Abstract

A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera

Joseph A. Shaw, Paul W. Nugent, Nathan J. Pust, Brentha Thurairajah, and Kohei Mizutani
Opt. Express 13(15) 5807-5817 (2005)

Infrared cloud imaging in support of Earth-space optical communication

Paul W. Nugent, Joseph A. Shaw, and Sabino Piazzolla
Opt. Express 17(10) 7862-7872 (2009)

All-sky polarization imaging of cloud thermodynamic phase

Laura M. Eshelman, Martin Jan Tauc, and Joseph A. Shaw
Opt. Express 27(3) 3528-3541 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
    [PubMed]
  2. J. M. Intrieri, M. D. Shupe, T. Uttal, and B. J. McCarty, “An annual cycle of arctic cloud characteristics observed by radar and lidar at SHEBA,” J. Geophys. Res.: Oceans 107, 1–15 (2002)
  3. X. Dong, B. Xi, and P. Minnis, “A climatology of midlatitude continental clouds from the ARM SGP Central Facility. Part II: Cloud fraction and surface radiative forcing,” J. Clim. 19, 1765–1783 (2006).
  4. R. D. Cess and P. M. Udelhofen, “Climate change during 1985-1999: Cloud interactions determined from satellite measurements,” Geophys. Res. Lett. 30(1), 1–4 (2003).
  5. M. C. Wyant, M. Khairoutdinov, and C. S. Bretherton, “Climate sensitivity and cloud response of a GCM with a superparameterization,” Geophys. Res. Lett. 33(6), L06714 (2006).
  6. J. Sabburg and J. Wong, “Evaluation of a ground-based sky camera system for use in surface irradiance measurement,” J. Atmos. Ocean. Technol. 16, 752–759 (1999).
  7. G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, and B. W. Forgan, “Cloud coverage based on all-sky imaging and its impact on surface solar irradiance,” J. Appl. Meteorol. 42, 1421–1434 (2003).
  8. J. E. Shields, R. W. Johnson, M. E. Karr, A. R. Burden, and J. G. Baker, “Daylight visible/NIR whole sky imagers for cloud and radiance monitoring in support of UV research programs,” in Ultraviolet Ground- and Space-based Measurements, Models, and Effects III, James R. Slusser and W. Gao, eds., Proc. SPIE 5156, 155–166 (2003).
  9. R. Tapakis and A. G. Charalambides, “Equipment and methodologies for cloud detection and classification: a review,” Sol. Energy 95, 392–430 (2013).
  10. C. L. Hull, S. Limmongkol, and W. A. Siegmund, “Sloan digital sky survey cloud scanner,” in Advanced Technology Optical Telescopes V. Larry, M. Stepp, eds., Proc. SPIE 2199, 852–857 (1994).
  11. A. Mallama and J. J. Degna, “A thermal infrared cloud-mapping instrument for observatories,” Publ. Astron. Soc. Pac. 114, 913–917 (2002).
  12. N. Takato, N. Okada, G. Kosugi, M. Suganuma, A. Miyashita, and F. Urgauchi, “All-sky 10 µm cloud monitor on Mauna Kea,” Proc. SPIE 4837, 872–877 (2003).
  13. A. Maghrabi, R. Clay, N. Wild, and B. Dawson, “Design and development of a simple infrared monitor for cloud detection,” Energy Convers. Manage. 50, 2732–2737 (2009).
  14. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-space optical communication,” Opt. Express 17(10), 7862–7872 (2009).
    [PubMed]
  15. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imager development for atmospheric optical communication characterization, and measurements at the JPL Table Mountain Facility,” IPN Progress Report 42–192, 1–31, http://tmo.jpl.nasa.gov/progress_report/42-192/192C.pdf (2013).
  16. S. Piazzolla and S. Slobin, “Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data,” Proc. SPIE 4635, 138–149 (2002).
  17. D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
  18. S. Poulenard, M. Ruellana, B. Roy, J. Riédi, F. Parol, and A. Rissons, “High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services,” Proc. SPIE 8971, 897107 (2014).
  19. B. D. Felton, P. D. Hayes, and R. J. Alliss, “Improved atmospheric characterization for free-space link analysis using numerical weather prediction,” Proc. SPIE 8380, 83800C (2012).
  20. C. N. Long, J. M. Sabburg, J. Calbó, and D. Pagès, “Retrieving cloud characteristics from ground-based daytime color all-sky images,” J. Atmos. Ocean. Technol. 23, 633–652 (2006).
  21. M. C. Allmen and W. Philip Kegelmeyer., “The computation of cloud-base height from paired whole-sky imaging cameras,” J. Atmos. Ocean. Technol. 13, 97–113 (1996).
  22. J. Shaw, P. Nugent, N. Pust, B. Thurairajah, and K. Mizutani, “Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera,” Opt. Express 13(15), 5807–5817 (2005).
    [PubMed]
  23. J. A. Shaw, P. W. Nugent, N. J. Pust, B. J. Redman, and S. Piazzolla, “Cloud optical depth measured with ground-based uncooled infrared imagers,” Proc. SPIE 8523, 85231D (2012).
  24. J. E. Shields, M. E. Karr, R. W. Johnson, and A. R. Burden, “Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview,” Appl. Opt. 52(8), 1605–1616 (2013).
    [PubMed]
  25. A. Kazantzidis, P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and G. Economou, “Cloud detection and classification with the use of whole-sky ground-based images,” Atmos. Res. 113, 80–88 (2012).
  26. K. McGuffie and A. Henderson-Sellers, “Almost a century of ‘imaging’ clouds over the whole-sky dome,” Bull. Am. Meteorol. Soc. 70, 1243–1253 (1989).
  27. G. Horváth, A. Barta, J. Gál, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection,” Appl. Opt. 41(3), 543–559 (2002).
    [PubMed]
  28. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45(22), 5470–5478 (2006).
    [PubMed]
  29. N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47(34), H190–H198 (2008).
    [PubMed]
  30. A. Kreuter, M. Zangerl, M. Schwarzmann, and M. Blumthaler, “All-sky imaging: a simple, versatile system for atmospheric research,” Appl. Opt. 48(6), 1091–1097 (2009).
    [PubMed]
  31. A. Cazorla, F. J. Olmo, and L. Alados-Arboledas, “Development of a sky imager for cloud cover assessment,” J. Opt. Soc. Am. A 25(1), 29–39 (2008).
    [PubMed]
  32. D. I. Klebe, R. D. Blatherwick, and V. R. Morris, “Ground-based all-sky mid-infrared and visible imagery for purposes of characterizing cloud properties,” Atmos. Meas. Tech. 7, 637–645 (2014).
  33. P. W. Nugent, J. A. Shaw, and N. J. Pust, “Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization,” Opt. Eng. 52(6), 061304 (2013).
  34. P. W. Nugent, J. A. Shaw, and N. J. Pust, “Radiometric calibration of infrared imagers using an internal shutter as an equivalent external blackbody,” Opt. Eng. 53(12), 123106 (2014).
  35. P. W. Nugent and J. A. Shaw, “Calibration of uncooled LWIR microbolometer imagers to enable long-term field deployment,” Proc. SPIE 9071, 90710V (2014).
  36. B. Thurairajah and J. A. Shaw, “Cloud statistics measured with the infrared cloud imager (ICI),” IEEE Trans. Geosci. Remote Sens. 43, 2000–2007 (2007).
  37. J. A. Shaw and P. W. Nugent, “Physics principles in radiometric infrared imaging of clouds in the atmosphere,” Eur. J. Phys. 34, 111 (2013).
  38. E. Kassianov, C. N. Long, and M. Ovtchinnikov, “Cloud sky cover versus cloud fraction: whole-sky simulations and observations,” J. Appl. Meteorol. 44(1), 86–98 (2005).
  39. Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
  40. M. Vo, Z. Wang, L. Luu, and J. Ma, “Advanced geometric camera calibration for machine vision,” Opt. Eng. 50, 110503 (2011).
  41. D. W. Riesland, “Infrared cloud imaging systems characterization,” M.S. Thesis (Optics & Photonics), Montana State University, http://scholarworks.montana.edu/xmlui/handle/1/12381 (2016).

