Abstract

A novel planar terahertz (THz) plasmonic waveguide developed from coplanar stripline (CPS) is proposed for the first time to achieve strongly confined THz propagation performance based on the concept of spoof surface plasmon polaritons (SSPP). Guided-wave characteristics of the proposed plasmonic waveguide are theoretically investigated by eigen-mode simulation technique and finite-difference time-domain solutions. It is found that the waveguide propagation characteristics can be directly manipulated by designing the SSPP unit cells, which exhibit flexible tuning ability of the asymptotic frequency and strong THz field confinement. The idea has been validated through fabricated filter experiments in microwave frequency regime by scaling up the geometry size of the proposed structure. The measured results illustrate high performance of the ultra-wideband filter, in which the reflection coefficient is better than −10 dB from 3 to 13.1 GHz with the smallest and worst insertion losses of 2.2 dB and 5.6 dB, respectively. This work presents a new SSPP waveguide developed from CPS to realize the THz-wave propagation with strong field confinement, which may have promising potential applications in various integrated THz plasmonic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves

Kai-Da Xu, Ying Jiang Guo, and Xianjin Deng
Opt. Express 27(4) 4354-4363 (2019)

Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration

Longfang Ye, Yifan Xiao, Na Liu, Zhengyong Song, Wei Zhang, and Qing Huo Liu
Opt. Express 25(2) 898-906 (2017)

High-efficient and low-coupling spoof surface plasmon polaritons enabled by V-shaped microstrips

Longfang Ye, Hao Feng, Guoxiong Cai, Yong Zhang, Bo Yan, and Qing Huo Liu
Opt. Express 27(16) 22088-22099 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [PubMed]
  5. J. Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).
  6. A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
    [PubMed]
  7. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [PubMed]
  8. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X. C. Zhang, and P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express 20(8), 8344–8355 (2012).
    [PubMed]
  9. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [PubMed]
  10. N. Yudasari, J. Anthony, and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Opt. Express 22(21), 26042–26054 (2014).
    [PubMed]
  11. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [PubMed]
  12. D. Zhang, K. Zhang, Q. Wu, X. Ding, and X. Sha, “High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies,” Opt. Express 25(3), 2121–2129 (2017).
    [PubMed]
  13. H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
  14. D. Zhang, K. Zhang, Q. Wu, G. Yang, and X. Sha, “High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure,” Opt. Lett. 42(14), 2766–2769 (2017).
    [PubMed]
  15. Y. J. Zhou and B. J. Yang, “Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves,” Appl. Opt. 54(14), 4529–4533 (2015).
    [PubMed]
  16. Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).
  17. X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
  18. G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6, 29600 (2016).
    [PubMed]
  19. Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
    [PubMed]
  20. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
  21. H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).
  22. X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface Plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
    [PubMed]
  23. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
  24. Z. Li, J. Xu, C. Chen, Y. Sun, B. Xu, L. Liu, and C. Gu, “Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons,” Appl. Opt. 55(36), 10323–10328 (2016).
    [PubMed]
  25. L. L. Liu, Z. Li, B. Z. Xu, J. Xu, C. Chen, and C. Q. Gu, “Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons,” Plasmonics 12(2), 439–444 (2017).
  26. L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).
  27. B. Z. Xu, Z. Li, L. L. Liu, J. Xu, C. Chen, and C. Q. Gu, “Bandwidth tunable microstrip bandstop filters based on localized spoof surface plasmons,” J. Opt. Soc. Am. B 33(7), 1388–1391 (2016).
  28. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
    [PubMed]
  29. M. Aghadjani and P. Mazumder, “THz polarizer controller based on cylindrical spoof surface plasmon polariton (C-SSPP),” IEEE Trans. Terahertz Sci. Technol. 5(4), 556–563 (2017).
  30. X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
    [PubMed]
  31. L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. H. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
    [PubMed]
  32. Y. H. Suh and K. Chang, “A wideband coplanar stripline to microstrip transition,” IEEE Microw. Wirel. Compon. Lett. 11(1), 28–29 (2001).
  33. P. Mondal and Y. L. Guan, “A coplanar stripline ultra-wideband bandpass filter with notch band,” IEEE Microw. Wirel. Compon. Lett. 20(1), 22–24 (2010).
  34. M. A. Antoniades and G. V. Eleftheriades, “A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials,” IEEE Trans. Antenn. Propag. 56(3), 708–721 (2008).
  35. H.-T. Kim, S. Lee, S. Kim, Y. Kwon, and K.-S. Seo, “Millimeter-wave CPS distributed analogue MMIC phase shifter,” Electron. Lett. 39(23), 1661–1662 (2003).
  36. H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Efficient terahertz slot-line waveguides,” Opt. Express 19(26), B47–B55 (2011).
    [PubMed]

