K. Ahn, H. G. Rhee, H. J. Lee, J. H. Lee, H. S. Yang, and H. Kihm, “Wave-front compensation using a silicon carbide deformable mirror with 37 actuators for adaptive optics,” Korean J. Opt. Photonics 27(3), 106–113 (2016).
[Crossref]
K. Ahn, H. G. Rhee, H. S. Yang, and H. Kihm, “Silicon carbide deformable mirror with 37 actuators for adaptive optics,” J. Korean Phys. Soc. 67(10), 1882–1888 (2015).
[Crossref]
S. Li and S. Zhang, “Numerical model of the influence function of deformable mirrors based on Bessel Fourier orthogonal functions,” Res. Astron. Astrophys. 14(11), 1504–1510 (2014).
[Crossref]
H. Kihm and H.-S. Yang, “Design optimization of a 1-m lightweight mirror for a space telescope,” Opt. Eng. 52(9), 091806 (2013).
[Crossref]
G. Rabczuk and M. Sawczak, “Study on the possibilities of controlling the laser output beam properties by an intracavity deformable mirror,” Opto-Electron. Rev. 14(2), 141–147 (2006).
[Crossref]
C. J. Luis, I. Puertas, and G. Villa, “Material removal rate and electrode wear study on the EDM of silicon carbide,” J. Mat. Proc. Technol. 164, 889–896 (2005).
[Crossref]
B. R. Oppenheimer, D. Palmer, R. Dekany, A. Sivaramakrishnan, M. Ealey, and T. Price, “Investigating a Xinetics Inc. deformable mirror,” Proc. SPIE 3126, 569–579 (1997).
[Crossref]
A. V. Kudryashov and V. V. Samarkin, “Control of high-power CO2-laser beam by adaptive optical elements,” Opt. Commun. 118(3–4), 317–322 (1995).
[Crossref]
M. A. Ealey and J. A. Wellman, “Cooled ISOFLOW laser mirrors,” Proc. SPIE 1739, 374–382 (1992).
[Crossref]
W. H. Jiang, N. Ling, X. J. Rao, and F. Shi, “Fitting capability of deformable mirror,” Proc. SPIE 1542, 130–137 (1991).
[Crossref]
E. J. Szetela and A. I. Chalfant, “Thermal distortion of mirrors,” Thermochim. Acta 26(1–3), 191–197 (1978).
[Crossref]
H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[Crossref]
K. Ahn, H. G. Rhee, H. J. Lee, J. H. Lee, H. S. Yang, and H. Kihm, “Wave-front compensation using a silicon carbide deformable mirror with 37 actuators for adaptive optics,” Korean J. Opt. Photonics 27(3), 106–113 (2016).
[Crossref]
K. Ahn, H. G. Rhee, H. S. Yang, and H. Kihm, “Silicon carbide deformable mirror with 37 actuators for adaptive optics,” J. Korean Phys. Soc. 67(10), 1882–1888 (2015).
[Crossref]
H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[Crossref]
E. J. Szetela and A. I. Chalfant, “Thermal distortion of mirrors,” Thermochim. Acta 26(1–3), 191–197 (1978).
[Crossref]
B. R. Oppenheimer, D. Palmer, R. Dekany, A. Sivaramakrishnan, M. Ealey, and T. Price, “Investigating a Xinetics Inc. deformable mirror,” Proc. SPIE 3126, 569–579 (1997).
[Crossref]
B. R. Oppenheimer, D. Palmer, R. Dekany, A. Sivaramakrishnan, M. Ealey, and T. Price, “Investigating a Xinetics Inc. deformable mirror,” Proc. SPIE 3126, 569–579 (1997).
[Crossref]
M. A. Ealey and J. A. Wellman, “Cooled ISOFLOW laser mirrors,” Proc. SPIE 1739, 374–382 (1992).
[Crossref]
W. H. Jiang, N. Ling, X. J. Rao, and F. Shi, “Fitting capability of deformable mirror,” Proc. SPIE 1542, 130–137 (1991).
[Crossref]
K. Ahn, H. G. Rhee, H. J. Lee, J. H. Lee, H. S. Yang, and H. Kihm, “Wave-front compensation using a silicon carbide deformable mirror with 37 actuators for adaptive optics,” Korean J. Opt. Photonics 27(3), 106–113 (2016).
[Crossref]
K. Ahn, H. G. Rhee, H. S. Yang, and H. Kihm, “Silicon carbide deformable mirror with 37 actuators for adaptive optics,” J. Korean Phys. Soc. 67(10), 1882–1888 (2015).
[Crossref]
H. Kihm and H.-S. Yang, “Design optimization of a 1-m lightweight mirror for a space telescope,” Opt. Eng. 52(9), 091806 (2013).