2014 (5)

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

S. Poulenard, M. Ruellana, B. Roy, J. Riédi, F. Parol, and A. Rissons, “High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services,” Proc. SPIE 8971, 897107 (2014).

D. I. Klebe, R. D. Blatherwick, and V. R. Morris, “Ground-based all-sky mid-infrared and visible imagery for purposes of characterizing cloud properties,” Atmos. Meas. Tech. 7, 637–645 (2014).

P. W. Nugent, J. A. Shaw, and N. J. Pust, “Radiometric calibration of infrared imagers using an internal shutter as an equivalent external blackbody,” Opt. Eng. 53(12), 123106 (2014).

P. W. Nugent and J. A. Shaw, “Calibration of uncooled LWIR microbolometer imagers to enable long-term field deployment,” Proc. SPIE 9071, 90710V (2014).

2013 (5)

P. W. Nugent, J. A. Shaw, and N. J. Pust, “Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization,” Opt. Eng. 52(6), 061304 (2013).

J. A. Shaw and P. W. Nugent, “Physics principles in radiometric infrared imaging of clouds in the atmosphere,” Eur. J. Phys. 34, 111 (2013).

J. E. Shields, M. E. Karr, R. W. Johnson, and A. R. Burden, “Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview,” Appl. Opt. 52(8), 1605–1616 (2013).
[PubMed]

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

R. Tapakis and A. G. Charalambides, “Equipment and methodologies for cloud detection and classification: a review,” Sol. Energy 95, 392–430 (2013).

2012 (3)

B. D. Felton, P. D. Hayes, and R. J. Alliss, “Improved atmospheric characterization for free-space link analysis using numerical weather prediction,” Proc. SPIE 8380, 83800C (2012).

A. Kazantzidis, P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and G. Economou, “Cloud detection and classification with the use of whole-sky ground-based images,” Atmos. Res. 113, 80–88 (2012).

J. A. Shaw, P. W. Nugent, N. J. Pust, B. J. Redman, and S. Piazzolla, “Cloud optical depth measured with ground-based uncooled infrared imagers,” Proc. SPIE 8523, 85231D (2012).

2011 (1)

M. Vo, Z. Wang, L. Luu, and J. Ma, “Advanced geometric camera calibration for machine vision,” Opt. Eng. 50, 110503 (2011).

2009 (3)

2008 (2)

2007 (1)

B. Thurairajah and J. A. Shaw, “Cloud statistics measured with the infrared cloud imager (ICI),” IEEE Trans. Geosci. Remote Sens. 43, 2000–2007 (2007).

