Abstract

A three-dimensional transformation optics method, leading to homogeneous materials, applicable to any non-Cartesian coordinate systems or waveguides/objects of arbitrary cross-sections is presented. Both the conductive boundary and internal material of the desired device is determined by the proposed formulation. The method is applicable to a wide range of waveguide, radiation, and cloaking problems, and is demonstrated for circular waveguide couplers and an external cloak. An advantage of the present method is that the material properties are simplified by appropriately selecting the conductive boundaries. For instance, a right-angle circular waveguide bend is presented which uses only one homogenous material. Also, transformation of conductive materials and boundaries are studied. The conditions in which the transformed boundaries remain conductive are discussed. In addition, it is demonstrated that negative infinite conductivity can be replaced with positive conductivity, without affecting the field outside the conductive boundary. It is also observed that a negative finite conductivity can be replaced with a positive one, by accepting some small errors. The general mathematical procedure and formulation for calculating the parametric surface equations of the conductive peripheries are presented.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries

Zheng Chang, Xiaoming Zhou, Jin Hu, and Gengkai Hu
Opt. Express 18(6) 6089-6096 (2010)

An external cloak with arbitrary cross section based on complementary medium and coordinate transformation

Chengfu Yang, Jingjing Yang, Ming Huang, Zhe Xiao, and Jinhui Peng
Opt. Express 19(2) 1147-1157 (2011)

Invisibility cloaks for toroids

Yu You, George W. Kattawar, and Ping Yang
Opt. Express 17(8) 6591-6599 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
    [Crossref] [PubMed]
  5. Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16(9), 6717–6730 (2008).
    [Crossref] [PubMed]
  6. D. Bao, K. Z. Rajab, Y. Hao, E. Kallos, W. Tang, C. Argyropoulos, and S. Yang, “All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam,” New J. Phys. 13(10), 103023 (2011).
    [Crossref]
  7. D. H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92(1), 013505 (2008).
    [Crossref]
  8. B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
    [Crossref] [PubMed]
  9. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  10. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  11. C. Yang, J. Yang, M. Huang, Z. Xiao, and J. Peng, “An external cloak with arbitrary cross section based on complementary medium and coordinate transformation,” Opt. Express 19(2), 1147–1157 (2011).
    [Crossref] [PubMed]
  12. T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D Appl. Phys. 42(23), 235403 (2009).
    [Crossref]
  13. X. Zang and C. Jiang, “Overlapped optics, illusion optics, and an external cloak based on shifting media,” J. Opt. Soc. Am. B 28(8), 1994–2000 (2011).
    [Crossref]
  14. T. Li, M. Huang, J. Yang, Y. Yao, and J. Yu, “Cylindrical electromagnetic external cloak with only axial material parameter spatially variant,” Opt. Mater. Express 1(5), 911–920 (2011).
    [Crossref]
  15. F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multiple objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
    [Crossref]
  16. R. Dehbashi and M. Shahabadi, “External cylindrical invisibility cloaks with small material dynamic range,” IEEE Trans. Antenn. Propag. 62(4), 2187–2191 (2014).
    [Crossref]
  17. Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
    [Crossref]
  18. A. Rajput and K. V. Srivastava, “Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system,” IEEE Trans. Antenn. Propag. 65(3), 1458–1463 (2017).
    [Crossref]
  19. A. Rajput and K. V. Srivastava, “Parabolic transformation function-based external cloak with finite and realisable material parameters,” IET Microw. Antennas Propag. 11(7), 1051–1056 (2017).
    [Crossref]
  20. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostr. 6(1), 87–95 (2008).
    [Crossref]
  21. I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
    [Crossref]
  22. J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008).
    [Crossref]
  23. D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93(25), 251111 (2008).
    [Crossref]
  24. Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009).
    [Crossref] [PubMed]
  25. C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Squeezing and expanding light without reflections via transformation optics,” Opt. Express 19(4), 3562–3575 (2011).
    [Crossref] [PubMed]
  26. H. Y. Xu, B. Zhang, G. Barbastathis, and H. D. Sun, “Compact optical waveguide coupler using homogeneous uniaxial medium,” J. Opt. Soc. Am. B 28 (11), 2633–2636 (2011).
    [Crossref]
  27. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  28. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
    [Crossref] [PubMed]
  29. S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
    [Crossref]
  30. L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
    [Crossref]
  31. M. Mola and A. Yahaghi, “Design of a broadband right-angled bend using transformation optics,” Prog. Electromagnetics Research C 56, 183–193 (2015).
    [Crossref]
  32. W. X. Jiang, D. Bao, and T. J. Cui, “Designing novel anisotropic lenses with transformation optics,” J. Opt. 18(4), 044022 (2016).
    [Crossref]
  33. L. Huang, X. Chen, B. Ni, G. Li, X. Wang, Z. Li, and W. Lu, “A general transformation for compact waveguide coupler by using homogeneous media,” Nanostr. Fundam. Appl. 11(2), 115–122 (2013).
    [Crossref]
  34. T. Han, C. W. Qiu, and X. Tang, “Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials,” Opt. Lett. 36(2), 181–183 (2011).
    [Crossref] [PubMed]
  35. H. Xu, B. Zhang, T. Yu, G. Barbastathis, and H. Sun, “Dielectric waveguide bending adapter with ideal transmission: practical design strategy of area-preserving affine transformation optics,” J. Opt. Soc. Am. B 29(6), 1287–1290 (2012).
    [Crossref]
  36. Y. Yang, H. Chen, F. Yu, E. Li, and H. Chen, “A Full-Parameter, Broadband, Homogeneous, and Compact Waveguide Coupler Designed With Transformation Optics,” IEEE Antennas Wirel. Propag. Lett. 14, 634–637 (2015).
    [Crossref]
  37. H. Xu, B. Zhang, T. Yu, G. Barbastathis, and H. Sun, “Dielectric waveguide bending adapter with ideal transmission: practical design strategy of area-preserving affine transformation optics,” J. Opt. Soc. Am. B 29(6), 1287–1290 (2012).
    [Crossref]
  38. C. Joshi, A. C. Lepage, and X. Begaud, “Low profile superstrate using transformation optics for semicircular radiation pattern of antenna,” Appl. Phys., A Mater. Sci. Process. 123(2), 144 (2017).
    [Crossref]
  39. Y. I. Jianjia, S. N. Burokur, G. P. Piau, and B. de Lustrac, “A coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
    [Crossref] [PubMed]
  40. Y. H. Yang, S. S. Lin, Z. J. Wang, H. Chen, H. Wang, and E. Li, “Three-dimensional polyhedral invisible cloak consisting of homogeneous materials,” Prog. Electromagnetics Res. 142, 31–40 (2013).
    [Crossref]
  41. M. R. Kazemzadeh and A. Alighanbari, “3-D implementation of transformation optics using a tetrahedron-based meshing technique and homogeneous materials,” IEEE Trans. Antenn. Propag. 65(7), 3549–3559 (2017).
    [Crossref]
  42. R. Harrington, Time-harmonic Electromagnetic Fields (IEEE, 1961), Chap. 2.