[Crossref]
A. V. Kudryashov and V. V. Samarkin, “Control of high-power CO2-laser beam by adaptive optical elements,” Opt. Commun. 118(3–4), 317–322 (1995).
[Crossref]
K. Ahn, H. G. Rhee, H. J. Lee, J. H. Lee, H. S. Yang, and H. Kihm, “Wave-front compensation using a silicon carbide deformable mirror with 37 actuators for adaptive optics,” Korean J. Opt. Photonics 27(3), 106–113 (2016).
[Crossref]
K. Ahn, H. G. Rhee, H. J. Lee, J. H. Lee, H. S. Yang, and H. Kihm, “Wave-front compensation using a silicon carbide deformable mirror with 37 actuators for adaptive optics,” Korean J. Opt. Photonics 27(3), 106–113 (2016).
[Crossref]
S. Li and S. Zhang, “Numerical model of the influence function of deformable mirrors based on Bessel Fourier orthogonal functions,” Res. Astron. Astrophys. 14(11), 1504–1510 (2014).
[Crossref]
W. H. Jiang, N. Ling, X. J. Rao, and F. Shi, “Fitting capability of deformable mirror,” Proc. SPIE 1542, 130–137 (1991).
[Crossref]
C. J. Luis, I. Puertas, and G. Villa, “Material removal rate and electrode wear study on the EDM of silicon carbide,” J. Mat. Proc. Technol. 164, 889–896 (2005).
[Crossref]
B. R. Oppenheimer, D. Palmer, R. Dekany, A. Sivaramakrishnan, M. Ealey, and T. Price, “Investigating a Xinetics Inc. deformable mirror,” Proc. SPIE 3126, 569–579 (1997).
[Crossref]
B. R. Oppenheimer, D. Palmer, R. Dekany, A. Sivaramakrishnan, M. Ealey, and T. Price, “Investigating a Xinetics Inc. deformable mirror,” Proc. SPIE 3126, 569–579 (1997).
[Crossref]
B. R. Oppenheimer, D. Palmer, R. Dekany, A. Sivaramakrishnan, M. Ealey, and T. Price, “Investigating a Xinetics Inc. deformable mirror,” Proc. SPIE 3126, 569–579 (1997).
[Crossref]
C. J. Luis, I. Puertas, and G. Villa, “Material removal rate and electrode wear study on the EDM of silicon carbide,” J. Mat. Proc. Technol. 164, 889–896 (2005).
[Crossref]
G. Rabczuk and M. Sawczak, “Study on the possibilities of controlling the laser output beam properties by an intracavity deformable mirror,” Opto-Electron. Rev. 14(2), 141–147 (2006).
[Crossref]
W. H. Jiang, N. Ling, X. J. Rao, and F. Shi, “Fitting capability of deformable mirror,” Proc. SPIE 1542, 130–137 (1991).
[Crossref]
K. Ahn, H. G. Rhee, H. J. Lee, J. H. Lee, H. S. Yang, and H. Kihm, “Wave-front compensation using a silicon carbide deformable mirror with 37 actuators for adaptive optics,” Korean J. Opt. Photonics 27(3), 106–113 (2016).
[Crossref]
K. Ahn, H. G. Rhee, H. S. Yang, and H. Kihm, “Silicon carbide deformable mirror with 37 actuators for adaptive optics,” J. Korean Phys. Soc. 67(10), 1882–1888 (2015).
[Crossref]
A. V. Kudryashov and V. V. Samarkin, “Control of high-power CO2-laser beam by adaptive optical elements,” Opt. Commun. 118(3–4), 317–322 (1995).
[Crossref]
G. Rabczuk and M. Sawczak, “Study on the possibilities of controlling the laser output beam properties by an intracavity deformable mirror,” Opto-Electron. Rev. 14(2), 141–147 (2006).
[Crossref]
W. H. Jiang, N. Ling, X. J. Rao, and F. Shi, “Fitting capability of deformable mirror,” Proc. SPIE 1542, 130–137 (1991).
[Crossref]
B. R. Oppenheimer, D. Palmer, R. Dekany, A. Sivaramakrishnan, M. Ealey, and T. Price, “Investigating a Xinetics Inc. deformable mirror,” Proc. SPIE 3126, 569–579 (1997).
[Crossref]
E. J. Szetela and A. I. Chalfant, “Thermal distortion of mirrors,” Thermochim. Acta 26(1–3), 191–197 (1978).
[Crossref]
C. J. Luis, I. Puertas, and G. Villa, “Material removal rate and electrode wear study on the EDM of silicon carbide,” J. Mat. Proc. Technol. 164, 889–896 (2005).