2006 (4)

N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45(22), 5470–5478 (2006).
[PubMed]

C. N. Long, J. M. Sabburg, J. Calbó, and D. Pagès, “Retrieving cloud characteristics from ground-based daytime color all-sky images,” J. Atmos. Ocean. Technol. 23, 633–652 (2006).

M. C. Wyant, M. Khairoutdinov, and C. S. Bretherton, “Climate sensitivity and cloud response of a GCM with a superparameterization,” Geophys. Res. Lett. 33(6), L06714 (2006).

X. Dong, B. Xi, and P. Minnis, “A climatology of midlatitude continental clouds from the ARM SGP Central Facility. Part II: Cloud fraction and surface radiative forcing,” J. Clim. 19, 1765–1783 (2006).

2005 (2)

J. Shaw, P. Nugent, N. Pust, B. Thurairajah, and K. Mizutani, “Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera,” Opt. Express 13(15), 5807–5817 (2005).
[PubMed]

E. Kassianov, C. N. Long, and M. Ovtchinnikov, “Cloud sky cover versus cloud fraction: whole-sky simulations and observations,” J. Appl. Meteorol. 44(1), 86–98 (2005).

2003 (3)

R. D. Cess and P. M. Udelhofen, “Climate change during 1985-1999: Cloud interactions determined from satellite measurements,” Geophys. Res. Lett. 30(1), 1–4 (2003).

G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, and B. W. Forgan, “Cloud coverage based on all-sky imaging and its impact on surface solar irradiance,” J. Appl. Meteorol. 42, 1421–1434 (2003).

N. Takato, N. Okada, G. Kosugi, M. Suganuma, A. Miyashita, and F. Urgauchi, “All-sky 10 µm cloud monitor on Mauna Kea,” Proc. SPIE 4837, 872–877 (2003).

2002 (4)

S. Piazzolla and S. Slobin, “Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data,” Proc. SPIE 4635, 138–149 (2002).

J. M. Intrieri, M. D. Shupe, T. Uttal, and B. J. McCarty, “An annual cycle of arctic cloud characteristics observed by radar and lidar at SHEBA,” J. Geophys. Res.: Oceans 107, 1–15 (2002)

A. Mallama and J. J. Degna, “A thermal infrared cloud-mapping instrument for observatories,” Publ. Astron. Soc. Pac. 114, 913–917 (2002).

G. Horváth, A. Barta, J. Gál, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection,” Appl. Opt. 41(3), 543–559 (2002).
[PubMed]

2000 (1)

Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).

1999 (1)

J. Sabburg and J. Wong, “Evaluation of a ground-based sky camera system for use in surface irradiance measurement,” J. Atmos. Ocean. Technol. 16, 752–759 (1999).

1996 (1)

M. C. Allmen and W. Philip Kegelmeyer., “The computation of cloud-base height from paired whole-sky imaging cameras,” J. Atmos. Ocean. Technol. 13, 97–113 (1996).

1989 (1)

K. McGuffie and A. Henderson-Sellers, “Almost a century of ‘imaging’ clouds over the whole-sky dome,” Bull. Am. Meteorol. Soc. 70, 1243–1253 (1989).

Alados-Arboledas, L.

Alliss, R. J.

B. D. Felton, P. D. Hayes, and R. J. Alliss, “Improved atmospheric characterization for free-space link analysis using numerical weather prediction,” Proc. SPIE 8380, 83800C (2012).

Allmen, M. C.

M. C. Allmen and W. Philip Kegelmeyer., “The computation of cloud-base height from paired whole-sky imaging cameras,” J. Atmos. Ocean. Technol. 13, 97–113 (1996).

Bais, A. F.

A. Kazantzidis, P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and G. Economou, “Cloud detection and classification with the use of whole-sky ground-based images,” Atmos. Res. 113, 80–88 (2012).

Barta, A.

Bennartz, R.

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

Blatherwick, R. D.

D. I. Klebe, R. D. Blatherwick, and V. R. Morris, “Ground-based all-sky mid-infrared and visible imagery for purposes of characterizing cloud properties,” Atmos. Meas. Tech. 7, 637–645 (2014).

Blumthaler, M.

Boroson, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Bretherton, C. S.

M. C. Wyant, M. Khairoutdinov, and C. S. Bretherton, “Climate sensitivity and cloud response of a GCM with a superparameterization,” Geophys. Res. Lett. 33(6), L06714 (2006).

Burden, A. R.

Burianek, D. A.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Calbó, J.

C. N. Long, J. M. Sabburg, J. Calbó, and D. Pagès, “Retrieving cloud characteristics from ground-based daytime color all-sky images,” J. Atmos. Ocean. Technol. 23, 633–652 (2006).

Cazorla, A.

Cess, R. D.

R. D. Cess and P. M. Udelhofen, “Climate change during 1985-1999: Cloud interactions determined from satellite measurements,” Geophys. Res. Lett. 30(1), 1–4 (2003).

Charalambides, A. G.

R. Tapakis and A. G. Charalambides, “Equipment and methodologies for cloud detection and classification: a review,” Sol. Energy 95, 392–430 (2013).

Clay, R.

A. Maghrabi, R. Clay, N. Wild, and B. Dawson, “Design and development of a simple infrared monitor for cloud detection,” Energy Convers. Manage. 50, 2732–2737 (2009).

Cornwell, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Cox, C. J.

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

Dawson, B.