2017 (4)

A. Rajput and K. V. Srivastava, “Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system,” IEEE Trans. Antenn. Propag. 65(3), 1458–1463 (2017).
[Crossref]

A. Rajput and K. V. Srivastava, “Parabolic transformation function-based external cloak with finite and realisable material parameters,” IET Microw. Antennas Propag. 11(7), 1051–1056 (2017).
[Crossref]

C. Joshi, A. C. Lepage, and X. Begaud, “Low profile superstrate using transformation optics for semicircular radiation pattern of antenna,” Appl. Phys., A Mater. Sci. Process. 123(2), 144 (2017).
[Crossref]

M. R. Kazemzadeh and A. Alighanbari, “3-D implementation of transformation optics using a tetrahedron-based meshing technique and homogeneous materials,” IEEE Trans. Antenn. Propag. 65(7), 3549–3559 (2017).
[Crossref]

2016 (4)

Y. I. Jianjia, S. N. Burokur, G. P. Piau, and B. de Lustrac, “A coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

W. X. Jiang, D. Bao, and T. J. Cui, “Designing novel anisotropic lenses with transformation optics,” J. Opt. 18(4), 044022 (2016).
[Crossref]

2015 (3)

M. Mola and A. Yahaghi, “Design of a broadband right-angled bend using transformation optics,” Prog. Electromagnetics Research C 56, 183–193 (2015).
[Crossref]

Y. Yang, H. Chen, F. Yu, E. Li, and H. Chen, “A Full-Parameter, Broadband, Homogeneous, and Compact Waveguide Coupler Designed With Transformation Optics,” IEEE Antennas Wirel. Propag. Lett. 14, 634–637 (2015).
[Crossref]

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

2014 (2)

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multiple objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

R. Dehbashi and M. Shahabadi, “External cylindrical invisibility cloaks with small material dynamic range,” IEEE Trans. Antenn. Propag. 62(4), 2187–2191 (2014).
[Crossref]

2013 (2)

L. Huang, X. Chen, B. Ni, G. Li, X. Wang, Z. Li, and W. Lu, “A general transformation for compact waveguide coupler by using homogeneous media,” Nanostr. Fundam. Appl. 11(2), 115–122 (2013).
[Crossref]

