Abstract

Two-dimensional (2D) materials have attracted tremendous research interests due to their intriguing properties and promising applications. As one of the most typical 2D material characterization methods, however, the conventional Raman mapping only works within few-hundreds micrometers range at a time due to the focus depth constraint and the non-ideal level of the substrate. To implement wafer-scale Raman scanning, large-area autofocusing Raman mapping (LARM) is highly desirable. Here, we present a modified centroid method to build a facile LARM system in which the Raman excitation laser is employed as the focus laser, reducing the system cost and complexity. Based on identifying the shape of the semicircle laser reflection image, a self-written autofocusing algorithm allows a real-time adjusting the focus position during the large-scale scanning. As a state-of-the-art demonstration, the thickness distribution of both few layer WS2 triangle domains sparsely located in sub-millimeter range and polycrystalline continuous MoS2 film up to 2-inch scale can be well-revealed. Our results may shed light on wafer-scale nondestructive optical characterization of 2D materials.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mapping materials properties with Raman spectroscopy utilizing a 2-D detector

D. Kirk Veirs, Joel W. Ager, Eric T. Loucks, and Gerd M. Rosenblatt
Appl. Opt. 29(33) 4969-4980 (1990)

Large area optical mapping of surface contact angle

Guilherme Dutra, John Canning, Whayne Padden, Cicero Martelli, and Svetlana Dligatch
Opt. Express 25(18) 21127-21144 (2017)

Centroid-position-based autofocusing technique for Raman spectroscopy

Hengtao Cui and Daxiang Cui
Opt. Express 27(19) 27354-27368 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
    [Crossref] [PubMed]
  2. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
    [Crossref] [PubMed]
  3. M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,” Nat. Rev. Mater. 1(11), 16052 (2016).
    [Crossref]
  4. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
    [Crossref]
  5. G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, and E. J. Reed, “Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures,” Nano Lett. 17(3), 1915–1923 (2017).
    [Crossref] [PubMed]
  6. X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
    [Crossref]
  7. Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
    [Crossref] [PubMed]
  8. S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
    [Crossref]
  9. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
    [Crossref] [PubMed]
  10. H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
    [Crossref] [PubMed]
  11. H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
    [Crossref] [PubMed]
  12. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
    [Crossref]
  13. C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
    [Crossref]
  14. D. Barrera, Q. Wang, Y.-J. Lee, L. Cheng, M. J. Kim, J. Kim, and J. W. P. Hsu, “Solution synthesis of few-layer 2H MX2 (M = Mo, W; X = S, Se),” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(11), 2859–2864 (2017).
    [Crossref]
  15. J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, “Valley polarization in stacked MoS2 induced by circularly polarized light,” Nano Res. 10(5), 1618–1626 (2017).
    [Crossref]
  16. O. Grinberg, S. Deng, E. Zussman, T. Livneh, and A. Zak, “Raman scattering from single WS2 nanotubes in stretched PVDF electrospun fibers,” Phys. Chem. Chem. Phys. 19(28), 18443–18451 (2017).
    [Crossref] [PubMed]
  17. P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
    [Crossref]
  18. H. Ren, L. Guan, G. Chen, S. Chen, J. Tao, and H. Chen, “Competitive Growth Mechanism of WS2/MoS2 Vertical Heterostructures at High Temperature,” Phys. Status Solidi, B Basic Res. 254(11), 1700219 (2017).
    [Crossref]
  19. A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
    [Crossref]
  20. X. Tang, P. L’Hostis, and Y. Xiao, “An auto-focusing method in a microscopic testbed for optical discs,” J. Res. Natl. Inst. Stand. Technol. 105(4), 565–569 (2000).
    [Crossref] [PubMed]
  21. Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
    [Crossref]
  22. W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
    [Crossref]
  23. H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
    [Crossref] [PubMed]
  24. P. S. R. Diniz, E. A. B. D. Silva, and S. L. Netto, Digital Signal Processing: System Analysis and Design (Cambridge University, 2010).
  25. J. Sun, Y. H. Yuan, and C. Y. Wang, “Comparison and analysis of algorithms for digital image processing in autofocusing criterion,” Acta Opt. Sin. 27(1), 88–92 (2010).
  26. C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109(2), 259–268 (2012).
    [Crossref]
  27. M. Doğar, H. A. İlhan, and M. Özcan, “Real-time, auto-focusing digital holographic microscope using graphics processors,” Rev. Sci. Instrum. 84(8), 083704 (2013).
    [Crossref] [PubMed]
  28. D. Florian, H. Köck, K. Plankensteiner, and M. Glavanovics, “Auto focus and image registration techniques for infrared imaging of microelectronic devices,” Meas. Sci. Technol. 24(7), 074020 (2013).
    [Crossref]
  29. Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).
  30. Z. F. Wu, H. F. Zuo, and G. L. Qiu, “Autofocus technique of optical microscope,” Opt. Instrum. 22(4), 10–12 (2000).
  31. S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
    [Crossref]
  32. S. Wang, M. Pacios, H. Bhaskaran, and J. H. Warner, “Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition,” Nanotechnology 27(8), 085604 (2016).
    [Crossref] [PubMed]
  33. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
    [Crossref] [PubMed]
  34. D. Feng, J. Peng, S. Liu, X. Zheng, X. Yan, and W. He, “Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets,” Mater. Res. Exp. 5(1), 015026 (2018).
    [Crossref]
  35. Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
    [Crossref] [PubMed]
  36. W. Hirunpinyopas, A. N. J. Rodgers, S. D. Worrall, M. A. Bissett, and R. A. W. Dryfe, “Hydrogen Evolution at Liquid|Liquid Interfaces Catalyzed by 2D Materials,” Chem. Nano Mat. 3(6), 428–435 (2017).
    [Crossref]
  37. M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
    [Crossref]
  38. Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, “Interference enhancement of Raman signal of graphene,” Appl. Phys. Lett. 92(4), 043121 (2008).
    [Crossref]