A. Maghrabi, R. Clay, N. Wild, and B. Dawson, “Design and development of a simple infrared monitor for cloud detection,” Energy Convers. Manage. 50, 2732–2737 (2009).

Degna, J. J.

A. Mallama and J. J. Degna, “A thermal infrared cloud-mapping instrument for observatories,” Publ. Astron. Soc. Pac. 114, 913–917 (2002).

Dong, X.

X. Dong, B. Xi, and P. Minnis, “A climatology of midlatitude continental clouds from the ARM SGP Central Facility. Part II: Cloud fraction and surface radiative forcing,” J. Clim. 19, 1765–1783 (2006).

Economou, G.

A. Kazantzidis, P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and G. Economou, “Cloud detection and classification with the use of whole-sky ground-based images,” Atmos. Res. 113, 80–88 (2012).

Felton, B. D.

B. D. Felton, P. D. Hayes, and R. J. Alliss, “Improved atmospheric characterization for free-space link analysis using numerical weather prediction,” Proc. SPIE 8380, 83800C (2012).

Forgan, B. W.

G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, and B. W. Forgan, “Cloud coverage based on all-sky imaging and its impact on surface solar irradiance,” J. Appl. Meteorol. 42, 1421–1434 (2003).

Fotopoulos, S.

A. Kazantzidis, P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and G. Economou, “Cloud detection and classification with the use of whole-sky ground-based images,” Atmos. Res. 113, 80–88 (2012).

Gál, J.

Haiman, O.

Hayes, P. D.

B. D. Felton, P. D. Hayes, and R. J. Alliss, “Improved atmospheric characterization for free-space link analysis using numerical weather prediction,” Proc. SPIE 8380, 83800C (2012).

Henderson-Sellers, A.

K. McGuffie and A. Henderson-Sellers, “Almost a century of ‘imaging’ clouds over the whole-sky dome,” Bull. Am. Meteorol. Soc. 70, 1243–1253 (1989).

Horváth, G.

Intrieri, J. M.

J. M. Intrieri, M. D. Shupe, T. Uttal, and B. J. McCarty, “An annual cycle of arctic cloud characteristics observed by radar and lidar at SHEBA,” J. Geophys. Res.: Oceans 107, 1–15 (2002)

Johnson, R. W.

Karr, M. E.

Kassianov, E.

E. Kassianov, C. N. Long, and M. Ovtchinnikov, “Cloud sky cover versus cloud fraction: whole-sky simulations and observations,” J. Appl. Meteorol. 44(1), 86–98 (2005).

Kazantzidis, A.

A. Kazantzidis, P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and G. Economou, “Cloud detection and classification with the use of whole-sky ground-based images,” Atmos. Res. 113, 80–88 (2012).

Khairoutdinov, M.

M. C. Wyant, M. Khairoutdinov, and C. S. Bretherton, “Climate sensitivity and cloud response of a GCM with a superparameterization,” Geophys. Res. Lett. 33(6), L06714 (2006).

Khatri, F.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Klebe, D. I.

D. I. Klebe, R. D. Blatherwick, and V. R. Morris, “Ground-based all-sky mid-infrared and visible imagery for purposes of characterizing cloud properties,” Atmos. Meas. Tech. 7, 637–645 (2014).

Kosugi, G.

N. Takato, N. Okada, G. Kosugi, M. Suganuma, A. Miyashita, and F. Urgauchi, “All-sky 10 µm cloud monitor on Mauna Kea,” Proc. SPIE 4837, 872–877 (2003).

Kovalik, J. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Kreuter, A.

Kulie, M. S.

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

Liley, J. B.

G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, and B. W. Forgan, “Cloud coverage based on all-sky imaging and its impact on surface solar irradiance,” J. Appl. Meteorol. 42, 1421–1434 (2003).

Long, C. N.

C. N. Long, J. M. Sabburg, J. Calbó, and D. Pagès, “Retrieving cloud characteristics from ground-based daytime color all-sky images,” J. Atmos. Ocean. Technol. 23, 633–652 (2006).

E. Kassianov, C. N. Long, and M. Ovtchinnikov, “Cloud sky cover versus cloud fraction: whole-sky simulations and observations,” J. Appl. Meteorol. 44(1), 86–98 (2005).

Luu, L.

M. Vo, Z. Wang, L. Luu, and J. Ma, “Advanced geometric camera calibration for machine vision,” Opt. Eng. 50, 110503 (2011).

Ma, J.

M. Vo, Z. Wang, L. Luu, and J. Ma, “Advanced geometric camera calibration for machine vision,” Opt. Eng. 50, 110503 (2011).

Maghrabi, A.

A. Maghrabi, R. Clay, N. Wild, and B. Dawson, “Design and development of a simple infrared monitor for cloud detection,” Energy Convers. Manage. 50, 2732–2737 (2009).

Mallama, A.

A. Mallama and J. J. Degna, “A thermal infrared cloud-mapping instrument for observatories,” Publ. Astron. Soc. Pac. 114, 913–917 (2002).

McCarty, B. J.

J. M. Intrieri, M. D. Shupe, T. Uttal, and B. J. McCarty, “An annual cycle of arctic cloud characteristics observed by radar and lidar at SHEBA,” J. Geophys. Res.: Oceans 107, 1–15 (2002)

McGuffie, K.

K. McGuffie and A. Henderson-Sellers, “Almost a century of ‘imaging’ clouds over the whole-sky dome,” Bull. Am. Meteorol. Soc. 70, 1243–1253 (1989).

