Abstract

We develop an unprecedented 3D pulsed chaos lidar system for potential intelligent machinery applications. Benefited from the random nature of the chaos, conventional CW chaos lidars already possess excellent anti-jamming and anti-interference capabilities and have no range ambiguity. In our system, we further employ self-homodyning and time gating to generate a pulsed homodyned chaos to boost the energy-utilization efficiency. Compared to the original chaos, we show that the pulsed homodyned chaos improves the detection SNR by more than 20 dB. With a sampling rate of just 1.25 GS/s that has a native sampling spacing of 12 cm, we successfully achieve millimeter-level accuracy and precision in ranging. Compared with two commercial lidars tested side-by-side, namely the pulsed Spectroscan and the random-modulation continuous-wave Lidar-lite, the pulsed chaos lidar that is in compliance with the class-1 eye-safe regulation shows significantly better precision and a much longer detection range up to 100 m. Moreover, by employing a 2-axis MEMS mirror for active laser scanning, we also demonstrate real-time 3D imaging with errors of less than 4 mm in depth.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution random-modulation cw lidar

Xiao Ai, Richard Nock, John G. Rarity, and Naim Dahnoun
Appl. Opt. 50(22) 4478-4488 (2011)

Reducing the influence of direct reflection on return signal detection in a 3D imaging lidar system by rotating the polarizing beam splitter

Chunhui Wang, Xiaobao Lee, Tianxiang Cui, Yang Qu, Yunxi Li, Hailong Li, and Qi Wang
Appl. Opt. 55(7) 1559-1564 (2016)

Fiber-based 1.5 μm lidar vibrometer in pulsed and continuous modes

Christopher A. Hill, Michael Harris, and Kevin D. Ridley
Appl. Opt. 46(20) 4376-4385 (2007)

References

  • View by:
  • |
  • |
  • |

  1. B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4, 429–430 (2010).
    [Crossref]
  2. Q. Li, L. Chen, M. Li, S. L. Shaw, and A. Nuchter, “A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios,” IEEE Trans. Veh. Technol. 63(2), 540–555 (2014).
    [Crossref]
  3. J. McCormack, J. Prine, and B. Trowbridge, “2D LIDAR as a distributed interaction tool for virtual and augmented reality video games,” in Proceedings of IEEE Games Entertainment Media Conference (IEEE, 2015), 15700274.
  4. M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  5. Velodyne LiDAR, “HDL-64E data sheet,” http://velodynelidar.com/hdl-64e.html .
  6. G. Kim, J. Eom, and Y. Park, “Investigation on the occurrence of mutual interference between pulsed terrestrial LIDAR scanners,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV) (IEEE, 2015), 437–442.
  7. J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehicles sensors: experiments on camera and lidar,” in Black Hat Europe, (2015).
  8. X. Ai, R. Nock, N. Dahnoun, and J. G. Rarity, “High resolution random-modulation cw lidar,” Appl. Opt. 50(22), 4478–4488 (2011).
    [Crossref] [PubMed]
  9. R. Matthey and V. Mitev, “Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements,” Opt. Laser Eng. 43(35), 557–571 (2005).
    [Crossref]
  10. Z. Yang, C. Li, M. Yu, F. Chen, and T. Wu, “Compact 405-nm random-modulation continuous wave lidar for standoff biological warfare detection,” J. Appl. Remote Sens. 9(1), 096042 (2015).
    [Crossref]
  11. M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
    [Crossref]
  12. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
    [Crossref]
  13. W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaos lidars,” Opt. Express 18(25), 26155–26162 (2010).
    [Crossref] [PubMed]
  14. C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multi-channel chaos by electrical heterodyning for multiple-input-multiple-output chaos radar (MIMO CRADAR) application,” IEEE Photon. J. 8(1), 7800209 (2016).
    [Crossref]
  15. F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
    [Crossref]
  16. F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
    [Crossref]
  17. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28(1), 93–108 (1992).
    [Crossref]
  18. Y. H. Liao and F. Y. Lin, “Dynamical characteristics and their applications of semiconductor lasers subject to both optical injection and optical feedback,” Opt. Express 21(20), 23568–23578 (2013).
    [Crossref] [PubMed]
  19. A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
    [Crossref]
  20. Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
    [Crossref]
  21. A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
    [Crossref]
  22. X. Dou, H. Yin, H. Yue, Y. Jin, J. Shen, and L. Li, “Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks,” Opt. Commun. 350, 288–295 (2015).
    [Crossref]
  23. C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
    [Crossref] [PubMed]
  24. International Electrotechnical Commission (IEC), “Safety of laser products. Part 1: Equipment classification, requirements and user’s guide,” Standard IEC 60825-1:2001 (International Electrotechnical Commission, Geneva, 2001).
  25. T. Zhao, B. Wang, Y. Wang, and X. Chang, “Free space ranging utilizing chaotic light,” Mathematical Problems in Engineering 2013, 172728 (2013).
    [Crossref]
  26. C. de Boor, A practical guide to spline (Springer, 1978).
    [Crossref]
  27. K. Stelmaszczyk, M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt. 44(7), 1323–1331 (2005).
    [Crossref] [PubMed]
  28. Spectrolab, “SpectroScan 3D MEMS lidar system,” http://www.spectrolab.com/sensors/index.html .
  29. Pulsedlight, “LIDAR-Lite,” https://www.pulsedlight3d.com/ .
  30. G. G. Gimmestad and D. W. Roberts, “1.5 microns: the future of unattended aerosol lidar?” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), 1944–1946.
  31. X. Lee, X. Wang, T. Cui, C. Wang, Y. Li, H. Li, and Q. Wang, “Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting,” Opt. Express 24(14), 15222–15231 (2016).
    [Crossref] [PubMed]
  32. H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, “Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength,” Opt. Eng. 56(3), 031216 (2016).
    [Crossref]