Y. H. Yang, S. S. Lin, Z. J. Wang, H. Chen, H. Wang, and E. Li, “Three-dimensional polyhedral invisible cloak consisting of homogeneous materials,” Prog. Electromagnetics Res. 142, 31–40 (2013).
[Crossref]

2012 (3)

2011 (9)

C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Squeezing and expanding light without reflections via transformation optics,” Opt. Express 19(4), 3562–3575 (2011).
[Crossref] [PubMed]

H. Y. Xu, B. Zhang, G. Barbastathis, and H. D. Sun, “Compact optical waveguide coupler using homogeneous uniaxial medium,” J. Opt. Soc. Am. B 28 (11), 2633–2636 (2011).
[Crossref]

T. Han, C. W. Qiu, and X. Tang, “Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials,” Opt. Lett. 36(2), 181–183 (2011).
[Crossref] [PubMed]

X. Zang and C. Jiang, “Overlapped optics, illusion optics, and an external cloak based on shifting media,” J. Opt. Soc. Am. B 28(8), 1994–2000 (2011).
[Crossref]

T. Li, M. Huang, J. Yang, Y. Yao, and J. Yu, “Cylindrical electromagnetic external cloak with only axial material parameter spatially variant,” Opt. Mater. Express 1(5), 911–920 (2011).
[Crossref]

C. Yang, J. Yang, M. Huang, Z. Xiao, and J. Peng, “An external cloak with arbitrary cross section based on complementary medium and coordinate transformation,” Opt. Express 19(2), 1147–1157 (2011).
[Crossref] [PubMed]

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

D. Bao, K. Z. Rajab, Y. Hao, E. Kallos, W. Tang, C. Argyropoulos, and S. Yang, “All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam,” New J. Phys. 13(10), 103023 (2011).
[Crossref]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

2010 (1)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

2009 (4)

T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D Appl. Phys. 42(23), 235403 (2009).
[Crossref]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
[Crossref] [PubMed]

Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009).
[Crossref] [PubMed]

2008 (5)

J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008).
[Crossref]

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93(25), 251111 (2008).
[Crossref]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostr. 6(1), 87–95 (2008).
[Crossref]

D. H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92(1), 013505 (2008).
[Crossref]

Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16(9), 6717–6730 (2008).
[Crossref] [PubMed]

2007 (1)

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Abiri, H.

I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
[Crossref]

Aghanejad, I.

I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
[Crossref]

Alighanbari, A.

M. R. Kazemzadeh and A. Alighanbari, “3-D implementation of transformation optics using a tetrahedron-based meshing technique and homogeneous materials,” IEEE Trans. Antenn. Propag. 65(7), 3549–3559 (2017).
[Crossref]

Argyropoulos, C.

D. Bao, K. Z. Rajab, Y. Hao, E. Kallos, W. Tang, C. Argyropoulos, and S. Yang, “All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam,” New J. Phys. 13(10), 103023 (2011).
[Crossref]

Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16(9), 6717–6730 (2008).
[Crossref] [PubMed]

Bao, D.

W. X. Jiang, D. Bao, and T. J. Cui, “Designing novel anisotropic lenses with transformation optics,” J. Opt. 18(4), 044022 (2016).
[Crossref]

D. Bao, K. Z. Rajab, Y. Hao, E. Kallos, W. Tang, C. Argyropoulos, and S. Yang, “All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam,” New J. Phys. 13(10), 103023 (2011).
[Crossref]

Barbastathis, G.

Begaud, X.

C. Joshi, A. C. Lepage, and X. Begaud, “Low profile superstrate using transformation optics for semicircular radiation pattern of antenna,” Appl. Phys., A Mater. Sci. Process. 123(2), 144 (2017).
[Crossref]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Brocker, D. E.

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

Burokur, S. N.

Y. I. Jianjia, S. N. Burokur, G. P. Piau, and B. de Lustrac, “A coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

Campbell, S. D.

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

Chen, H.

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

Y. Yang, H. Chen, F. Yu, E. Li, and H. Chen, “A Full-Parameter, Broadband, Homogeneous, and Compact Waveguide Coupler Designed With Transformation Optics,” IEEE Antennas Wirel. Propag. Lett. 14, 634–637 (2015).
[Crossref]

Y. Yang, H. Chen, F. Yu, E. Li, and H. Chen, “A Full-Parameter, Broadband, Homogeneous, and Compact Waveguide Coupler Designed With Transformation Optics,” IEEE Antennas Wirel. Propag. Lett. 14, 634–637 (2015).
[Crossref]

Y. H. Yang, S. S. Lin, Z. J. Wang, H. Chen, H. Wang, and E. Li, “Three-dimensional polyhedral invisible cloak consisting of homogeneous materials,” Prog. Electromagnetics Res. 142, 31–40 (2013).
[Crossref]

J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008).
[Crossref]

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

Chen, X.