McKenzie, R. L.

G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, and B. W. Forgan, “Cloud coverage based on all-sky imaging and its impact on surface solar irradiance,” J. Appl. Meteorol. 42, 1421–1434 (2003).

Miller, N. B.

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

Minnis, P.

X. Dong, B. Xi, and P. Minnis, “A climatology of midlatitude continental clouds from the ARM SGP Central Facility. Part II: Cloud fraction and surface radiative forcing,” J. Clim. 19, 1765–1783 (2006).

Miyashita, A.

N. Takato, N. Okada, G. Kosugi, M. Suganuma, A. Miyashita, and F. Urgauchi, “All-sky 10 µm cloud monitor on Mauna Kea,” Proc. SPIE 4837, 872–877 (2003).

Mizutani, K.

Morris, V. R.

D. I. Klebe, R. D. Blatherwick, and V. R. Morris, “Ground-based all-sky mid-infrared and visible imagery for purposes of characterizing cloud properties,” Atmos. Meas. Tech. 7, 637–645 (2014).

Murphy, D. V.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Nugent, P.

Nugent, P. W.

P. W. Nugent, J. A. Shaw, and N. J. Pust, “Radiometric calibration of infrared imagers using an internal shutter as an equivalent external blackbody,” Opt. Eng. 53(12), 123106 (2014).

P. W. Nugent and J. A. Shaw, “Calibration of uncooled LWIR microbolometer imagers to enable long-term field deployment,” Proc. SPIE 9071, 90710V (2014).

P. W. Nugent, J. A. Shaw, and N. J. Pust, “Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization,” Opt. Eng. 52(6), 061304 (2013).

J. A. Shaw and P. W. Nugent, “Physics principles in radiometric infrared imaging of clouds in the atmosphere,” Eur. J. Phys. 34, 111 (2013).

J. A. Shaw, P. W. Nugent, N. J. Pust, B. J. Redman, and S. Piazzolla, “Cloud optical depth measured with ground-based uncooled infrared imagers,” Proc. SPIE 8523, 85231D (2012).

P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-space optical communication,” Opt. Express 17(10), 7862–7872 (2009).
[PubMed]

Okada, N.

N. Takato, N. Okada, G. Kosugi, M. Suganuma, A. Miyashita, and F. Urgauchi, “All-sky 10 µm cloud monitor on Mauna Kea,” Proc. SPIE 4837, 872–877 (2003).

Olmo, F. J.

Ovtchinnikov, M.

E. Kassianov, C. N. Long, and M. Ovtchinnikov, “Cloud sky cover versus cloud fraction: whole-sky simulations and observations,” J. Appl. Meteorol. 44(1), 86–98 (2005).

Pagès, D.

C. N. Long, J. M. Sabburg, J. Calbó, and D. Pagès, “Retrieving cloud characteristics from ground-based daytime color all-sky images,” J. Atmos. Ocean. Technol. 23, 633–652 (2006).

Parol, F.

S. Poulenard, M. Ruellana, B. Roy, J. Riédi, F. Parol, and A. Rissons, “High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services,” Proc. SPIE 8971, 897107 (2014).

Pettersen, C.

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

Pfister, G.

G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, and B. W. Forgan, “Cloud coverage based on all-sky imaging and its impact on surface solar irradiance,” J. Appl. Meteorol. 42, 1421–1434 (2003).

Philip Kegelmeyer, W.

M. C. Allmen and W. Philip Kegelmeyer., “The computation of cloud-base height from paired whole-sky imaging cameras,” J. Atmos. Ocean. Technol. 13, 97–113 (1996).

Piazzolla, S.

J. A. Shaw, P. W. Nugent, N. J. Pust, B. J. Redman, and S. Piazzolla, “Cloud optical depth measured with ground-based uncooled infrared imagers,” Proc. SPIE 8523, 85231D (2012).

P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-space optical communication,” Opt. Express 17(10), 7862–7872 (2009).
[PubMed]

S. Piazzolla and S. Slobin, “Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data,” Proc. SPIE 4635, 138–149 (2002).

Poulenard, S.

S. Poulenard, M. Ruellana, B. Roy, J. Riédi, F. Parol, and A. Rissons, “High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services,” Proc. SPIE 8971, 897107 (2014).

Pust, N.

Pust, N. J.

P. W. Nugent, J. A. Shaw, and N. J. Pust, “Radiometric calibration of infrared imagers using an internal shutter as an equivalent external blackbody,” Opt. Eng. 53(12), 123106 (2014).

P. W. Nugent, J. A. Shaw, and N. J. Pust, “Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization,” Opt. Eng. 52(6), 061304 (2013).

J. A. Shaw, P. W. Nugent, N. J. Pust, B. J. Redman, and S. Piazzolla, “Cloud optical depth measured with ground-based uncooled infrared imagers,” Proc. SPIE 8523, 85231D (2012).

N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47(34), H190–H198 (2008).
[PubMed]

N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45(22), 5470–5478 (2006).
[PubMed]

Redman, B. J.

J. A. Shaw, P. W. Nugent, N. J. Pust, B. J. Redman, and S. Piazzolla, “Cloud optical depth measured with ground-based uncooled infrared imagers,” Proc. SPIE 8523, 85231D (2012).

Riédi, J.

S. Poulenard, M. Ruellana, B. Roy, J. Riédi, F. Parol, and A. Rissons, “High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services,” Proc. SPIE 8971, 897107 (2014).

