C. Dainty, “The statistics of speckle patterns,” in Progress in OpticsXIV, (North Holland, 1977).
[Crossref]

Fäcke, T.

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymers for Holographic Optical Elements in astronomy,” Proc. SPIE 10233, 1023316 (2017).
[Crossref]

Feely, C. A.

Ferrara, M. A.

M. A. Ferrara, F. Borbone, V. Striano, and G. Coppola, “Characterization of photopolymers as optical recording materials by means of digital holography microscopy,” Proc. SPIE 8792, 87920Z (2013).
[Crossref]

Fleury-Frenette, K.

J. Loicq, K. Fleury-Frenette, and D. Vandormael, “Method for manufacturing an improved optical layer of a light emitting device, and light emitting device with surface nano-micro texturation based on radiation speckle lithography,” European PatentEP2458412A1 (2012).

Goodman, J. W.

Ham, Y. N.

Jannson, T. P.

T. P. Jannson, D. G. Pelka, and T. M. Aye, “GRIN type diffuser based on volume holographic material,” U.S. Patent 5,365,354 (1994).

Kang, H. J.

Khourya, A. El

R. Ahmed, A. K. Yetisen, A. El Khourya, and H. Butt, “Printable ink lenses, diffusers, and 2D gratings,” Nanoscale 9, 266–276 (2017).
[Crossref]

Kim, J. M.

Kim, N.

Kim, S. I.

Kwon, K. C.

Lakes, R.

S. Wadle and R. Lakes, “Holographic Diffusers: Diffusers with low backscatter,” J. Mod. Opt. 42, 1387–1396 (1995).
[Crossref]

Leclere, P.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33(12), 3942–3946 (1994).
[Crossref]

Lee, H.

J. Park, J. Y. Cho, C. Park, K. Lee, H. Lee, Y. H. Cho, and Y. Park, “Scattering Optical Elements: Stand-alone optical elements exploiting multiple light scattering,” ACS Nano 10, 6871–6876 (2016).
[Crossref] [PubMed]

Lee, K.

J. Park, J. Y. Cho, C. Park, K. Lee, H. Lee, Y. H. Cho, and Y. Park, “Scattering Optical Elements: Stand-alone optical elements exploiting multiple light scattering,” ACS Nano 10, 6871–6876 (2016).
[Crossref] [PubMed]

Lee, K. Y.

Leith, E. N.

Lion, Y.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33(12), 3942–3946 (1994).
[Crossref]

Loicq, J.

J. Loicq, K. Fleury-Frenette, and D. Vandormael, “Method for manufacturing an improved optical layer of a light emitting device, and light emitting device with surface nano-micro texturation based on radiation speckle lithography,” European PatentEP2458412A1 (2012).

Mackey, D.

Marín-Sáez, J.

Martin, S.

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010).
[Crossref]

I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide–based photopolymer surface,” Opt. Express 13(13), 4878–4889 (2005).
[Crossref] [PubMed]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36(23), 5757–5768 (1997).
[Crossref] [PubMed]

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33(12), 3942–3946 (1994).
[Crossref]

McCormack, S.

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

Mendez, E. R.

Mihaylova, E.

Naydenova, I.

O’Donnell, K. A.

Orselli, E.

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymers for Holographic Optical Elements in astronomy,” Proc. SPIE 10233, 1023316 (2017).
[Crossref]

Park, C.

J. Park, J. Y. Cho, C. Park, K. Lee, H. Lee, Y. H. Cho, and Y. Park, “Scattering Optical Elements: Stand-alone optical elements exploiting multiple light scattering,” ACS Nano 10, 6871–6876 (2016).
[Crossref] [PubMed]

Park, C. Y.

Park, J.

J. Park, J. Y. Cho, C. Park, K. Lee, H. Lee, Y. H. Cho, and Y. Park, “Scattering Optical Elements: Stand-alone optical elements exploiting multiple light scattering,” ACS Nano 10, 6871–6876 (2016).
[Crossref] [PubMed]

Park, Y.

J. Park, J. Y. Cho, C. Park, K. Lee, H. Lee, Y. H. Cho, and Y. Park, “Scattering Optical Elements: Stand-alone optical elements exploiting multiple light scattering,” ACS Nano 10, 6871–6876 (2016).
[Crossref] [PubMed]

Pelka, D. G.

T. P. Jannson, D. G. Pelka, and T. M. Aye, “GRIN type diffuser based on volume holographic material,” U.S. Patent 5,365,354 (1994).

Piao, M. L.

Renotte, Y.

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33(12), 3942–3946 (1994).
[Crossref]

Striano, V.