L. Huang, X. Chen, B. Ni, G. Li, X. Wang, Z. Li, and W. Lu, “A general transformation for compact waveguide coupler by using homogeneous media,” Nanostr. Fundam. Appl. 11(2), 115–122 (2013).
[Crossref]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cui, T. J.

W. X. Jiang, D. Bao, and T. J. Cui, “Designing novel anisotropic lenses with transformation optics,” J. Opt. 18(4), 044022 (2016).
[Crossref]

Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostr. 6(1), 87–95 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

de Lustrac, B.

Y. I. Jianjia, S. N. Burokur, G. P. Piau, and B. de Lustrac, “A coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

Dehbashi, R.

R. Dehbashi and M. Shahabadi, “External cylindrical invisibility cloaks with small material dynamic range,” IEEE Trans. Antenn. Propag. 62(4), 2187–2191 (2014).
[Crossref]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Galán, J. V.

García-Meca, C.

Han, T.

T. Han, C. W. Qiu, and X. Tang, “Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials,” Opt. Lett. 36(2), 181–183 (2011).
[Crossref] [PubMed]

T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D Appl. Phys. 42(23), 235403 (2009).
[Crossref]

Hao, Y.

D. Bao, K. Z. Rajab, Y. Hao, E. Kallos, W. Tang, C. Argyropoulos, and S. Yang, “All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam,” New J. Phys. 13(10), 103023 (2011).
[Crossref]

Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16(9), 6717–6730 (2008).
[Crossref] [PubMed]

Huang, L.

L. Huang, X. Chen, B. Ni, G. Li, X. Wang, Z. Li, and W. Lu, “A general transformation for compact waveguide coupler by using homogeneous media,” Nanostr. Fundam. Appl. 11(2), 115–122 (2013).
[Crossref]

Huang, M.

Huangfu, J.

J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008).
[Crossref]

Huo, F. F.

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multiple objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Jiang, C.

Jiang, W. X.

W. X. Jiang, D. Bao, and T. J. Cui, “Designing novel anisotropic lenses with transformation optics,” J. Opt. 18(4), 044022 (2016).
[Crossref]

Jianjia, Y. I.

Y. I. Jianjia, S. N. Burokur, G. P. Piau, and B. de Lustrac, “A coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

Joshi, C.

C. Joshi, A. C. Lepage, and X. Begaud, “Low profile superstrate using transformation optics for semicircular radiation pattern of antenna,” Appl. Phys., A Mater. Sci. Process. 123(2), 144 (2017).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kallos, E.

D. Bao, K. Z. Rajab, Y. Hao, E. Kallos, W. Tang, C. Argyropoulos, and S. Yang, “All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam,” New J. Phys. 13(10), 103023 (2011).
[Crossref]

Kazemzadeh, M. R.

M. R. Kazemzadeh and A. Alighanbari, “3-D implementation of transformation optics using a tetrahedron-based meshing technique and homogeneous materials,” IEEE Trans. Antenn. Propag. 65(7), 3549–3559 (2017).
[Crossref]

Kong, F.

J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008).
[Crossref]

Kong, J. A.

J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008).
[Crossref]

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

Kwon, D. H.

D. H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92(1), 013505 (2008).
[Crossref]

Landy, N. I.

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Lepage, A. C.

C. Joshi, A. C. Lepage, and X. Begaud, “Low profile superstrate using transformation optics for semicircular radiation pattern of antenna,” Appl. Phys., A Mater. Sci. Process. 123(2), 144 (2017).
[Crossref]

Li, E.

Y. Yang, H. Chen, F. Yu, E. Li, and H. Chen, “A Full-Parameter, Broadband, Homogeneous, and Compact Waveguide Coupler Designed With Transformation Optics,” IEEE Antennas Wirel. Propag. Lett. 14, 634–637 (2015).
[Crossref]

Y. H. Yang, S. S. Lin, Z. J. Wang, H. Chen, H. Wang, and E. Li, “Three-dimensional polyhedral invisible cloak consisting of homogeneous materials,” Prog. Electromagnetics Res. 142, 31–40 (2013).
[Crossref]

Li, G.

L. Huang, X. Chen, B. Ni, G. Li, X. Wang, Z. Li, and W. Lu, “A general transformation for compact waveguide coupler by using homogeneous media,” Nanostr. Fundam. Appl. 11(2), 115–122 (2013).
[Crossref]

Li, L.

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multiple objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Li, T.

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multiple objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

T. Li, M. Huang, J. Yang, Y. Yao, and J. Yu, “Cylindrical electromagnetic external cloak with only axial material parameter spatially variant,” Opt. Mater. Express 1(5), 911–920 (2011).
[Crossref]

Li, Z.