2018 (3)

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

D. Feng, J. Peng, S. Liu, X. Zheng, X. Yan, and W. He, “Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets,” Mater. Res. Exp. 5(1), 015026 (2018).
[Crossref]

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

2017 (11)

W. Hirunpinyopas, A. N. J. Rodgers, S. D. Worrall, M. A. Bissett, and R. A. W. Dryfe, “Hydrogen Evolution at Liquid|Liquid Interfaces Catalyzed by 2D Materials,” Chem. Nano Mat. 3(6), 428–435 (2017).
[Crossref]

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

D. Barrera, Q. Wang, Y.-J. Lee, L. Cheng, M. J. Kim, J. Kim, and J. W. P. Hsu, “Solution synthesis of few-layer 2H MX2 (M = Mo, W; X = S, Se),” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(11), 2859–2864 (2017).
[Crossref]

J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, “Valley polarization in stacked MoS2 induced by circularly polarized light,” Nano Res. 10(5), 1618–1626 (2017).
[Crossref]

O. Grinberg, S. Deng, E. Zussman, T. Livneh, and A. Zak, “Raman scattering from single WS2 nanotubes in stretched PVDF electrospun fibers,” Phys. Chem. Chem. Phys. 19(28), 18443–18451 (2017).
[Crossref] [PubMed]

P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
[Crossref]

H. Ren, L. Guan, G. Chen, S. Chen, J. Tao, and H. Chen, “Competitive Growth Mechanism of WS2/MoS2 Vertical Heterostructures at High Temperature,” Phys. Status Solidi, B Basic Res. 254(11), 1700219 (2017).
[Crossref]

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, and E. J. Reed, “Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures,” Nano Lett. 17(3), 1915–1923 (2017).
[Crossref] [PubMed]

X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

2016 (3)

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,” Nat. Rev. Mater. 1(11), 16052 (2016).
[Crossref]

S. Wang, M. Pacios, H. Bhaskaran, and J. H. Warner, “Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition,” Nanotechnology 27(8), 085604 (2016).
[Crossref] [PubMed]

2015 (2)

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

2014 (2)

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

2013 (4)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

M. Doğar, H. A. İlhan, and M. Özcan, “Real-time, auto-focusing digital holographic microscope using graphics processors,” Rev. Sci. Instrum. 84(8), 083704 (2013).
[Crossref] [PubMed]

D. Florian, H. Köck, K. Plankensteiner, and M. Glavanovics, “Auto focus and image registration techniques for infrared imaging of microelectronic devices,” Meas. Sci. Technol. 24(7), 074020 (2013).
[Crossref]

2012 (2)

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109(2), 259–268 (2012).
[Crossref]

2011 (1)

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

2010 (2)

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

J. Sun, Y. H. Yuan, and C. Y. Wang, “Comparison and analysis of algorithms for digital image processing in autofocusing criterion,” Acta Opt. Sin. 27(1), 88–92 (2010).

2009 (2)

W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
[Crossref]

H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

2008 (1)

Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, “Interference enhancement of Raman signal of graphene,” Appl. Phys. Lett. 92(4), 043121 (2008).
[Crossref]

2007 (1)

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

2002 (1)

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

2000 (2)

Z. F. Wu, H. F. Zuo, and G. L. Qiu, “Autofocus technique of optical microscope,” Opt. Instrum. 22(4), 10–12 (2000).

X. Tang, P. L’Hostis, and Y. Xiao, “An auto-focusing method in a microscopic testbed for optical discs,” J. Res. Natl. Inst. Stand. Technol. 105(4), 565–569 (2000).
[Crossref] [PubMed]

Bai, L.

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

Baik, J.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Baillargeat, D.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Bando, Y.

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

Banerjee, S. K.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Bao, J.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Barrera, D.

D. Barrera, Q. Wang, Y.-J. Lee, L. Cheng, M. J. Kim, J. Kim, and J. W. P. Hsu, “Solution synthesis of few-layer 2H MX2 (M = Mo, W; X = S, Se),” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(11), 2859–2864 (2017).
[Crossref]

Berkdemir, A.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Bhaskaran, H.

S. Wang, M. Pacios, H. Bhaskaran, and J. H. Warner, “Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition,” Nanotechnology 27(8), 085604 (2016).
[Crossref] [PubMed]

Bissett, M. A.