2017 (7)

D. Zhang, K. Zhang, Q. Wu, X. Ding, and X. Sha, “High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies,” Opt. Express 25(3), 2121–2129 (2017).
[PubMed]

D. Zhang, K. Zhang, Q. Wu, G. Yang, and X. Sha, “High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure,” Opt. Lett. 42(14), 2766–2769 (2017).
[PubMed]

Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).

X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface Plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
[PubMed]

L. L. Liu, Z. Li, B. Z. Xu, J. Xu, C. Chen, and C. Q. Gu, “Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons,” Plasmonics 12(2), 439–444 (2017).

M. Aghadjani and P. Mazumder, “THz polarizer controller based on cylindrical spoof surface plasmon polariton (C-SSPP),” IEEE Trans. Terahertz Sci. Technol. 5(4), 556–563 (2017).

L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. H. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
[PubMed]

2016 (3)

2015 (3)

Y. J. Zhou and B. J. Yang, “Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves,” Appl. Opt. 54(14), 4529–4533 (2015).
[PubMed]

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).

2014 (5)

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[PubMed]

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).

Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
[PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).

N. Yudasari, J. Anthony, and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Opt. Express 22(21), 26042–26054 (2014).
[PubMed]

2013 (1)

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).

2012 (1)

2011 (1)

2010 (3)

P. Mondal and Y. L. Guan, “A coplanar stripline ultra-wideband bandpass filter with notch band,” IEEE Microw. Wirel. Compon. Lett. 20(1), 22–24 (2010).

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

2009 (1)

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[PubMed]

2008 (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).

M. A. Antoniades and G. V. Eleftheriades, “A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials,” IEEE Trans. Antenn. Propag. 56(3), 708–721 (2008).

2006 (1)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[PubMed]

2005 (1)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[PubMed]

2004 (2)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[PubMed]

2003 (1)

H.-T. Kim, S. Lee, S. Kim, Y. Kwon, and K.-S. Seo, “Millimeter-wave CPS distributed analogue MMIC phase shifter,” Electron. Lett. 39(23), 1661–1662 (2003).

2001 (1)

Y. H. Suh and K. Chang, “A wideband coplanar stripline to microstrip transition,” IEEE Microw. Wirel. Compon. Lett. 11(1), 28–29 (2001).

1999 (1)

J. Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).

Aghadjani, M.

M. Aghadjani and P. Mazumder, “THz polarizer controller based on cylindrical spoof surface plasmon polariton (C-SSPP),” IEEE Trans. Terahertz Sci. Technol. 5(4), 556–563 (2017).

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[PubMed]

Andryieuski, A.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Anthony, J.

Antoniades, M. A.

M. A. Antoniades and G. V. Eleftheriades, “A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials,” IEEE Trans. Antenn. Propag. 56(3), 708–721 (2008).

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[PubMed]

Cai, B. G.

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6, 29600 (2016).
[PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Capasso, F.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

Chang, K.

Y. H. Suh and K. Chang, “A wideband coplanar stripline to microstrip transition,” IEEE Microw. Wirel. Compon. Lett. 11(1), 28–29 (2001).

Chen, C.

L. L. Liu, Z. Li, B. Z. Xu, J. Xu, C. Chen, and C. Q. Gu, “Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons,” Plasmonics 12(2), 439–444 (2017).

B. Z. Xu, Z. Li, L. L. Liu, J. Xu, C. Chen, and C. Q. Gu, “Bandwidth tunable microstrip bandstop filters based on localized spoof surface plasmons,” J. Opt. Soc. Am. B 33(7), 1388–1391 (2016).

Z. Li, J. Xu, C. Chen, Y. Sun, B. Xu, L. Liu, and C. Gu, “Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons,” Appl. Opt. 55(36), 10323–10328 (2016).
[PubMed]

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).

Chen, K.

Chen, L. H.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).

Chen, X. L.

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).

Cheng, Q.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).

Cui, T. J.

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6, 29600 (2016).
[PubMed]

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).

Darcie, T. E.

Davies, A. G.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

Ding, X.

Eleftheriades, G. V.