L. Huang, X. Chen, B. Ni, G. Li, X. Wang, Z. Li, and W. Lu, “A general transformation for compact waveguide coupler by using homogeneous media,” Nanostr. Fundam. Appl. 11(2), 115–122 (2013).
[Crossref]

Liang, C. H.

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multiple objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Lin, S. S.

Y. H. Yang, S. S. Lin, Z. J. Wang, H. Chen, H. Wang, and E. Li, “Three-dimensional polyhedral invisible cloak consisting of homogeneous materials,” Prog. Electromagnetics Res. 142, 31–40 (2013).
[Crossref]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Liu, X.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Lu, W.

L. Huang, X. Chen, B. Ni, G. Li, X. Wang, Z. Li, and W. Lu, “A general transformation for compact waveguide coupler by using homogeneous media,” Nanostr. Fundam. Appl. 11(2), 115–122 (2013).
[Crossref]

Luo, Y.

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Martí, J.

Martínez, A.

Mei, Z. L.

Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009).
[Crossref] [PubMed]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mola, M.

M. Mola and A. Yahaghi, “Design of a broadband right-angled bend using transformation optics,” Prog. Electromagnetics Research C 56, 183–193 (2015).
[Crossref]

Nagar, J.

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

Ni, B.

L. Huang, X. Chen, B. Ni, G. Li, X. Wang, Z. Li, and W. Lu, “A general transformation for compact waveguide coupler by using homogeneous media,” Nanostr. Fundam. Appl. 11(2), 115–122 (2013).
[Crossref]

Ortuño, R.

Padilla, W. J.

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostr. 6(1), 87–95 (2008).
[Crossref]

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93(25), 251111 (2008).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Peng, J.

Piau, G. P.

Y. I. Jianjia, S. N. Burokur, G. P. Piau, and B. de Lustrac, “A coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

Qiu, C. W.

Rahm, M.

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93(25), 251111 (2008).
[Crossref]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostr. 6(1), 87–95 (2008).
[Crossref]

Rajab, K. Z.

D. Bao, K. Z. Rajab, Y. Hao, E. Kallos, W. Tang, C. Argyropoulos, and S. Yang, “All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam,” New J. Phys. 13(10), 103023 (2011).
[Crossref]

Rajput, A.

A. Rajput and K. V. Srivastava, “Parabolic transformation function-based external cloak with finite and realisable material parameters,” IET Microw. Antennas Propag. 11(7), 1051–1056 (2017).
[Crossref]

A. Rajput and K. V. Srivastava, “Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system,” IEEE Trans. Antenn. Propag. 65(3), 1458–1463 (2017).
[Crossref]

Roberts, D. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostr. 6(1), 87–95 (2008).
[Crossref]

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93(25), 251111 (2008).
[Crossref]

Rodríguez-Fortuño, F. J.

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostr. 6(1), 87–95 (2008).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shahabadi, M.

R. Dehbashi and M. Shahabadi, “External cylindrical invisibility cloaks with small material dynamic range,” IEEE Trans. Antenn. Propag. 62(4), 2187–2191 (2014).
[Crossref]

Shi, Y.

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostr. 6(1), 87–95 (2008).
[Crossref]

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93(25), 251111 (2008).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Srivastava, K. V.

A. Rajput and K. V. Srivastava, “Parabolic transformation function-based external cloak with finite and realisable material parameters,” IET Microw. Antennas Propag. 11(7), 1051–1056 (2017).
[Crossref]

A. Rajput and K. V. Srivastava, “Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system,” IEEE Trans. Antenn. Propag. 65(3), 1458–1463 (2017).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Sun, H.

Sun, H. D.

Tang, W.

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

D. Bao, K. Z. Rajab, Y. Hao, E. Kallos, W. Tang, C. Argyropoulos, and S. Yang, “All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam,” New J. Phys. 13(10), 103023 (2011).
[Crossref]

Tang, X.

T. Han, C. W. Qiu, and X. Tang, “Adaptive waveguide bends with homogeneous, nonmagnetic, and isotropic materials,” Opt. Lett. 36(2), 181–183 (2011).
[Crossref] [PubMed]

T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D Appl. Phys. 42(23), 235403 (2009).
[Crossref]

Tung, M. M.

Tyc, T.

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

Wang, D.

J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008).
[Crossref]

Wang, H.

Y. H. Yang, S. S. Lin, Z. J. Wang, H. Chen, H. Wang, and E. Li, “Three-dimensional polyhedral invisible cloak consisting of homogeneous materials,” Prog. Electromagnetics Res. 142, 31–40 (2013).
[Crossref]

Wang, X.

L. Huang, X. Chen, B. Ni, G. Li, X. Wang, Z. Li, and W. Lu, “A general transformation for compact waveguide coupler by using homogeneous media,” Nanostr. Fundam. Appl. 11(2), 115–122 (2013).
[Crossref]

Wang, Z. J.