W. Hirunpinyopas, A. N. J. Rodgers, S. D. Worrall, M. A. Bissett, and R. A. W. Dryfe, “Hydrogen Evolution at Liquid|Liquid Interfaces Catalyzed by 2D Materials,” Chem. Nano Mat. 3(6), 428–435 (2017).
[Crossref]

Bonaccorso, F.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Botello-Méndez, A. R.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Brus, L. E.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Cao, H.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Charlier, J.-C.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Chen, F.-Z.

W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
[Crossref]

Chen, G.

H. Ren, L. Guan, G. Chen, S. Chen, J. Tao, and H. Chen, “Competitive Growth Mechanism of WS2/MoS2 Vertical Heterostructures at High Temperature,” Phys. Status Solidi, B Basic Res. 254(11), 1700219 (2017).
[Crossref]

Chen, H.

H. Ren, L. Guan, G. Chen, S. Chen, J. Tao, and H. Chen, “Competitive Growth Mechanism of WS2/MoS2 Vertical Heterostructures at High Temperature,” Phys. Status Solidi, B Basic Res. 254(11), 1700219 (2017).
[Crossref]

Chen, L.

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

Chen, N.-T.

W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
[Crossref]

Chen, P.

P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
[Crossref]

Chen, P.-J.

W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
[Crossref]

Chen, S.

H. Ren, L. Guan, G. Chen, S. Chen, J. Tao, and H. Chen, “Competitive Growth Mechanism of WS2/MoS2 Vertical Heterostructures at High Temperature,” Phys. Status Solidi, B Basic Res. 254(11), 1700219 (2017).
[Crossref]

J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, “Valley polarization in stacked MoS2 induced by circularly polarized light,” Nano Res. 10(5), 1618–1626 (2017).
[Crossref]

Chen, Y.

G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, and E. J. Reed, “Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures,” Nano Lett. 17(3), 1915–1923 (2017).
[Crossref] [PubMed]

Chen, Y. P.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Cheng, L.

D. Barrera, Q. Wang, Y.-J. Lee, L. Cheng, M. J. Kim, J. Kim, and J. W. P. Hsu, “Solution synthesis of few-layer 2H MX2 (M = Mo, W; X = S, Se),” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(11), 2859–2864 (2017).
[Crossref]

Cheon, G.

G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, and E. J. Reed, “Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures,” Nano Lett. 17(3), 1915–1923 (2017).
[Crossref] [PubMed]

Cheong, H.

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

Chhowalla, M.

M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,” Nat. Rev. Mater. 1(11), 16052 (2016).
[Crossref]

Chia, C.-I.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Chu, L.

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

Chung, T. F.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Colby, R.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Colombo, L.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Cong, C.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

Crespi, V. H.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Deng, S.

O. Grinberg, S. Deng, E. Zussman, T. Livneh, and A. Zak, “Raman scattering from single WS2 nanotubes in stretched PVDF electrospun fibers,” Phys. Chem. Chem. Phys. 19(28), 18443–18451 (2017).
[Crossref] [PubMed]

Dogar, M.

M. Doğar, H. A. İlhan, and M. Özcan, “Real-time, auto-focusing digital holographic microscope using graphics processors,” Rev. Sci. Instrum. 84(8), 083704 (2013).
[Crossref] [PubMed]

Dong, Y.

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

Dryfe, R. A. W.

W. Hirunpinyopas, A. N. J. Rodgers, S. D. Worrall, M. A. Bissett, and R. A. W. Dryfe, “Hydrogen Evolution at Liquid|Liquid Interfaces Catalyzed by 2D Materials,” Chem. Nano Mat. 3(6), 428–435 (2017).
[Crossref]

Duerloo, K. N.

G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, and E. J. Reed, “Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures,” Nano Lett. 17(3), 1915–1923 (2017).
[Crossref] [PubMed]

Eda, G.

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

Edwin, T. H. T.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Elías, A. L.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Fan, Y.

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

Feng, D.

D. Feng, J. Peng, S. Liu, X. Zheng, X. Yan, and W. He, “Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets,” Mater. Res. Exp. 5(1), 015026 (2018).
[Crossref]

Fiori, G.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Florian, D.

D. Florian, H. Köck, K. Plankensteiner, and M. Glavanovics, “Auto focus and image registration techniques for infrared imaging of microelectronic devices,” Meas. Sci. Technol. 24(7), 074020 (2013).
[Crossref]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Glavanovics, M.

D. Florian, H. Köck, K. Plankensteiner, and M. Glavanovics, “Auto focus and image registration techniques for infrared imaging of microelectronic devices,” Meas. Sci. Technol. 24(7), 074020 (2013).
[Crossref]

Gokarna, A.

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

Golberg, D.

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Grinberg, O.

O. Grinberg, S. Deng, E. Zussman, T. Livneh, and A. Zak, “Raman scattering from single WS2 nanotubes in stretched PVDF electrospun fibers,” Phys. Chem. Chem. Phys. 19(28), 18443–18451 (2017).
[Crossref] [PubMed]

Guan, L.