M. A. Antoniades and G. V. Eleftheriades, “A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials,” IEEE Trans. Antenn. Propag. 56(3), 708–721 (2008).

Fan, J. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

Feng, Y.

Fernández-Domínguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).

Gao, X.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[PubMed]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[PubMed]

Gu, C.

Gu, C. Q.

L. L. Liu, Z. Li, B. Z. Xu, J. Xu, C. Chen, and C. Q. Gu, “Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons,” Plasmonics 12(2), 439–444 (2017).

B. Z. Xu, Z. Li, L. L. Liu, J. Xu, C. Chen, and C. Q. Gu, “Bandwidth tunable microstrip bandstop filters based on localized spoof surface plasmons,” J. Opt. Soc. Am. B 33(7), 1388–1391 (2016).

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).

Guan, Y. L.

P. Mondal and Y. L. Guan, “A coplanar stripline ultra-wideband bandpass filter with notch band,” IEEE Microw. Wirel. Compon. Lett. 20(1), 22–24 (2010).

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Han, Z.

Heshmat, B.

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[PubMed]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[PubMed]

Iwaszczuk, K.

Jepsen, P. U.

Jiang, T.

Jiang, W. X.

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).

Jones, A. C.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Kats, M. A.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

Khanna, S. P.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

Kim, H.-T.

H.-T. Kim, S. Lee, S. Kim, Y. Kwon, and K.-S. Seo, “Millimeter-wave CPS distributed analogue MMIC phase shifter,” Electron. Lett. 39(23), 1661–1662 (2003).

Kim, S.

H.-T. Kim, S. Lee, S. Kim, Y. Kwon, and K.-S. Seo, “Millimeter-wave CPS distributed analogue MMIC phase shifter,” Electron. Lett. 39(23), 1661–1662 (2003).

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[PubMed]

Kong, G. S.

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6, 29600 (2016).
[PubMed]

Kwon, Y.

H.-T. Kim, S. Lee, S. Kim, Y. Kwon, and K.-S. Seo, “Millimeter-wave CPS distributed analogue MMIC phase shifter,” Electron. Lett. 39(23), 1661–1662 (2003).

Lavrinenko, A.

Lee, S.

H.-T. Kim, S. Lee, S. Kim, Y. Kwon, and K.-S. Seo, “Millimeter-wave CPS distributed analogue MMIC phase shifter,” Electron. Lett. 39(23), 1661–1662 (2003).

Leonhardt, R.

Li, L.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

Li, Z.

L. L. Liu, Z. Li, B. Z. Xu, J. Xu, C. Chen, and C. Q. Gu, “Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons,” Plasmonics 12(2), 439–444 (2017).

Z. Li, J. Xu, C. Chen, Y. Sun, B. Xu, L. Liu, and C. Gu, “Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons,” Appl. Opt. 55(36), 10323–10328 (2016).
[PubMed]

B. Z. Xu, Z. Li, L. L. Liu, J. Xu, C. Chen, and C. Q. Gu, “Bandwidth tunable microstrip bandstop filters based on localized spoof surface plasmons,” J. Opt. Soc. Am. B 33(7), 1388–1391 (2016).

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).

Liao, Z.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).

Linfield, E. H.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

Liu, L.

Liu, L. L.

L. L. Liu, Z. Li, B. Z. Xu, J. Xu, C. Chen, and C. Q. Gu, “Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons,” Plasmonics 12(2), 439–444 (2017).

B. Z. Xu, Z. Li, L. L. Liu, J. Xu, C. Chen, and C. Q. Gu, “Bandwidth tunable microstrip bandstop filters based on localized spoof surface plasmons,” J. Opt. Soc. Am. B 33(7), 1388–1391 (2016).

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).

Liu, N.

Liu, Q. H.

Liu, S.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).

Liu, X.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Ma, H. F.

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6, 29600 (2016).
[PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[PubMed]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[PubMed]

Mazumder, P.

M. Aghadjani and P. Mazumder, “THz polarizer controller based on cylindrical spoof surface plasmon polariton (C-SSPP),” IEEE Trans. Terahertz Sci. Technol. 5(4), 556–563 (2017).

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[PubMed]

Mondal, P.

P. Mondal and Y. L. Guan, “A coplanar stripline ultra-wideband bandpass filter with notch band,” IEEE Microw. Wirel. Compon. Lett. 20(1), 22–24 (2010).

Ning, P. P.

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).