Y. H. Yang, S. S. Lin, Z. J. Wang, H. Chen, H. Wang, and E. Li, “Three-dimensional polyhedral invisible cloak consisting of homogeneous materials,” Prog. Electromagnetics Res. 142, 31–40 (2013).
[Crossref]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Werner, D. H.

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

D. H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92(1), 013505 (2008).
[Crossref]

Wu, B. I.

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

Xi, S.

J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008).
[Crossref]

Xiao, F.

T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D Appl. Phys. 42(23), 235403 (2009).
[Crossref]

Xiao, Z.

Xie, Y.

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

Xu, H.

Xu, H. Y.

Xu, L.

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

Yahaghi, A.

M. Mola and A. Yahaghi, “Design of a broadband right-angled bend using transformation optics,” Prog. Electromagnetics Research C 56, 183–193 (2015).
[Crossref]

I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
[Crossref]

Yang, C.

Yang, J.

Yang, S.

D. Bao, K. Z. Rajab, Y. Hao, E. Kallos, W. Tang, C. Argyropoulos, and S. Yang, “All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam,” New J. Phys. 13(10), 103023 (2011).
[Crossref]

Yang, Y.

Y. Yang, H. Chen, F. Yu, E. Li, and H. Chen, “A Full-Parameter, Broadband, Homogeneous, and Compact Waveguide Coupler Designed With Transformation Optics,” IEEE Antennas Wirel. Propag. Lett. 14, 634–637 (2015).
[Crossref]

Yang, Y. H.

Y. H. Yang, S. S. Lin, Z. J. Wang, H. Chen, H. Wang, and E. Li, “Three-dimensional polyhedral invisible cloak consisting of homogeneous materials,” Prog. Electromagnetics Res. 142, 31–40 (2013).
[Crossref]

Yao, Y.

Yu, F.

Y. Yang, H. Chen, F. Yu, E. Li, and H. Chen, “A Full-Parameter, Broadband, Homogeneous, and Compact Waveguide Coupler Designed With Transformation Optics,” IEEE Antennas Wirel. Propag. Lett. 14, 634–637 (2015).
[Crossref]

Yu, J.

Yu, T.

Zang, X.

Zhang, B.

Zhang, J.

J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008).
[Crossref]

Zhang, X.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Zhang, Y. M.

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multiple objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Zhao, Y.

Appl. Phys. Lett. (2)

D. H. Kwon and D. H. Werner, “Two-dimensional eccentric elliptic electromagnetic cloaks,” Appl. Phys. Lett. 92(1), 013505 (2008).
[Crossref]

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, “Transformation-optical design of sharp waveguide bends and corners,” Appl. Phys. Lett. 93(25), 251111 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. Joshi, A. C. Lepage, and X. Begaud, “Low profile superstrate using transformation optics for semicircular radiation pattern of antenna,” Appl. Phys., A Mater. Sci. Process. 123(2), 144 (2017).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

IEEE Antennas Wirel. Propag. Lett. (3)

Y. Shi, W. Tang, L. Li, and C. H. Liang, “Three-dimensional complementary invisibility cloak with arbitrary shapes,” IEEE Antennas Wirel. Propag. Lett. 14, 1550–1553 (2015).
[Crossref]

F. F. Huo, L. Li, T. Li, Y. M. Zhang, and C. H. Liang, “External invisibility cloak for multiple objects with arbitrary geometries,” IEEE Antennas Wirel. Propag. Lett. 13, 273–276 (2014).
[Crossref]

Y. Yang, H. Chen, F. Yu, E. Li, and H. Chen, “A Full-Parameter, Broadband, Homogeneous, and Compact Waveguide Coupler Designed With Transformation Optics,” IEEE Antennas Wirel. Propag. Lett. 14, 634–637 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (4)

R. Dehbashi and M. Shahabadi, “External cylindrical invisibility cloaks with small material dynamic range,” IEEE Trans. Antenn. Propag. 62(4), 2187–2191 (2014).
[Crossref]

I. Aghanejad, H. Abiri, and A. Yahaghi, “Design of high-gain lens antenna by gradient-index metamaterials using transformation optics,” IEEE Trans. Antenn. Propag. 60(9), 4074–4081 (2012).
[Crossref]

A. Rajput and K. V. Srivastava, “Approximated complementary cloak with diagonally homogeneous material parameters using shifted parabolic coordinate system,” IEEE Trans. Antenn. Propag. 65(3), 1458–1463 (2017).
[Crossref]

M. R. Kazemzadeh and A. Alighanbari, “3-D implementation of transformation optics using a tetrahedron-based meshing technique and homogeneous materials,” IEEE Trans. Antenn. Propag. 65(7), 3549–3559 (2017).
[Crossref]