H. Ren, L. Guan, G. Chen, S. Chen, J. Tao, and H. Chen, “Competitive Growth Mechanism of WS2/MoS2 Vertical Heterostructures at High Temperature,” Phys. Status Solidi, B Basic Res. 254(11), 1700219 (2017).
[Crossref]

Guisinger, N. P.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Gutiérrez, H. R.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Han, G. H.

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

Han, W.-P.

X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

He, K.

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

He, W.

D. Feng, J. Peng, S. Liu, X. Zheng, X. Yan, and W. He, “Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets,” Mater. Res. Exp. 5(1), 015026 (2018).
[Crossref]

Heinz, T. F.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Hirunpinyopas, W.

W. Hirunpinyopas, A. N. J. Rodgers, S. D. Worrall, M. A. Bissett, and R. A. W. Dryfe, “Hydrogen Evolution at Liquid|Liquid Interfaces Catalyzed by 2D Materials,” Chem. Nano Mat. 3(6), 428–435 (2017).
[Crossref]

Hone, J.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Hou, W.

P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
[Crossref]

Hsu, J. W. P.

D. Barrera, Q. Wang, Y.-J. Lee, L. Cheng, M. J. Kim, J. Kim, and J. W. P. Hsu, “Solution synthesis of few-layer 2H MX2 (M = Mo, W; X = S, Se),” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(11), 2859–2864 (2017).
[Crossref]

Hsu, W.-Y.

W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
[Crossref]

Hu, P. H.

C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109(2), 259–268 (2012).
[Crossref]

Hu, Y.

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

Huang, S.

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

Hwang, C.-H.

W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
[Crossref]

Iannaccone, G.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Ilhan, H. A.

M. Doğar, H. A. İlhan, and M. Özcan, “Real-time, auto-focusing digital holographic microscope using graphics processors,” Rev. Sci. Instrum. 84(8), 083704 (2013).
[Crossref] [PubMed]

Jauregui, L. A.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Jena, D.

M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,” Nat. Rev. Mater. 1(11), 16052 (2016).
[Crossref]

Jeong, H.

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

Jeong, H. Y.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Jeong, M. S.

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

Jiang, D.-S.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

Jin, Y.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Jo, Y.

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

Keum, D. H.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Kim, D. I.

H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

Kim, H.

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

Kim, J.

D. Barrera, Q. Wang, Y.-J. Lee, L. Cheng, M. J. Kim, J. Kim, and J. W. P. Hsu, “Solution synthesis of few-layer 2H MX2 (M = Mo, W; X = S, Se),” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(11), 2859–2864 (2017).
[Crossref]

Kim, J. H.

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

Kim, M. J.

D. Barrera, Q. Wang, Y.-J. Lee, L. Cheng, M. J. Kim, J. Kim, and J. W. P. Hsu, “Solution synthesis of few-layer 2H MX2 (M = Mo, W; X = S, Se),” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(11), 2859–2864 (2017).
[Crossref]

Kim, S. Y.

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

Kim, S.-Y.

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

Kis, A.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Köck, H.

D. Florian, H. Köck, K. Plankensteiner, and M. Glavanovics, “Auto focus and image registration techniques for infrared imaging of microelectronic devices,” Meas. Sci. Technol. 24(7), 074020 (2013).
[Crossref]

Kuo, C.-H.

W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
[Crossref]

Kwak, J.

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

Kwon, S.-Y.

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

L’Hostis, P.

X. Tang, P. L’Hostis, and Y. Xiao, “An auto-focusing method in a microscopic testbed for optical discs,” J. Res. Natl. Inst. Stand. Technol. 105(4), 565–569 (2000).
[Crossref] [PubMed]

Lee, C.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Lee, C.-S.

W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
[Crossref]

Lee, H. S.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Lee, J.-U.

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

Lee, Y. H.

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Lee, Y. W.

H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

Lee, Y.-J.

D. Barrera, Q. Wang, Y.-J. Lee, L. Cheng, M. J. Kim, J. Kim, and J. W. P. Hsu, “Solution synthesis of few-layer 2H MX2 (M = Mo, W; X = S, Se),” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(11), 2859–2864 (2017).
[Crossref]

Lee, Z.

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

Leen Koh, A.

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

Lerondel, G.

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

Li, H.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Li, Q.

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

Li, S.

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

Li, X.-L.

X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

Lin, Y. C.

C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109(2), 259–268 (2012).
[Crossref]

Liu, C. S.

C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109(2), 259–268 (2012).
[Crossref]

Liu, M.

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

Liu, S.

D. Feng, J. Peng, S. Liu, X. Zheng, X. Yan, and W. He, “Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets,” Mater. Res. Exp. 5(1), 015026 (2018).
[Crossref]

Liu, X.

P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
[Crossref]

Liu, Z.

J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, “Valley polarization in stacked MoS2 induced by circularly polarized light,” Nano Res. 10(5), 1618–1626 (2017).
[Crossref]

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Livneh, T.