2017 (1)

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

2016 (3)

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multi-channel chaos by electrical heterodyning for multiple-input-multiple-output chaos radar (MIMO CRADAR) application,” IEEE Photon. J. 8(1), 7800209 (2016).
[Crossref]

X. Lee, X. Wang, T. Cui, C. Wang, Y. Li, H. Li, and Q. Wang, “Increasing the effective aperture of a detector and enlarging the receiving field of view in a 3D imaging lidar system through hexagonal prism beam splitting,” Opt. Express 24(14), 15222–15231 (2016).
[Crossref] [PubMed]

H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, “Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength,” Opt. Eng. 56(3), 031216 (2016).
[Crossref]

2015 (3)

X. Dou, H. Yin, H. Yue, Y. Jin, J. Shen, and L. Li, “Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks,” Opt. Commun. 350, 288–295 (2015).
[Crossref]

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
[Crossref] [PubMed]

Z. Yang, C. Li, M. Yu, F. Chen, and T. Wu, “Compact 405-nm random-modulation continuous wave lidar for standoff biological warfare detection,” J. Appl. Remote Sens. 9(1), 096042 (2015).
[Crossref]

2014 (1)

Q. Li, L. Chen, M. Li, S. L. Shaw, and A. Nuchter, “A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios,” IEEE Trans. Veh. Technol. 63(2), 540–555 (2014).
[Crossref]

2013 (2)

2012 (2)

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
[Crossref]

2011 (1)

2010 (2)

2008 (1)

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

2005 (2)

R. Matthey and V. Mitev, “Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements,” Opt. Laser Eng. 43(35), 557–571 (2005).
[Crossref]

K. Stelmaszczyk, M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste, “Analytical function for lidar geometrical compression form-factor calculations,” Appl. Opt. 44(7), 1323–1331 (2005).
[Crossref] [PubMed]

2004 (2)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

2003 (1)

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

2001 (1)

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

1992 (1)

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28(1), 93–108 (1992).
[Crossref]

Adamiec, P.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

Ai, X.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

X. Ai, R. Nock, N. Dahnoun, and J. G. Rarity, “High resolution random-modulation cw lidar,” Appl. Opt. 50(22), 4478–4488 (2011).
[Crossref] [PubMed]

Aida, T.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

Amann, M. C.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Barbero, J.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

Bosch, T.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Chang, X.

T. Zhao, B. Wang, Y. Wang, and X. Chang, “Free space ranging utilizing chaotic light,” Mathematical Problems in Engineering 2013, 172728 (2013).
[Crossref]

Chao, Y. K.

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
[Crossref]

Chen, F.

Z. Yang, C. Li, M. Yu, F. Chen, and T. Wu, “Compact 405-nm random-modulation continuous wave lidar for standoff biological warfare detection,” J. Appl. Remote Sens. 9(1), 096042 (2015).
[Crossref]

Chen, L.