M. A. Ferrara, F. Borbone, V. Striano, and G. Coppola, “Characterization of photopolymers as optical recording materials by means of digital holography microscopy,” Proc. SPIE 8792, 87920Z (2013).
[Crossref]

Toal, V.

Upatnieks, J.

Vandormael, D.

J. Loicq, K. Fleury-Frenette, and D. Vandormael, “Method for manufacturing an improved optical layer of a light emitting device, and light emitting device with surface nano-micro texturation based on radiation speckle lithography,” European PatentEP2458412A1 (2012).

Wadle, S.

S. Wadle and R. Lakes, “Holographic Diffusers: Diffusers with low backscatter,” J. Mod. Opt. 42, 1387–1396 (1995).
[Crossref]

Yetisen, A. K.

R. Ahmed, A. K. Yetisen, A. El Khourya, and H. Butt, “Printable ink lenses, diffusers, and 2D gratings,” Nanoscale 9, 266–276 (2017).
[Crossref]

Zanutta, A.

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymers for Holographic Optical Elements in astronomy,” Proc. SPIE 10233, 1023316 (2017).
[Crossref]

ACS Nano (1)

J. Park, J. Y. Cho, C. Park, K. Lee, H. Lee, Y. H. Cho, and Y. Park, “Scattering Optical Elements: Stand-alone optical elements exploiting multiple light scattering,” ACS Nano 10, 6871–6876 (2016).
[Crossref] [PubMed]

Appl. Opt. (3)

J. Mod. Opt. (1)

S. Wadle and R. Lakes, “Holographic Diffusers: Diffusers with low backscatter,” J. Mod. Opt. 42, 1387–1396 (1995).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nanoscale (1)

R. Ahmed, A. K. Yetisen, A. El Khourya, and H. Butt, “Printable ink lenses, diffusers, and 2D gratings,” Nanoscale 9, 266–276 (2017).
[Crossref]

Opt. Eng. (1)

S. Martin, P. Leclere, Y. Renotte, V. Toal, and Y. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33(12), 3942–3946 (1994).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

A. Zanutta, E. Orselli, T. Fäcke, and A. Bianco, “Photopolymers for Holographic Optical Elements in astronomy,” Proc. SPIE 10233, 1023316 (2017).
[Crossref]

M. A. Ferrara, F. Borbone, V. Striano, and G. Coppola, “Characterization of photopolymers as optical recording materials by means of digital holography microscopy,” Proc. SPIE 8792, 87920Z (2013).
[Crossref]

Sol. Energy (1)

H. Akbari, I. Naydenova, H. Ahmed, S. McCormack, and S. Martin, “Development and testing of low spatial frequency holographic concentrator elements for collection of solar energy,” Sol. Energy 155, 103–109 (2017).
[Crossref]

U.S. Patent (1)

T. P. Jannson, D. G. Pelka, and T. M. Aye, “GRIN type diffuser based on volume holographic material,” U.S. Patent 5,365,354 (1994).

Other (3)

J. Loicq, K. Fleury-Frenette, and D. Vandormael, “Method for manufacturing an improved optical layer of a light emitting device, and light emitting device with surface nano-micro texturation based on radiation speckle lithography,” European PatentEP2458412A1 (2012).

J. C. Dainty, “The statistics of speckle patterns,” in Progress in OpticsXIV, (North Holland, 1977).
[Crossref]

V. Toal, Introduction to Holography(CRC Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of setup used to record laser speckle diffusers in photopolymer. SF = Spatial Filter, CL = Collimating Lens, FL = Focusing Lens, PP = Photopolymer Layer.
Fig. 2
Fig. 2 Phase contrast microscope images of various speckle patterns recorded in photopolymer to create diffusers: (a) circular aperture ø= 18mm, (b) circular aperture ø= 5.5mm, (c) slit width = 0.5mm and (d) slit width = 2mm. Scale bar = 50µm.
Fig. 3
Fig. 3 Speckle size predicted by theory and the measured speckle size (by camera and microscope methods) for (a) a range of circular aperture diameters and (b) a range of slit aperture widths.
Fig. 4
Fig. 4 (a) Diffuser efficiency, as in Eq. (2), over a 50° range for six holographic diffusers recorded with different circular aperture diameters, (b) Comparison, log-scale intensity, of beam-shape outputs for various diffusers and the original, undiffused control beam.
Fig. 5
Fig. 5 Output beam shapes produced when a laser diode probes (a) a diffuser recorded with a circular aperture and (b) a diffuser recorded with a slit aperture.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ = 2.44 λ f a
D i f f u s e r E f f . = ( 1 Z e r o O r d e r I n t e n s i t y D i f f u s e d Z e r o O r d e r I n t e n s i t y C o n t r o l ) x 100 %

Metrics