IET Microw. Antennas Propag. (1)

A. Rajput and K. V. Srivastava, “Parabolic transformation function-based external cloak with finite and realisable material parameters,” IET Microw. Antennas Propag. 11(7), 1051–1056 (2017).
[Crossref]

J. Appl. Phys. (2)

J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104(1), 014502 (2008).
[Crossref]

Z. L. Mei and T. J. Cui, “Arbitrary bending of electromagnetic waves using isotropic materials,” J. Appl. Phys. 105(10), 104913 (2009).
[Crossref] [PubMed]

J. Opt. (2)

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

W. X. Jiang, D. Bao, and T. J. Cui, “Designing novel anisotropic lenses with transformation optics,” J. Opt. 18(4), 044022 (2016).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. D Appl. Phys. (1)

T. Han, X. Tang, and F. Xiao, “External cloak with homogeneous material,” J. Phys. D Appl. Phys. 42(23), 235403 (2009).
[Crossref]

Nanostr. Fundam. Appl. (1)

L. Huang, X. Chen, B. Ni, G. Li, X. Wang, Z. Li, and W. Lu, “A general transformation for compact waveguide coupler by using homogeneous media,” Nanostr. Fundam. Appl. 11(2), 115–122 (2013).
[Crossref]

New J. Phys. (1)

D. Bao, K. Z. Rajab, Y. Hao, E. Kallos, W. Tang, C. Argyropoulos, and S. Yang, “All-dielectric invisibility cloaks made of BaTiO3-loaded polyurethane foam,” New J. Phys. 13(10), 103023 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Photonics Nanostr. (1)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostr. 6(1), 87–95 (2008).
[Crossref]

Phys. Rev. B (1)

L. Xu, H. Chen, T. Tyc, Y. Xie, and S. A. Cummer, “Perfect conformal invisible device with feasible refractive indexes,” Phys. Rev. B 93(4), 041406 (2016).
[Crossref]

Phys. Rev. Lett. (2)

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99(6), 063903 (2007).
[Crossref] [PubMed]

B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, “Macroscopic invisibility cloak for visible light,” Phys. Rev. Lett. 106(3), 033901 (2011).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

Y. H. Yang, S. S. Lin, Z. J. Wang, H. Chen, H. Wang, and E. Li, “Three-dimensional polyhedral invisible cloak consisting of homogeneous materials,” Prog. Electromagnetics Res. 142, 31–40 (2013).
[Crossref]

Prog. Electromagnetics Research C (1)

M. Mola and A. Yahaghi, “Design of a broadband right-angled bend using transformation optics,” Prog. Electromagnetics Research C 56, 183–193 (2015).
[Crossref]

Sci. Rep. (1)

Y. I. Jianjia, S. N. Burokur, G. P. Piau, and B. de Lustrac, “A coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6, 18819 (2016).
[Crossref] [PubMed]

Science (5)

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (1)

R. Harrington, Time-harmonic Electromagnetic Fields (IEEE, 1961), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) An arbitrary virtual-space prism, with triangular upper and lower faces, and its division into three tetrahedrons. (b) The physical-space geometry to which the prism of part (a) must be transformed. (c) A circular waveguide inscribed in the virtual-space prism of part (a).
Fig. 2
Fig. 2 (a) A cylinder representing a circular waveguide in the virtual space. (b) The transformed cylinder, as given in (23). (c) Intersecting the transformed cylinder with its corresponding tetrahedron, Tet. 1՛ of (19). (d) The outcome of the intersecting procedure, containing a piece of the transformed PEC shell, in the physical space, along with its internal bulk material.
Fig. 3
Fig. 3 (a) The circular waveguide coupler of the first example. (b) the transition after removing the input and output waveguide ports, containing 24 blocks, cut from 24 tetrahedrons. (c) a quarter part of the transition of part (b), falling in the second quarter of the x-y plane, π/2<φ<π, containing six blocks. (d) half of the quarter part in (c), or one eighth of the whole transition, 3π/4<φ<π, containing three blocks, cut from three corresponding tetrahedrons.
Fig. 4
Fig. 4 (a) The distribution of the electric field component Ey over two parallel transverse planes, at the input and output waveguides (ports). The red arrows indicate the flow of the real power through the coupler and the two waveguide ports. (b) and (c) Electric field component Ey distribution over two waveguide cross-sections, the input and output ports, respectively.
Fig. 5
Fig. 5 (a) The circular waveguide coupler of the second example. (b) The profile of the electric field component Ey, while the red arrows show the direction of propagation.
Fig. 6
Fig. 6 (a) Physical-space geometry of the circular right-angle bend. (b) the (H)y field distribution within the bend.
Fig. 7
Fig. 7 An infinite cylinder made of a good conductor to be cloaked externally. The cloak is consisted of four triangular regions, outside the cloaked cylinder (the circle), indicated by numbers 2, 3, 5, and 6. The ellipse is the image of the circle, located in region 2. Regions 1 and 4 are filled with air. Regions 2 and 5 are identical and their permittivity and permeability are negative. They are back folded on regions 1 and 4, respectively. Regions 3 and 6 are identical and their permittivity and permeability are positive. Region 3 cloaks regions 1 and 2, while region 6 cloaks regions 4 and 5.
Fig. 8
Fig. 8 (a) Field profile inside and outside of the cloak, under the incident angle of φi = 60°. (b) the ratio of the far scattered field amplitude from the cloaked cylinder to that from the uncloaked cylinder, for φ = 0 to 360°, associated with the incident angle φi = 60°. (c) radar cross section reduction (in dB) achieved, when using the cloak, for various incident angles, from φi = 0 to 360°.
Fig. 9
Fig. 9 (a) A PEC cylinder to be cloaked, externally. The cylinder plays the role of both the object and anti-object. The external cloak is consisted of four parts, indicated by numbers 1, 2, 3, and 4. Regions 1 and 3 are of the same material, also regions 2 and 4. (b) Field distribution around the cloaked circle. (c) scattered field from the cloaked object. (d) scattered field from the object without the cloak.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