Rissons, A.

S. Poulenard, M. Ruellana, B. Roy, J. Riédi, F. Parol, and A. Rissons, “High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services,” Proc. SPIE 8971, 897107 (2014).

Robinson, B. S.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Roy, B.

S. Poulenard, M. Ruellana, B. Roy, J. Riédi, F. Parol, and A. Rissons, “High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services,” Proc. SPIE 8971, 897107 (2014).

Ruellana, M.

S. Poulenard, M. Ruellana, B. Roy, J. Riédi, F. Parol, and A. Rissons, “High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services,” Proc. SPIE 8971, 897107 (2014).

Sabburg, J.

J. Sabburg and J. Wong, “Evaluation of a ground-based sky camera system for use in surface irradiance measurement,” J. Atmos. Ocean. Technol. 16, 752–759 (1999).

Sabburg, J. M.

C. N. Long, J. M. Sabburg, J. Calbó, and D. Pagès, “Retrieving cloud characteristics from ground-based daytime color all-sky images,” J. Atmos. Ocean. Technol. 23, 633–652 (2006).

Schwarzmann, M.

Shaw, J.

Shaw, J. A.

P. W. Nugent, J. A. Shaw, and N. J. Pust, “Radiometric calibration of infrared imagers using an internal shutter as an equivalent external blackbody,” Opt. Eng. 53(12), 123106 (2014).

P. W. Nugent and J. A. Shaw, “Calibration of uncooled LWIR microbolometer imagers to enable long-term field deployment,” Proc. SPIE 9071, 90710V (2014).

P. W. Nugent, J. A. Shaw, and N. J. Pust, “Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization,” Opt. Eng. 52(6), 061304 (2013).

J. A. Shaw and P. W. Nugent, “Physics principles in radiometric infrared imaging of clouds in the atmosphere,” Eur. J. Phys. 34, 111 (2013).

J. A. Shaw, P. W. Nugent, N. J. Pust, B. J. Redman, and S. Piazzolla, “Cloud optical depth measured with ground-based uncooled infrared imagers,” Proc. SPIE 8523, 85231D (2012).

P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-space optical communication,” Opt. Express 17(10), 7862–7872 (2009).
[PubMed]

N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47(34), H190–H198 (2008).
[PubMed]

B. Thurairajah and J. A. Shaw, “Cloud statistics measured with the infrared cloud imager (ICI),” IEEE Trans. Geosci. Remote Sens. 43, 2000–2007 (2007).

N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45(22), 5470–5478 (2006).
[PubMed]

Shields, J. E.

Shupe, M. D.

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

J. M. Intrieri, M. D. Shupe, T. Uttal, and B. J. McCarty, “An annual cycle of arctic cloud characteristics observed by radar and lidar at SHEBA,” J. Geophys. Res.: Oceans 107, 1–15 (2002)

Slobin, S.

S. Piazzolla and S. Slobin, “Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data,” Proc. SPIE 4635, 138–149 (2002).

Sodnik, Z.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

Steffen, K.

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

Suganuma, M.

N. Takato, N. Okada, G. Kosugi, M. Suganuma, A. Miyashita, and F. Urgauchi, “All-sky 10 µm cloud monitor on Mauna Kea,” Proc. SPIE 4837, 872–877 (2003).

Suhai, B.

Takato, N.

N. Takato, N. Okada, G. Kosugi, M. Suganuma, A. Miyashita, and F. Urgauchi, “All-sky 10 µm cloud monitor on Mauna Kea,” Proc. SPIE 4837, 872–877 (2003).

Tapakis, R.

R. Tapakis and A. G. Charalambides, “Equipment and methodologies for cloud detection and classification: a review,” Sol. Energy 95, 392–430 (2013).

Thomas, A.

G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, and B. W. Forgan, “Cloud coverage based on all-sky imaging and its impact on surface solar irradiance,” J. Appl. Meteorol. 42, 1421–1434 (2003).

Thurairajah, B.

B. Thurairajah and J. A. Shaw, “Cloud statistics measured with the infrared cloud imager (ICI),” IEEE Trans. Geosci. Remote Sens. 43, 2000–2007 (2007).

J. Shaw, P. Nugent, N. Pust, B. Thurairajah, and K. Mizutani, “Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera,” Opt. Express 13(15), 5807–5817 (2005).
[PubMed]

Turner, D. D.

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

Tzoumanikas, P.

A. Kazantzidis, P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and G. Economou, “Cloud detection and classification with the use of whole-sky ground-based images,” Atmos. Res. 113, 80–88 (2012).

Udelhofen, P. M.

R. D. Cess and P. M. Udelhofen, “Climate change during 1985-1999: Cloud interactions determined from satellite measurements,” Geophys. Res. Lett. 30(1), 1–4 (2003).

Urgauchi, F.

N. Takato, N. Okada, G. Kosugi, M. Suganuma, A. Miyashita, and F. Urgauchi, “All-sky 10 µm cloud monitor on Mauna Kea,” Proc. SPIE 4837, 872–877 (2003).

Uttal, T.

J. M. Intrieri, M. D. Shupe, T. Uttal, and B. J. McCarty, “An annual cycle of arctic cloud characteristics observed by radar and lidar at SHEBA,” J. Geophys. Res.: Oceans 107, 1–15 (2002)

Vo, M.

M. Vo, Z. Wang, L. Luu, and J. Ma, “Advanced geometric camera calibration for machine vision,” Opt. Eng. 50, 110503 (2011).