Q. Li, L. Chen, M. Li, S. L. Shaw, and A. Nuchter, “A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios,” IEEE Trans. Veh. Technol. 63(2), 540–555 (2014).
[Crossref]

Chen, Y. C.

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multi-channel chaos by electrical heterodyning for multiple-input-multiple-output chaos radar (MIMO CRADAR) application,” IEEE Photon. J. 8(1), 7800209 (2016).
[Crossref]

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
[Crossref] [PubMed]

Cheng, C. H.

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multi-channel chaos by electrical heterodyning for multiple-input-multiple-output chaos radar (MIMO CRADAR) application,” IEEE Photon. J. 8(1), 7800209 (2016).
[Crossref]

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
[Crossref] [PubMed]

Chudzynski, S.

Cui, T.

Dahnoun, N.

Davis, P.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

de Boor, C.

C. de Boor, A practical guide to spline (Springer, 1978).
[Crossref]

Dell’Aglio, M.

Dou, X.

X. Dou, H. Yin, H. Yue, Y. Jin, J. Shen, and L. Li, “Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks,” Opt. Commun. 350, 288–295 (2015).
[Crossref]

Ehret, G.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

Eom, J.

G. Kim, J. Eom, and Y. Park, “Investigation on the occurrence of mutual interference between pulsed terrestrial LIDAR scanners,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV) (IEEE, 2015), 437–442.

Esquivias, I.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

Feiri, M.

J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehicles sensors: experiments on camera and lidar,” in Black Hat Europe, (2015).

Fix, A.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

Gimmestad, G. G.

G. G. Gimmestad and D. W. Roberts, “1.5 microns: the future of unattended aerosol lidar?” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), 1944–1946.

Heil, T.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

Hirai, A.

H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, “Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength,” Opt. Eng. 56(3), 031216 (2016).
[Crossref]

Imaki, M.

H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, “Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength,” Opt. Eng. 56(3), 031216 (2016).
[Crossref]

Jin, Y.

X. Dou, H. Yin, H. Yue, Y. Jin, J. Shen, and L. Li, “Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks,” Opt. Commun. 350, 288–295 (2015).
[Crossref]

Kameyama, S.

H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, “Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength,” Opt. Eng. 56(3), 031216 (2016).
[Crossref]

Kargl, F.

J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehicles sensors: experiments on camera and lidar,” in Black Hat Europe, (2015).

Kim, G.

G. Kim, J. Eom, and Y. Park, “Investigation on the occurrence of mutual interference between pulsed terrestrial LIDAR scanners,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV) (IEEE, 2015), 437–442.

Kotake, N.

H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, “Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength,” Opt. Eng. 56(3), 031216 (2016).
[Crossref]

Lee, X.

Lescure, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Li, C.

Z. Yang, C. Li, M. Yu, F. Chen, and T. Wu, “Compact 405-nm random-modulation continuous wave lidar for standoff biological warfare detection,” J. Appl. Remote Sens. 9(1), 096042 (2015).
[Crossref]

Li, H.

Li, L.

X. Dou, H. Yin, H. Yue, Y. Jin, J. Shen, and L. Li, “Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks,” Opt. Commun. 350, 288–295 (2015).
[Crossref]

Li, M.

Q. Li, L. Chen, M. Li, S. L. Shaw, and A. Nuchter, “A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios,” IEEE Trans. Veh. Technol. 63(2), 540–555 (2014).
[Crossref]

Li, Q.

Q. Li, L. Chen, M. Li, S. L. Shaw, and A. Nuchter, “A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios,” IEEE Trans. Veh. Technol. 63(2), 540–555 (2014).
[Crossref]

Li, Y.

Liao, Y. H.

Lin, F. Y.

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multi-channel chaos by electrical heterodyning for multiple-input-multiple-output chaos radar (MIMO CRADAR) application,” IEEE Photon. J. 8(1), 7800209 (2016).
[Crossref]

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23(3), 2308–2319 (2015).
[Crossref] [PubMed]

Y. H. Liao and F. Y. Lin, “Dynamical characteristics and their applications of semiconductor lasers subject to both optical injection and optical feedback,” Opt. Express 21(20), 23568–23578 (2013).
[Crossref] [PubMed]

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
[Crossref]

W. T. Wu, Y. H. Liao, and F. Y. Lin, “Noise suppressions in synchronized chaos lidars,” Opt. Express 18(25), 26155–26162 (2010).
[Crossref] [PubMed]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

Liu, Y.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

Mark, J.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28(1), 93–108 (1992).
[Crossref]

Matthey, R.