Olmon, R. L.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[PubMed]

Pahlevaninezhad, H.

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[PubMed]

Pendry, J.

J. Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[PubMed]

Qin, J.

Raschke, M. B.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Seo, K.-S.

H.-T. Kim, S. Lee, S. Kim, Y. Kwon, and K.-S. Seo, “Millimeter-wave CPS distributed analogue MMIC phase shifter,” Electron. Lett. 39(23), 1661–1662 (2003).

Sha, X.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Shen, X.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).

Shi, J. H.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).

Shi, X.

Skrabalak, S. E.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[PubMed]

Song, Z.

Suh, Y. H.

Y. H. Suh and K. Chang, “A wideband coplanar stripline to microstrip transition,” IEEE Microw. Wirel. Compon. Lett. 11(1), 28–29 (2001).

Sun, Y.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[PubMed]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[PubMed]

Wang, Q. J.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

Wiley, B. J.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).

Wu, Q.

Xia, Y. N.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[PubMed]

Xiao, Q.

Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).

Xiao, Y.

Xu, B.

Xu, B. Z.

L. L. Liu, Z. Li, B. Z. Xu, J. Xu, C. Chen, and C. Q. Gu, “Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons,” Plasmonics 12(2), 439–444 (2017).

B. Z. Xu, Z. Li, L. L. Liu, J. Xu, C. Chen, and C. Q. Gu, “Bandwidth tunable microstrip bandstop filters based on localized spoof surface plasmons,” J. Opt. Soc. Am. B 33(7), 1388–1391 (2016).

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).

Xu, J.

L. L. Liu, Z. Li, B. Z. Xu, J. Xu, C. Chen, and C. Q. Gu, “Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons,” Plasmonics 12(2), 439–444 (2017).

Z. Li, J. Xu, C. Chen, Y. Sun, B. Xu, L. Liu, and C. Gu, “Coplanar waveguide wideband band-stop filter based on localized spoof surface plasmons,” Appl. Opt. 55(36), 10323–10328 (2016).
[PubMed]

B. Z. Xu, Z. Li, L. L. Liu, J. Xu, C. Chen, and C. Q. Gu, “Bandwidth tunable microstrip bandstop filters based on localized spoof surface plasmons,” J. Opt. Soc. Am. B 33(7), 1388–1391 (2016).

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).

Yang, B. J.

Yang, G.

Yang, L.

Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).

Ye, L.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[PubMed]

Yu, N.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

Yudasari, N.

Zhang, C.

Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).

Zhang, D.

Zhang, H. C.

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).

Zhang, K.

Zhang, W.

Zhang, X. C.

Zhao, J.

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Zhou, L.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).

Zhou, Y. J.

Zhu, B.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107, 201602 (2015).

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).

Electron. Lett. (1)

H.-T. Kim, S. Lee, S. Kim, Y. Kwon, and K.-S. Seo, “Millimeter-wave CPS distributed analogue MMIC phase shifter,” Electron. Lett. 39(23), 1661–1662 (2003).

IEEE Microw. Wirel. Compon. Lett. (2)

Y. H. Suh and K. Chang, “A wideband coplanar stripline to microstrip transition,” IEEE Microw. Wirel. Compon. Lett. 11(1), 28–29 (2001).

P. Mondal and Y. L. Guan, “A coplanar stripline ultra-wideband bandpass filter with notch band,” IEEE Microw. Wirel. Compon. Lett. 20(1), 22–24 (2010).

IEEE Trans. Antenn. Propag. (1)

M. A. Antoniades and G. V. Eleftheriades, “A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials,” IEEE Trans. Antenn. Propag. 56(3), 708–721 (2008).

IEEE Trans. Terahertz Sci. Technol. (1)

M. Aghadjani and P. Mazumder, “THz polarizer controller based on cylindrical spoof surface plasmon polariton (C-SSPP),” IEEE Trans. Terahertz Sci. Technol. 5(4), 556–563 (2017).

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

Y. J. Zhou, C. Zhang, L. Yang, and Q. Xiao, “Electronically controllable spoof localized surface plasmons,” J. Phys. D Appl. Phys. 50(42), 425102 (2017).

Laser Photonics Rev. (2)

H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).

H. C. Zhang, S. Liu, X. Shen, L. H. Chen, L. Li, and T. J. Cui, “Broadband amplification of spoof surface plasmon polaritons at microwave frequencies,” Laser Photonics Rev. 9(1), 83–90 (2015).