ε = Λε  Λ T det( Λ  ) , μ = Λμ  Λ T det( Λ  ) ,
×H=σE+jω ε 0 E,
ε=( σ jω ε 0 +I).
x=α(u,v) y=β(u,v) z=γ(u,v) u 1 <u< u 2 v 1 <v< v 2 .
σ=δ(xα(u,v),yβ(u,v),zγ(u,v))I,
ε = Λ Λ T det(Λ) + 1 jω ε 0 Λ δ phy Λ T det(Λ) ,
Λ=( a b c d e f g h i ),
Λ( x y z )=( x y z ),
δ phy =δ( x (aα(u,v)+bβ(u,v)+cγ(u,v)) , y (dα(u,v)+eβ(u,v)+fγ(u,v)) , z (gα(u,v)+hβ(u,v)+iγ(u,v))).
x =aα(u,v)+bβ(u,v)+cγ(u,v) y =dα(u,v)+eβ(u,v)+fγ(u,v) z =gα(u,v)+hβ(u,v)+iγ(u,v) u 1 <u< u 2 v 1 <v< v 2 .
Re{ R ε R 1 }=R Λ Λ T det(Λ) R 1 =( l 0 0 0 m 0 0 0 n ),
Im{ R ε R 1 }=R 1 jω ε 0 Λ δ phy Λ T det(Λ) R 1 = 1 jω ε 0 ( l 0 0 0 m 0 0 0 n ) δ rot phy ,
det( Λ ) V vir = V phy ,
ε = Λ T εΛ det(Λ) det( ε )= det(ε) det(Λ) .
η= μ 0 ( ε 0 + σ jω ) .
( 0 0 0 ),( 3 0 0 ),( 3 3 0 ),( 0 0 3 ),( 3 0 3 ),( 3 3 3 ).
( 0 0 0 ),( 3 0 0 ),( 3 3 0 ),( 3 0 6 ),( 3 0 3 ),( 3 3 3 ).
Tet. 1:{ ( 0 0 0 ),( 0 0 3 ),( 3 0 3 ),( 3 3 3 ) }, Tet. 2:{ ( 0 0 0 ),( 3 0 3 ),( 3 3 3 ),( 3 0 0 ) }, Tet. 3:{ ( 0 0 0 ),( 3 3 3 ),( 3 0 0 ),( 3 3 0 ) }
Tet. 1':{ ( 0 0 0 ),( 3 0 6 ),( 3 0 3 ),( 3 3 3 ) }, Tet. 2':{ ( 0 0 0 ),( 3 0 3 ),( 3 3 3 ),( 3 0 0 ) }, Tet. 3':{ ( 0 0 0 ),( 3 3 3 ),( 3 0 0 ),( 3 3 0 ) }
Λ=( 0 0 1 0 1 0 1 0 2 ).
x 0 =2.1213 y 0 =0.8786 r=0.8786
x=2.1213+0.8786sin(2πv) y=0.8786+0.8786cos(2πv) z=u 0<v2π 0u3.
x =u y =0.8786+0.8786cos(2πv) z =2.12130.8786sin(2πv)+2u 0<v2π 0u3.
ε = μ =( 1 0 2 0 1 0 2 0 5 ).
R ε R 1 =R μ R 1 =( 32 2 0 0 0 1 0 0 0 3+2 2 )

Metrics