R. Matthey and V. Mitev, “Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements,” Opt. Laser Eng. 43(35), 557–571 (2005).
[Crossref]

McCormack, J.

J. McCormack, J. Prine, and B. Trowbridge, “2D LIDAR as a distributed interaction tool for virtual and augmented reality video games,” in Proceedings of IEEE Games Entertainment Media Conference (IEEE, 2015), 15700274.

Mitev, V.

R. Matthey and V. Mitev, “Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements,” Opt. Laser Eng. 43(35), 557–571 (2005).
[Crossref]

Mork, J.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28(1), 93–108 (1992).
[Crossref]

Myllyla, R.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Nakaji, M.

H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, “Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength,” Opt. Eng. 56(3), 031216 (2016).
[Crossref]

Nock, R.

Nuchter, A.

Q. Li, L. Chen, M. Li, S. L. Shaw, and A. Nuchter, “A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios,” IEEE Trans. Veh. Technol. 63(2), 540–555 (2014).
[Crossref]

Park, Y.

G. Kim, J. Eom, and Y. Park, “Investigation on the occurrence of mutual interference between pulsed terrestrial LIDAR scanners,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV) (IEEE, 2015), 437–442.

Pérez-Serrano, A.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

Petit, J.

J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehicles sensors: experiments on camera and lidar,” in Black Hat Europe, (2015).

Prine, J.

J. McCormack, J. Prine, and B. Trowbridge, “2D LIDAR as a distributed interaction tool for virtual and augmented reality video games,” in Proceedings of IEEE Games Entertainment Media Conference (IEEE, 2015), 15700274.

Quatrevalet, M.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

Rarity, J. G.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

X. Ai, R. Nock, N. Dahnoun, and J. G. Rarity, “High resolution random-modulation cw lidar,” Appl. Opt. 50(22), 4478–4488 (2011).
[Crossref] [PubMed]

Rioux, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Roberts, D. W.

G. G. Gimmestad and D. W. Roberts, “1.5 microns: the future of unattended aerosol lidar?” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), 1944–1946.

Schwarz, B.

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4, 429–430 (2010).
[Crossref]

Shaw, S. L.

Q. Li, L. Chen, M. Li, S. L. Shaw, and A. Nuchter, “A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios,” IEEE Trans. Veh. Technol. 63(2), 540–555 (2014).
[Crossref]

Shen, J.

X. Dou, H. Yin, H. Yue, Y. Jin, J. Shen, and L. Li, “Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks,” Opt. Commun. 350, 288–295 (2015).
[Crossref]

Stacewicz, T.

Stelmaszczyk, K.

Stottelaar, B.

J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehicles sensors: experiments on camera and lidar,” in Black Hat Europe, (2015).

Tijero, J. M. G.

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

Tromborg, B.

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28(1), 93–108 (1992).
[Crossref]

Trowbridge, B.

J. McCormack, J. Prine, and B. Trowbridge, “2D LIDAR as a distributed interaction tool for virtual and augmented reality video games,” in Proceedings of IEEE Games Entertainment Media Conference (IEEE, 2015), 15700274.

Tsuji, H.

H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, “Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength,” Opt. Eng. 56(3), 031216 (2016).
[Crossref]

Uchida, A.

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

Wang, A.

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, B.

T. Zhao, B. Wang, Y. Wang, and X. Chang, “Free space ranging utilizing chaotic light,” Mathematical Problems in Engineering 2013, 172728 (2013).
[Crossref]

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wang, C.

Wang, N.

Wang, Q.

Wang, X.

Wang, Y.

T. Zhao, B. Wang, Y. Wang, and X. Chang, “Free space ranging utilizing chaotic light,” Mathematical Problems in Engineering 2013, 172728 (2013).
[Crossref]

A. Wang, N. Wang, Y. Yang, B. Wang, M. Zhang, and Y. Wang, “Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser,” J. Lightwave Technol. 30(21), 3420–3426 (2012).
[Crossref]

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

Wöste, L.

Wu, T.

Z. Yang, C. Li, M. Yu, F. Chen, and T. Wu, “Compact 405-nm random-modulation continuous wave lidar for standoff biological warfare detection,” J. Appl. Remote Sens. 9(1), 096042 (2015).
[Crossref]

Wu, T. C.