Walden, V. P.

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

Wang, Z.

M. Vo, Z. Wang, L. Luu, and J. Ma, “Advanced geometric camera calibration for machine vision,” Opt. Eng. 50, 110503 (2011).

Wild, N.

A. Maghrabi, R. Clay, N. Wild, and B. Dawson, “Design and development of a simple infrared monitor for cloud detection,” Energy Convers. Manage. 50, 2732–2737 (2009).

Wong, J.

J. Sabburg and J. Wong, “Evaluation of a ground-based sky camera system for use in surface irradiance measurement,” J. Atmos. Ocean. Technol. 16, 752–759 (1999).

Wyant, M. C.

M. C. Wyant, M. Khairoutdinov, and C. S. Bretherton, “Climate sensitivity and cloud response of a GCM with a superparameterization,” Geophys. Res. Lett. 33(6), L06714 (2006).

Xi, B.

X. Dong, B. Xi, and P. Minnis, “A climatology of midlatitude continental clouds from the ARM SGP Central Facility. Part II: Cloud fraction and surface radiative forcing,” J. Clim. 19, 1765–1783 (2006).

Zangerl, M.

Zhang, Z.

Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).

Appl. Opt. (5)

Atmos. Meas. Tech. (1)

D. I. Klebe, R. D. Blatherwick, and V. R. Morris, “Ground-based all-sky mid-infrared and visible imagery for purposes of characterizing cloud properties,” Atmos. Meas. Tech. 7, 637–645 (2014).

Atmos. Res. (1)

A. Kazantzidis, P. Tzoumanikas, A. F. Bais, S. Fotopoulos, and G. Economou, “Cloud detection and classification with the use of whole-sky ground-based images,” Atmos. Res. 113, 80–88 (2012).

Bull. Am. Meteorol. Soc. (1)

K. McGuffie and A. Henderson-Sellers, “Almost a century of ‘imaging’ clouds over the whole-sky dome,” Bull. Am. Meteorol. Soc. 70, 1243–1253 (1989).

Energy Convers. Manage. (1)

A. Maghrabi, R. Clay, N. Wild, and B. Dawson, “Design and development of a simple infrared monitor for cloud detection,” Energy Convers. Manage. 50, 2732–2737 (2009).

Eur. J. Phys. (1)

J. A. Shaw and P. W. Nugent, “Physics principles in radiometric infrared imaging of clouds in the atmosphere,” Eur. J. Phys. 34, 111 (2013).

Geophys. Res. Lett. (2)

R. D. Cess and P. M. Udelhofen, “Climate change during 1985-1999: Cloud interactions determined from satellite measurements,” Geophys. Res. Lett. 30(1), 1–4 (2003).

M. C. Wyant, M. Khairoutdinov, and C. S. Bretherton, “Climate sensitivity and cloud response of a GCM with a superparameterization,” Geophys. Res. Lett. 33(6), L06714 (2006).

IEEE Trans. Geosci. Remote Sens. (1)

B. Thurairajah and J. A. Shaw, “Cloud statistics measured with the infrared cloud imager (ICI),” IEEE Trans. Geosci. Remote Sens. 43, 2000–2007 (2007).

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).

J. Appl. Meteorol. (2)

E. Kassianov, C. N. Long, and M. Ovtchinnikov, “Cloud sky cover versus cloud fraction: whole-sky simulations and observations,” J. Appl. Meteorol. 44(1), 86–98 (2005).

G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas, and B. W. Forgan, “Cloud coverage based on all-sky imaging and its impact on surface solar irradiance,” J. Appl. Meteorol. 42, 1421–1434 (2003).

J. Atmos. Ocean. Technol. (3)

J. Sabburg and J. Wong, “Evaluation of a ground-based sky camera system for use in surface irradiance measurement,” J. Atmos. Ocean. Technol. 16, 752–759 (1999).

C. N. Long, J. M. Sabburg, J. Calbó, and D. Pagès, “Retrieving cloud characteristics from ground-based daytime color all-sky images,” J. Atmos. Ocean. Technol. 23, 633–652 (2006).

M. C. Allmen and W. Philip Kegelmeyer., “The computation of cloud-base height from paired whole-sky imaging cameras,” J. Atmos. Ocean. Technol. 13, 97–113 (1996).

J. Clim. (1)

X. Dong, B. Xi, and P. Minnis, “A climatology of midlatitude continental clouds from the ARM SGP Central Facility. Part II: Cloud fraction and surface radiative forcing,” J. Clim. 19, 1765–1783 (2006).

J. Geophys. Res.: Oceans (1)

J. M. Intrieri, M. D. Shupe, T. Uttal, and B. J. McCarty, “An annual cycle of arctic cloud characteristics observed by radar and lidar at SHEBA,” J. Geophys. Res.: Oceans 107, 1–15 (2002)

J. Opt. Soc. Am. A (1)

Nature (1)

R. Bennartz, M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, “July 2012 Greenland melt extent enhanced by low-level liquid clouds,” Nature 496(7443), 83–86 (2013).
[PubMed]

Opt. Eng. (3)

P. W. Nugent, J. A. Shaw, and N. J. Pust, “Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization,” Opt. Eng. 52(6), 061304 (2013).

P. W. Nugent, J. A. Shaw, and N. J. Pust, “Radiometric calibration of infrared imagers using an internal shutter as an equivalent external blackbody,” Opt. Eng. 53(12), 123106 (2014).