O. Grinberg, S. Deng, E. Zussman, T. Livneh, and A. Zak, “Raman scattering from single WS2 nanotubes in stretched PVDF electrospun fibers,” Phys. Chem. Chem. Phys. 19(28), 18443–18451 (2017).
[Crossref] [PubMed]

López-Urías, F.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Lu, Y.

P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
[Crossref]

Manzeli, S.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Neumaier, D.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Ni, Z. H.

Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, “Interference enhancement of Raman signal of graphene,” Appl. Phys. Lett. 92(4), 043121 (2008).
[Crossref]

Oh, H. M.

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

Olivier, A.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Ovchinnikov, D.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Özcan, M.

M. Doğar, H. A. İlhan, and M. Özcan, “Real-time, auto-focusing digital holographic microscope using graphics processors,” Rev. Sci. Instrum. 84(8), 083704 (2013).
[Crossref] [PubMed]

Pacios, M.

S. Wang, M. Pacios, H. Bhaskaran, and J. H. Warner, “Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition,” Nanotechnology 27(8), 085604 (2016).
[Crossref] [PubMed]

Palacios, T.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Pandey, D.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Pasquier, D.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Pei, S.-S.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Peng, J.

D. Feng, J. Peng, S. Liu, X. Zheng, X. Yan, and W. He, “Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets,” Mater. Res. Exp. 5(1), 015026 (2018).
[Crossref]

Peng, P.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Perea-López, N.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Plankensteiner, K.

D. Florian, H. Köck, K. Plankensteiner, and M. Glavanovics, “Auto focus and image registration techniques for infrared imaging of microelectronic devices,” Meas. Sci. Technol. 24(7), 074020 (2013).
[Crossref]

Porter, C.

G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, and E. J. Reed, “Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures,” Nano Lett. 17(3), 1915–1923 (2017).
[Crossref] [PubMed]

Qiao, X.-F.

X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

Qiu, G. L.

Z. F. Wu, H. F. Zuo, and G. L. Qiu, “Autofocus technique of optical microscope,” Opt. Instrum. 22(4), 10–12 (2000).

Reed, E. J.

G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, and E. J. Reed, “Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures,” Nano Lett. 17(3), 1915–1923 (2017).
[Crossref] [PubMed]

Ren, H.

H. Ren, L. Guan, G. Chen, S. Chen, J. Tao, and H. Chen, “Competitive Growth Mechanism of WS2/MoS2 Vertical Heterostructures at High Temperature,” Phys. Status Solidi, B Basic Res. 254(11), 1700219 (2017).
[Crossref]

Rhee, H. G.

H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

Robertson, A. W.

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

Rodgers, A. N. J.

W. Hirunpinyopas, A. N. J. Rodgers, S. D. Worrall, M. A. Bissett, and R. A. W. Dryfe, “Hydrogen Evolution at Liquid|Liquid Interfaces Catalyzed by 2D Materials,” Chem. Nano Mat. 3(6), 428–435 (2017).
[Crossref]

Rolland, J. P.

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

Rong, Y.

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

Ryu, S.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Seabaugh, A.

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Sendek, A. D.

G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, and E. J. Reed, “Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures,” Nano Lett. 17(3), 1915–1923 (2017).
[Crossref] [PubMed]

Shang, J.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

Shen, Z.

J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, “Valley polarization in stacked MoS2 induced by circularly polarized light,” Nano Res. 10(5), 1618–1626 (2017).
[Crossref]

Shen, Z. X.

Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, “Interference enhancement of Raman signal of graphene,” Appl. Phys. Lett. 92(4), 043121 (2008).
[Crossref]

Shi, W.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

Sinclair, R.

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

Stach, E. A.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Su, Z.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Sun, J.

J. Sun, Y. H. Yuan, and C. Y. Wang, “Comparison and analysis of algorithms for digital image processing in autofocusing criterion,” Acta Opt. Sin. 27(1), 88–92 (2010).

Tan, H.

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

Tan, P.-H.

X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

Tang, D.-M.

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

Tang, X.

X. Tang, P. L’Hostis, and Y. Xiao, “An auto-focusing method in a microscopic testbed for optical discs,” J. Res. Natl. Inst. Stand. Technol. 105(4), 565–569 (2000).
[Crossref] [PubMed]

Tao, J.

H. Ren, L. Guan, G. Chen, S. Chen, J. Tao, and H. Chen, “Competitive Growth Mechanism of WS2/MoS2 Vertical Heterostructures at High Temperature,” Phys. Status Solidi, B Basic Res. 254(11), 1700219 (2017).
[Crossref]

Tatsuno, K.

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

Tay, B. K.

J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, “Valley polarization in stacked MoS2 induced by circularly polarized light,” Nano Res. 10(5), 1618–1626 (2017).
[Crossref]

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Terrones, H.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Terrones, M.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Tian, J.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Tschudi, T. T.

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

Wang, B.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Wang, C. Y.

J. Sun, Y. H. Yuan, and C. Y. Wang, “Comparison and analysis of algorithms for digital image processing in autofocusing criterion,” Acta Opt. Sin. 27(1), 88–92 (2010).

Wang, H. M.

Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, “Interference enhancement of Raman signal of graphene,” Appl. Phys. Lett. 92(4), 043121 (2008).
[Crossref]

Wang, J.

P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
[Crossref]

Wang, L.

P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
[Crossref]

Wang, Q.

D. Barrera, Q. Wang, Y.-J. Lee, L. Cheng, M. J. Kim, J. Kim, and J. W. P. Hsu, “Solution synthesis of few-layer 2H MX2 (M = Mo, W; X = S, Se),” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(11), 2859–2864 (2017).
[Crossref]

Wang, S.

S. Wang, M. Pacios, H. Bhaskaran, and J. H. Warner, “Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition,” Nanotechnology 27(8), 085604 (2016).
[Crossref] [PubMed]

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

Wang, X.

J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, “Valley polarization in stacked MoS2 induced by circularly polarized light,” Nano Res. 10(5), 1618–1626 (2017).
[Crossref]

Wang, Y.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

Wang, Y. Y.

Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, “Interference enhancement of Raman signal of graphene,” Appl. Phys. Lett. 92(4), 043121 (2008).
[Crossref]

Wang, Z.

P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
[Crossref]

Warner, J. H.

S. Wang, M. Pacios, H. Bhaskaran, and J. H. Warner, “Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition,” Nanotechnology 27(8), 085604 (2016).
[Crossref] [PubMed]

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

Wei, D.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Worrall, S. D.

W. Hirunpinyopas, A. N. J. Rodgers, S. D. Worrall, M. A. Bissett, and R. A. W. Dryfe, “Hydrogen Evolution at Liquid|Liquid Interfaces Catalyzed by 2D Materials,” Chem. Nano Mat. 3(6), 428–435 (2017).
[Crossref]

Wu, J.

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

Wu, J.-B.

X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

Wu, W.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Wu, Y. H.

Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, “Interference enhancement of Raman signal of graphene,” Appl. Phys. Lett. 92(4), 043121 (2008).
[Crossref]

Wu, Z. F.

Z. F. Wu, H. F. Zuo, and G. L. Qiu, “Autofocus technique of optical microscope,” Opt. Instrum. 22(4), 10–12 (2000).

Xia, J.

J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, “Valley polarization in stacked MoS2 induced by circularly polarized light,” Nano Res. 10(5), 1618–1626 (2017).
[Crossref]

Xiao, Y.

X. Tang, P. L’Hostis, and Y. Xiao, “An auto-focusing method in a microscopic testbed for optical discs,” J. Res. Natl. Inst. Stand. Technol. 105(4), 565–569 (2000).
[Crossref] [PubMed]

Xu, H.

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

Xu, L.

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

Xue, S.

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

Yan, H.

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Yan, J.

J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, “Valley polarization in stacked MoS2 induced by circularly polarized light,” Nano Res. 10(5), 1618–1626 (2017).
[Crossref]

Yan, X.

D. Feng, J. Peng, S. Liu, X. Zheng, X. Yan, and W. He, “Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets,” Mater. Res. Exp. 5(1), 015026 (2018).
[Crossref]

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

Yang, K.

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

Yang, Y.

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

Yap, C. C. R.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Yazyev, O. V.

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Ye, Z.

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

Yu, F.

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

Yu, Q.

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Yu, T.

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

Yu, Z.-R.

W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
[Crossref]

Yuan, Y. H.

J. Sun, Y. H. Yuan, and C. Y. Wang, “Comparison and analysis of algorithms for digital image processing in autofocusing criterion,” Acta Opt. Sin. 27(1), 88–92 (2010).

Yun, S. J.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

Zak, A.

O. Grinberg, S. Deng, E. Zussman, T. Livneh, and A. Zak, “Raman scattering from single WS2 nanotubes in stretched PVDF electrospun fibers,” Phys. Chem. Chem. Phys. 19(28), 18443–18451 (2017).
[Crossref] [PubMed]

Zeng, H.

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

Zhang, H.

M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,” Nat. Rev. Mater. 1(11), 16052 (2016).
[Crossref]

Zhang, J.

X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

Zhang, L.

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

Zhang, Q.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

Zhang, S.

P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
[Crossref]

Zhang, X.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

Zhao, J.

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Zhao, M.

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

Zhao, W.

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

Zheng, X.

D. Feng, J. Peng, S. Liu, X. Zheng, X. Yan, and W. He, “Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets,” Mater. Res. Exp. 5(1), 015026 (2018).
[Crossref]

Zou, C.

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

Zuo, H. F.

Z. F. Wu, H. F. Zuo, and G. L. Qiu, “Autofocus technique of optical microscope,” Opt. Instrum. 22(4), 10–12 (2000).

Zussman, E.

O. Grinberg, S. Deng, E. Zussman, T. Livneh, and A. Zak, “Raman scattering from single WS2 nanotubes in stretched PVDF electrospun fibers,” Phys. Chem. Chem. Phys. 19(28), 18443–18451 (2017).
[Crossref] [PubMed]

2D Mater. (1)

S.-Y. Kim, J. Kwak, J. H. Kim, J.-U. Lee, Y. Jo, S. Y. Kim, H. Cheong, Z. Lee, and S.-Y. Kwon, “Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate,” 2D Mater. 4(1), 011007 (2016).
[Crossref]

ACS Nano (1)

C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.,” ACS Nano 4(5), 2695–2700 (2010).
[Crossref] [PubMed]

Acta Opt. Sin. (1)

J. Sun, Y. H. Yuan, and C. Y. Wang, “Comparison and analysis of algorithms for digital image processing in autofocusing criterion,” Acta Opt. Sin. 27(1), 88–92 (2010).