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
[Crossref]

Wu, W. T.

Yang, Y.

Yang, Z.

Z. Yang, C. Li, M. Yu, F. Chen, and T. Wu, “Compact 405-nm random-modulation continuous wave lidar for standoff biological warfare detection,” J. Appl. Remote Sens. 9(1), 096042 (2015).
[Crossref]

Yin, H.

X. Dou, H. Yin, H. Yue, Y. Jin, J. Shen, and L. Li, “Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks,” Opt. Commun. 350, 288–295 (2015).
[Crossref]

Yu, M.

Z. Yang, C. Li, M. Yu, F. Chen, and T. Wu, “Compact 405-nm random-modulation continuous wave lidar for standoff biological warfare detection,” J. Appl. Remote Sens. 9(1), 096042 (2015).
[Crossref]

Yue, H.

X. Dou, H. Yin, H. Yue, Y. Jin, J. Shen, and L. Li, “Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks,” Opt. Commun. 350, 288–295 (2015).
[Crossref]

Zhang, M.

Zhao, T.

T. Zhao, B. Wang, Y. Wang, and X. Chang, “Free space ranging utilizing chaotic light,” Mathematical Problems in Engineering 2013, 172728 (2013).
[Crossref]

Appl. Opt. (2)

IEEE J. Quantum Electron. (4)

A. Uchida, T. Heil, Y. Liu, P. Davis, and T. Aida, “High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection,” IEEE J. Quantum Electron. 39(11), 1462–1467 (2003).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

F. Y. Lin, Y. K. Chao, and T. C. Wu, “Effective bandwidths of broadband chaotic signals,” IEEE J. Quantum Electron. 48(8), 1010–1014 (2012).
[Crossref]

J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28(1), 93–108 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Quatrevalet, X. Ai, A. Pérez-Serrano, P. Adamiec, J. Barbero, A. Fix, J. M. G. Tijero, I. Esquivias, J. G. Rarity, and G. Ehret, “Atmospheric CO2 sensing with a random modulation continuous wave integrated path differential absorption lidar,” IEEE J. Sel. Top. Quantum Electron. 23(2), 5300311 (2017).
[Crossref]

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

IEEE Photon. J. (1)

C. H. Cheng, Y. C. Chen, and F. Y. Lin, “Generation of uncorrelated multi-channel chaos by electrical heterodyning for multiple-input-multiple-output chaos radar (MIMO CRADAR) application,” IEEE Photon. J. 8(1), 7800209 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Wang, B. Wang, and A. Wang, “Chaotic correlation optical time domain reflectometer utilizing laser diode,” IEEE Photon. Technol. Lett. 20(19), 1636–1638 (2008).
[Crossref]

IEEE Trans. Veh. Technol. (1)

Q. Li, L. Chen, M. Li, S. L. Shaw, and A. Nuchter, “A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios,” IEEE Trans. Veh. Technol. 63(2), 540–555 (2014).
[Crossref]

J. Appl. Remote Sens. (1)

Z. Yang, C. Li, M. Yu, F. Chen, and T. Wu, “Compact 405-nm random-modulation continuous wave lidar for standoff biological warfare detection,” J. Appl. Remote Sens. 9(1), 096042 (2015).
[Crossref]

J. Lightwave Technol. (1)

Mathematical Problems in Engineering (1)

T. Zhao, B. Wang, Y. Wang, and X. Chang, “Free space ranging utilizing chaotic light,” Mathematical Problems in Engineering 2013, 172728 (2013).
[Crossref]

Nat. Photonics (1)

B. Schwarz, “LIDAR: Mapping the world in 3D,” Nat. Photonics 4, 429–430 (2010).
[Crossref]

Opt. Commun. (1)

X. Dou, H. Yin, H. Yue, Y. Jin, J. Shen, and L. Li, “Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks,” Opt. Commun. 350, 288–295 (2015).
[Crossref]

Opt. Eng. (2)

H. Tsuji, M. Imaki, N. Kotake, A. Hirai, M. Nakaji, and S. Kameyama, “Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength,” Opt. Eng. 56(3), 031216 (2016).
[Crossref]

M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Opt. Express (4)

Opt. Laser Eng. (1)

R. Matthey and V. Mitev, “Pseudo-random noise-continuous-wave laser radar for surface and cloud measurements,” Opt. Laser Eng. 43(35), 557–571 (2005).
[Crossref]

Other (9)

J. McCormack, J. Prine, and B. Trowbridge, “2D LIDAR as a distributed interaction tool for virtual and augmented reality video games,” in Proceedings of IEEE Games Entertainment Media Conference (IEEE, 2015), 15700274.