M. Vo, Z. Wang, L. Luu, and J. Ma, “Advanced geometric camera calibration for machine vision,” Opt. Eng. 50, 110503 (2011).

Opt. Express (2)

Proc. SPIE (7)

J. A. Shaw, P. W. Nugent, N. J. Pust, B. J. Redman, and S. Piazzolla, “Cloud optical depth measured with ground-based uncooled infrared imagers,” Proc. SPIE 8523, 85231D (2012).

P. W. Nugent and J. A. Shaw, “Calibration of uncooled LWIR microbolometer imagers to enable long-term field deployment,” Proc. SPIE 9071, 90710V (2014).

N. Takato, N. Okada, G. Kosugi, M. Suganuma, A. Miyashita, and F. Urgauchi, “All-sky 10 µm cloud monitor on Mauna Kea,” Proc. SPIE 4837, 872–877 (2003).

S. Piazzolla and S. Slobin, “Statistics of link blockage due to cloud cover for free-space optical communications using NCDC surface weather observation data,” Proc. SPIE 4635, 138–149 (2002).

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).

S. Poulenard, M. Ruellana, B. Roy, J. Riédi, F. Parol, and A. Rissons, “High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services,” Proc. SPIE 8971, 897107 (2014).

B. D. Felton, P. D. Hayes, and R. J. Alliss, “Improved atmospheric characterization for free-space link analysis using numerical weather prediction,” Proc. SPIE 8380, 83800C (2012).

Publ. Astron. Soc. Pac. (1)

A. Mallama and J. J. Degna, “A thermal infrared cloud-mapping instrument for observatories,” Publ. Astron. Soc. Pac. 114, 913–917 (2002).

Sol. Energy (1)

R. Tapakis and A. G. Charalambides, “Equipment and methodologies for cloud detection and classification: a review,” Sol. Energy 95, 392–430 (2013).

Other (4)

C. L. Hull, S. Limmongkol, and W. A. Siegmund, “Sloan digital sky survey cloud scanner,” in Advanced Technology Optical Telescopes V. Larry, M. Stepp, eds., Proc. SPIE 2199, 852–857 (1994).

J. E. Shields, R. W. Johnson, M. E. Karr, A. R. Burden, and J. G. Baker, “Daylight visible/NIR whole sky imagers for cloud and radiance monitoring in support of UV research programs,” in Ultraviolet Ground- and Space-based Measurements, Models, and Effects III, James R. Slusser and W. Gao, eds., Proc. SPIE 5156, 155–166 (2003).

P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imager development for atmospheric optical communication characterization, and measurements at the JPL Table Mountain Facility,” IPN Progress Report 42–192, 1–31, http://tmo.jpl.nasa.gov/progress_report/42-192/192C.pdf (2013).

D. W. Riesland, “Infrared cloud imaging systems characterization,” M.S. Thesis (Optics & Photonics), Montana State University, http://scholarworks.montana.edu/xmlui/handle/1/12381 (2016).

Supplementary Material (1)

NameDescription
» Visualization 1       Video to link to Fig. 4 of Optics Express manuscript 322984

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The reflective all-sky ICI uses an aluminum sphere to reflect the whole sky into a low-cost LWIR camera in an off-axis position to avoid blocking the zenith sky.
Fig. 2
Fig. 2 The IR camera’s view of the sphere, showing the zenith angle for each pixel after reflection. The black line indicates the location of the horizon.
Fig. 3
Fig. 3 Example images at three levels of processing: (a) radiance image [W/(m2 sr)] with geometric distortion induced by the off-axis reflection; (b) radiance image undistorted and remapped into an equal-angle projection with north at the top; and (c) cloud optical depth (“thick” means cloud optical depth exceeding 4). The black regions within the circular image mask obstructions by buildings, mountains, and the camera.
Fig. 4
Fig. 4 Visualization 1 shows images taken once per minute for 15 hours and played back at 15 frames per second, showing (a) sky and cloud radiance and (b) cloud optical depth. The circle that moves across the image starting at 0:36 is where the Sun was removed by software.
Fig. 5
Fig. 5 Sky radiance [W/(m2 sr)] measured in a common field of view by (a) the ICI3 and (b) the reflective all-sky ICI (camera obstruction appears as dark red area in upper-left corner).
Fig. 6
Fig. 6 (a) Scatterplot of radiance averaged over the common FOV of the ICI3 and the reflective all-sky ICI for 25 days; (b) histogram of frame-averaged sky radiance differences after gain and offset correction.
Fig. 7
Fig. 7 Time-series plot of the spatially averaged sky radiance from the reflective ICI and the ICI-3 instrument for 3-7 March 2017 at Montana State University in Bozeman, Montana (Mountain Standard Time = UTC – 7 hours).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L m ( i,j )=[ 1 ε s ( i,j ) ] L sky ( i,j )+ ε s ( i,j ) L bb ( T ).
L ref =( 1 ε ref ) L bg + ε ref L bb ( T ),
L bb ( T )= L ref ( 1 ε ref ) L bg ε ref .
L bg ^ L sky ( i,j ) ¯ = L m ( i,j ) ε s ( i,j ) L bb ( T ) ¯ 1 ε s ( i,j ) .
L sky ( i,j )= L m ( i,j ) ε s ( i,j ) L bb ( T ) 1 ε s ( i,j ) .

Metrics