Adv. Funct. Mater. (2)

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From Bulk to Monolayer MoS2: Evolution of Raman Scattering,” Adv. Funct. Mater. 22(7), 1385–1390 (2012).
[Crossref]

X.-L. Li, W.-P. Han, J.-B. Wu, X.-F. Qiao, J. Zhang, and P.-H. Tan, “Layer-Number Dependent Optical Properties of 2D Materials and Their Application for Thickness Determination,” Adv. Funct. Mater. 27(19), 1604468 (2017).
[Crossref]

Adv. Mater. (2)

H. Jeong, H. M. Oh, A. Gokarna, H. Kim, S. J. Yun, G. H. Han, M. S. Jeong, Y. H. Lee, and G. Lerondel, “Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides,” Adv. Mater. 29(18), 1700308 (2017).
[Crossref] [PubMed]

H. Y. Jeong, Y. Jin, S. J. Yun, J. Zhao, J. Baik, D. H. Keum, H. S. Lee, and Y. H. Lee, “Heterogeneous Defect Domains in Single-Crystalline Hexagonal WS2,” Adv. Mater. 29(15), 1605043 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

C. Cong, J. Shang, Y. Wang, and T. Yu, “Optical Properties of 2D Semiconductor WS2,” Adv. Opt. Mater. 6(1), 1700767 (2018).
[Crossref]

Appl. Mater. Today (1)

S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, “Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals,” Appl. Mater. Today 1(1), 60–66 (2015).
[Crossref]

Appl. Phys. B (1)

C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B 109(2), 259–268 (2012).
[Crossref]

Appl. Phys. Lett. (1)

Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, and Y. H. Wu, “Interference enhancement of Raman signal of graphene,” Appl. Phys. Lett. 92(4), 043121 (2008).
[Crossref]

Chem. Nano Mat. (1)

W. Hirunpinyopas, A. N. J. Rodgers, S. D. Worrall, M. A. Bissett, and R. A. W. Dryfe, “Hydrogen Evolution at Liquid|Liquid Interfaces Catalyzed by 2D Materials,” Chem. Nano Mat. 3(6), 428–435 (2017).
[Crossref]

Chem. Soc. Rev. (1)

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44(9), 2757–2785 (2015).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

D. Barrera, Q. Wang, Y.-J. Lee, L. Cheng, M. J. Kim, J. Kim, and J. W. P. Hsu, “Solution synthesis of few-layer 2H MX2 (M = Mo, W; X = S, Se),” J. Mater. Chem. C Mater. Opt. Electron. Devices 5(11), 2859–2864 (2017).
[Crossref]

J. Mater. Sci. (1)

M. Zhao, L. Zhang, M. Liu, Y. Dong, C. Zou, Y. Hu, K. Yang, Y. Yang, H. Zeng, and S. Huang, “Growth of atomically thin MoS2 flakes on high-κ substrates by chemical vapor deposition,” J. Mater. Sci. 53(6), 4262–4273 (2018).
[Crossref]

J. Res. Natl. Inst. Stand. Technol. (1)

X. Tang, P. L’Hostis, and Y. Xiao, “An auto-focusing method in a microscopic testbed for optical discs,” J. Res. Natl. Inst. Stand. Technol. 105(4), 565–569 (2000).
[Crossref] [PubMed]

Mater. Res. Exp. (1)

D. Feng, J. Peng, S. Liu, X. Zheng, X. Yan, and W. He, “Influences of thickness, scanning velocity and relative humidity on the frictional properties of WS2 nanosheets,” Mater. Res. Exp. 5(1), 015026 (2018).
[Crossref]

Meas. Sci. Technol. (2)

W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol. 20(4), 045902 (2009).
[Crossref]

D. Florian, H. Köck, K. Plankensteiner, and M. Glavanovics, “Auto focus and image registration techniques for infrared imaging of microelectronic devices,” Meas. Sci. Technol. 24(7), 074020 (2013).
[Crossref]

Nano Lett. (1)

G. Cheon, K. N. Duerloo, A. D. Sendek, C. Porter, Y. Chen, and E. J. Reed, “Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures,” Nano Lett. 17(3), 1915–1923 (2017).
[Crossref] [PubMed]

Nano Res. (1)

J. Xia, X. Wang, B. K. Tay, S. Chen, Z. Liu, J. Yan, and Z. Shen, “Valley polarization in stacked MoS2 induced by circularly polarized light,” Nano Res. 10(5), 1618–1626 (2017).
[Crossref]

Nanoscale (1)

Y. Rong, Y. Fan, A. Leen Koh, A. W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J. H. Warner, “Controlling sulphur precursor addition for large single crystal domains of WS2.,” Nanoscale 6(20), 12096–12103 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