[Crossref]
M. A. Ealey and J. A. Wellman, “Cooled ISOFLOW laser mirrors,” Proc. SPIE 1739, 374–382 (1992).
[Crossref]
K. Ahn, H. G. Rhee, H. J. Lee, J. H. Lee, H. S. Yang, and H. Kihm, “Wave-front compensation using a silicon carbide deformable mirror with 37 actuators for adaptive optics,” Korean J. Opt. Photonics 27(3), 106–113 (2016).
[Crossref]
K. Ahn, H. G. Rhee, H. S. Yang, and H. Kihm, “Silicon carbide deformable mirror with 37 actuators for adaptive optics,” J. Korean Phys. Soc. 67(10), 1882–1888 (2015).
[Crossref]
H. Kihm and H.-S. Yang, “Design optimization of a 1-m lightweight mirror for a space telescope,” Opt. Eng. 52(9), 091806 (2013).
[Crossref]
S. Li and S. Zhang, “Numerical model of the influence function of deformable mirrors based on Bessel Fourier orthogonal functions,” Res. Astron. Astrophys. 14(11), 1504–1510 (2014).
[Crossref]
R. H. Freeman and H. R. Garcia, “High-speed deformable mirror system,” Appl. Opt. 21(4), 589–595 (1982).
[Crossref]
[PubMed]
J. Alda and G. D. Boreman, “Zernike-based matrix model of deformable mirrors: optimization of aperture size,” Appl. Opt. 32(13), 2431–2438 (1993).
[Crossref]
[PubMed]
M. A. van Dam, D. Le Mignant, and B. A. Macintosh, “Performance of the Keck Observatory adaptive-optics system,” Appl. Opt. 43(29), 5458–5467 (2004).
[Crossref]
[PubMed]
K. Ahn, H. G. Rhee, H. S. Yang, and H. Kihm, “Silicon carbide deformable mirror with 37 actuators for adaptive optics,” J. Korean Phys. Soc. 67(10), 1882–1888 (2015).
[Crossref]
C. J. Luis, I. Puertas, and G. Villa, “Material removal rate and electrode wear study on the EDM of silicon carbide,” J. Mat. Proc. Technol. 164, 889–896 (2005).
[Crossref]
K. Ahn, H. G. Rhee, H. J. Lee, J. H. Lee, H. S. Yang, and H. Kihm, “Wave-front compensation using a silicon carbide deformable mirror with 37 actuators for adaptive optics,” Korean J. Opt. Photonics 27(3), 106–113 (2016).
[Crossref]
A. V. Kudryashov and V. V. Samarkin, “Control of high-power CO2-laser beam by adaptive optical elements,” Opt. Commun. 118(3–4), 317–322 (1995).
[Crossref]
H. Kihm and H.-S. Yang, “Design optimization of a 1-m lightweight mirror for a space telescope,” Opt. Eng. 52(9), 091806 (2013).
[Crossref]
G. Rabczuk and M. Sawczak, “Study on the possibilities of controlling the laser output beam properties by an intracavity deformable mirror,” Opto-Electron. Rev. 14(2), 141–147 (2006).
[Crossref]
M. A. Ealey and J. A. Wellman, “Cooled ISOFLOW laser mirrors,” Proc. SPIE 1739, 374–382 (1992).
[Crossref]
B. R. Oppenheimer, D. Palmer, R. Dekany, A. Sivaramakrishnan, M. Ealey, and T. Price, “Investigating a Xinetics Inc. deformable mirror,” Proc. SPIE 3126, 569–579 (1997).
[Crossref]
W. H. Jiang, N. Ling, X. J. Rao, and F. Shi, “Fitting capability of deformable mirror,” Proc. SPIE 1542, 130–137 (1991).
[Crossref]
H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65(386), 229–236 (1953).
[Crossref]
S. Li and S. Zhang, “Numerical model of the influence function of deformable mirrors based on Bessel Fourier orthogonal functions,” Res. Astron. Astrophys. 14(11), 1504–1510 (2014).
[Crossref]
E. J. Szetela and A. I. Chalfant, “Thermal distortion of mirrors,” Thermochim. Acta 26(1–3), 191–197 (1978).
[Crossref]
J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University, 1998), Chap. 6.
P. Y. Bely, The Design and Construction of Large Optical Telescopes (Springer, 2002), Chap. 4.
E. Hecht, Optics, 4th ed. (Pearson, 2014), Chap. 13.
R. R. Shannon and J. C. Wyant, Applied Optics and Optical Engineering (Academic, 1992).
S. Hyun, K. H. Kim, J. Y. Bae, and H. C. Kang, “Development of a water-cooling system for the 100 mm diameter deformable mirror,” in Proceeding of KSPE 2015 Autumn Conference (Korean Society for Precision Engineering, 2015), pp. 106–106.
A. F. Mills, Basic Heat and Mass Transfer (IRWIN, 1995), Chap. 6.