Velodyne LiDAR, “HDL-64E data sheet,” http://velodynelidar.com/hdl-64e.html .

G. Kim, J. Eom, and Y. Park, “Investigation on the occurrence of mutual interference between pulsed terrestrial LIDAR scanners,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV) (IEEE, 2015), 437–442.

J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on automated vehicles sensors: experiments on camera and lidar,” in Black Hat Europe, (2015).

International Electrotechnical Commission (IEC), “Safety of laser products. Part 1: Equipment classification, requirements and user’s guide,” Standard IEC 60825-1:2001 (International Electrotechnical Commission, Geneva, 2001).

Spectrolab, “SpectroScan 3D MEMS lidar system,” http://www.spectrolab.com/sensors/index.html .

Pulsedlight, “LIDAR-Lite,” https://www.pulsedlight3d.com/ .

G. G. Gimmestad and D. W. Roberts, “1.5 microns: the future of unattended aerosol lidar?” in Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), 1944–1946.

C. de Boor, A practical guide to spline (Springer, 1978).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic setup of a 3D pulsed chaos lidar system. LDC: laser diode controller; TEC: temperature controller; SL: semiconductor laser; PMC: polarization-maintaining fiber coupler; VA: variable optical attenuator; PM: power meter; ISO: isolator; FC: fiber coupler; APD: avalanched photodetector; EDFA: erbium-doped fiber amplifier; AOM: acousto-optic modulator; FG: function generator; OSC: oscilloscope; PC: personal computer.
Fig. 2
Fig. 2 (a) Optical spectrum, (b) time series, and (c) microwave spectrum of the original chaos generated by a semiconductor laser subject to optical feedback. The green dotted curve in (c) shows the noise spectrum of the PIN photoreceiver used for the measurement.
Fig. 3
Fig. 3 (a) Microwave spectra, (b) time series, and (c) autocorrelation functions of the homodyned chaos (blue) and original chaos (black). The green curve in (a) shows the noise spectrum of the APD used.
Fig. 4
Fig. 4 (a) Cross-correlations in ranging using pulsed homodyned chaos (blue) and pulsed original chaos (black) with a duty cycle of 5%. (b) SNR and the corresponding signal and noise amplitudes for the (c) pulsed homodyned chaos (blue) and (d) pulsed original chaos (black) under different duty cycles. In (b)–(d), CW indicates a duty cycle of 100%.
Fig. 5
Fig. 5 (a) SNR, (b) accuracy, and (c) precision of the chaos lidar in ranging with the pulsed homodyned chaos (blue), CW homodyned chaos (cyan), and pulsed original chaos (black) at different ranges. Both the pulsed homodyned and pulsed original chaos have a duty cycle of 5%.
Fig. 6
Fig. 6 (a) Accuracy and (b) precision of the chaos lidar in ranging with the pulsed homodyned chaos (blue), CW homodyned chaos (cyan), and pulsed original chaos (black) under different SNRs. The black dashed curves show their corresponding curve fittings.
Fig. 7
Fig. 7 (a) SNRs of the chaos lidar, and (b) precisions of the chaos lidar (blue), Spectroscan (red), and Lidar-lite (green) at different ranges, respectively. The dashed curve and dotted line in (a) are the inverse-square curve fitting of the SNRs at the long-range side and the 3.8 dB SNR baseline set by the 2 cm accuracy benchmark obtained from Fig. 6(a).
Fig. 8
Fig. 8 (a) Photograph of a curvy mask and its (b) 3D image and (c) 3D reconstruction acquired by the pulsed chaos lidar. The colorbar shows the relative range from the lidar. Here the mask is translated laterally across the fixed laser beam for scanning.
Fig. 9
Fig. 9 (a) Photographs of a “NTHU” letter pattern and (b) its corresponding 3D image obtained by the pulsed chaos lidar. The colorbar shows the relative range from the lidar. We employ active laser scanning with a 2-axis MEMS scanning mirror to acquire the 3D image in real-time.

Metrics