S. Wang, M. Pacios, H. Bhaskaran, and J. H. Warner, “Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition,” Nanotechnology 27(8), 085604 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S.-S. Pei, and Y. P. Chen, “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater. 10(6), 443–449 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two-dimensional materials,” Nat. Nanotechnol. 9(10), 768–779 (2014).
[Crossref] [PubMed]

Nat. Rev. Mater. (2)

M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,” Nat. Rev. Mater. 1(11), 16052 (2016).
[Crossref]

S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nat. Rev. Mater. 2(8), 17033 (2017).
[Crossref]

Nature (1)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Opt. Eng. (1)

Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 1289–1294 (2002).
[Crossref]

Opt. Instrum. (1)

Z. F. Wu, H. F. Zuo, and G. L. Qiu, “Autofocus technique of optical microscope,” Opt. Instrum. 22(4), 10–12 (2000).

Phys. Chem. Chem. Phys. (1)

O. Grinberg, S. Deng, E. Zussman, T. Livneh, and A. Zak, “Raman scattering from single WS2 nanotubes in stretched PVDF electrospun fibers,” Phys. Chem. Chem. Phys. 19(28), 18443–18451 (2017).
[Crossref] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

H. Ren, L. Guan, G. Chen, S. Chen, J. Tao, and H. Chen, “Competitive Growth Mechanism of WS2/MoS2 Vertical Heterostructures at High Temperature,” Phys. Status Solidi, B Basic Res. 254(11), 1700219 (2017).
[Crossref]

Physica E (1)

P. Chen, J. Wang, Y. Lu, S. Zhang, X. Liu, W. Hou, Z. Wang, and L. Wang, “The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition,” Physica E 89, 115–118 (2017).
[Crossref]

Proc. SPIE (1)

Y. Wang, L. Xu, T. T. Tschudi, Z. Ye, J. Wu, J. P. Rolland, K. Tatsuno, X. Yan, and F. Yu, “Microscope auto-focusing system with the self-adaptive mountain-climbing search method based on PC control,” Proc. SPIE 6834, 68342E (2007).

Rev. Sci. Instrum. (2)

M. Doğar, H. A. İlhan, and M. Özcan, “Real-time, auto-focusing digital holographic microscope using graphics processors,” Rev. Sci. Instrum. 84(8), 083704 (2013).
[Crossref] [PubMed]

H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum. 80(7), 073103 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman Spectroscopy,” Sci. Rep. 3(1), 1755 (2013).
[Crossref]

Other (1)

P. S. R. Diniz, E. A. B. D. Silva, and S. L. Netto, Digital Signal Processing: System Analysis and Design (Cambridge University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Optical photo and (b) schematic of the large-area autofocusing Raman mapping setup.
Fig. 2
Fig. 2 (a) Schematic illustration of the autofocusing criterion according to geometry optics. Upper inset shows the actual camera-captured image of the incident semicircular laser. (b) Calculated image intensity along x (row) direction (in pixel unit) of the typical reflection images collected by the camera at three focus statuses. The images were acquired by a 50 × objective lens.
Fig. 3
Fig. 3 Experimental results on the relationship between the calculated centroid distance Δ for and the defocus distance δ (a) 50 × and (b) 100 × objective lens.
Fig. 4
Fig. 4 The Raman intensity of the Si 520 cm−1 peak in terms of different calculated centroid distance. The corresponding captured reflection images are also shown to reveal the focus status. The red line shows the half-position of the image.
Fig. 5
Fig. 5 (a) Optical micrograph of the CVD-grown WS2 triangle sheets on SiO2/Si substrate. (b) Raman spectra of the monolayer and bilayer WS2 from the labeled area shown in (a). (c) Raman intensity mapping of the 353 cm−1 characteristic peak of the sample with and (d) without autofocusing, respectively. Note that we intentionally introduce an inclination angle of about 1.1° by putting a small spacer under the substrate, as shown in the inset of (b).
Fig. 6
Fig. 6 (a) Optical photo of the sample. (b) Raman spectra of a CVD-grown MoS2 on sapphire substrate. The spectra were collected from the corresponding positions marked in the inset. (c) Raman intensity image of 383 and (d) 406 cm−1 characteristic peaks with autofocusing, respectively. (e) The image of peak position difference between 406 and 383 cm−1 Raman shifts, showing a thickness-reducing from the center to the edge. The image was obtained with autofocusing. (f) Raman intensity image of 383 cm−1 peak. The image was obtained without autofocusing. (g), (h), and (i) Corresponding scanning electron microscope images of the points shown in the figure (a).
Fig. 7
Fig. 7 (a) Optical photo of a CVD-grown MoS2 film on a 2-inch sapphire wafer. The black dotted line shows the scanning area. (b) Raman intensity image of the 406 cm−1 characteristic peak with step size of 300 μm. (c) Enlarged corresponding optical image of the area shown in (b) (white dotted line). (d) Raman intensity image of the 406 cm−1 characteristic peak with smaller step size of 150 μm showing more detailed information.

Metrics