Nano Lett. (2)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[PubMed]

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[PubMed]

Nat. Mater. (3)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010).
[PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[PubMed]

Opt. Express (8)

N. Yudasari, J. Anthony, and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Opt. Express 22(21), 26042–26054 (2014).
[PubMed]

K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X. C. Zhang, and P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Opt. Express 20(8), 8344–8355 (2012).
[PubMed]

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Efficient terahertz slot-line waveguides,” Opt. Express 19(26), B47–B55 (2011).
[PubMed]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[PubMed]

L. Ye, Y. Xiao, N. Liu, Z. Song, W. Zhang, and Q. H. Liu, “Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration,” Opt. Express 25(2), 898–906 (2017).
[PubMed]

X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface Plasmon waveguide,” Opt. Express 25(1), 278–283 (2017).
[PubMed]

D. Zhang, K. Zhang, Q. Wu, X. Ding, and X. Sha, “High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies,” Opt. Express 25(3), 2121–2129 (2017).
[PubMed]

Y. J. Zhou and B. J. Yang, “A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system,” Opt. Express 22(18), 21589–21599 (2014).
[PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[PubMed]

Plasmonics (1)

L. L. Liu, Z. Li, B. Z. Xu, J. Xu, C. Chen, and C. Q. Gu, “Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons,” Plasmonics 12(2), 439–444 (2017).

Sci. Rep. (1)

G. S. Kong, H. F. Ma, B. G. Cai, and T. J. Cui, “Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide,” Sci. Rep. 6, 29600 (2016).
[PubMed]

Science (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[PubMed]

J. Pendry, “Playing tricks with light,” Science 285(5434), 1687–1688 (1999).

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic configuration of the proposed SSPP unit cell. (b) The dispersion curves of the light line and the proposed SSPP unit cell shown in (a) with different dimensions. The default geometric parameters of Ln = 35 μm, Wn = 10 μm, W = 5 μm, D = 22.5 μm, and S = 2.5 μm are fixed for all curves except the parametric sweeping.
Fig. 2
Fig. 2 Propagation lengths versus the operating frequency for different metals of SSPP structures (PEC, gold, and copper films). Other physical parameters are the same as those in Fig. 1.
Fig. 3
Fig. 3 Schematic configuration of the proposed THz SSPP waveguide with the input and output ports of CPS.
Fig. 4
Fig. 4 Simulated z-direction electric field distributions on the x-y plane 2 μm above the proposed THz SSPP waveguide at different frequencies: (a) 1 THz and (b) 1.5 THz.
Fig. 5
Fig. 5 Simulated S-parameters of the proposed THz SSPP waveguide (a) with different lengths Ln (N = 9) and (b) with different periods N (Ln = 45 μm).
Fig. 6
Fig. 6 (a) Simulated amplitudes of electric fields distributions |E| along the x direction when y = 0 μm and z = 2 μm. (b) power intensity distributions along the y direction when x = 0 μm and z = 2 μm. The inset shows the power distribution of 0.5 THz on the x-z plane when y = 0 μm and y = 10 μm.
Fig. 7
Fig. 7 (a) Cross sections (blue planes) used for calculating and demonstrating the electric fields distribution. (b) Comparisons of the simulated amplitudes of electric fields distributions |E| between the slotline and the proposed structure at the frequency of 0.5 THz. The inset of (b) is the electric fields distributions on cross section of the slotline and the proposed structure where both plots have the same color bar in dB scaling.
Fig. 8
Fig. 8 (a) Schematic configuration of the proposed microwave BPF with input and output microstrip-CPS transitions for facilitating measurement. (b) Photographs of the fabricated microwave BPF (N = 9). The geometric parameters of Ln = 3.54 mm, Wn = 1 mm, W = 0.5 mm, D = 3.5 mm, H1 = 0.53 mm, H2 = 0.96 mm, H3 = 1.39 mm, H4 = 1.82 mm, H5 = 2.25 mm, H6 = 2.68 mm, H7 = 3.11 mm, R1 = 2 mm, R2 = 3 mm, R3 = 1.8 mm, R4 = 3 mm, and S = 0.1 mm are chosen.
Fig. 9
Fig. 9 (a) Dispersion curves of the SSPP unit cell and light line. (b) Simulated and measured S-parameters of the proposed microwave filter. (c) Simulated transmission coefficient with varied length of the proposed SSPP waveguide (i.e., number of SSPP unit cells N).

Metrics