Abstract

Maresse described a classical solid catadioptric system (SoCatS) for a lens comprising a solid body and a single-focal Maksutov type construction, characterized by two refractive and two reflective surfaces. Due to ray propagation through the solid block twice, the design is feasible at a single wavelength, otherwise suffering on chromatic aberration induced by dispersion. We design a SoCatS for a telescope and describe a class of solutions to reduce and control chromatic and some spherical aberration in the solid catadioptric system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Designs for high performance PAL-based imaging systems

Dong Hui, Mei Zhang, Zheng Geng, Yunfang Zhang, Jingyuan Duan, Ancun Shi, Li Hui, Qing Fang, and Yuliang Liu
Appl. Opt. 51(21) 5310-5317 (2012)

Design of plastic diffractive–refractive compact zoom lenses for visible–near-IR spectrum

Grigoriy I. Greisukh, Evgeniy G. Ezhov, Zoya A. Sidyakina, and Sergei A. Stepanov
Appl. Opt. 52(23) 5843-5850 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Scholl, Y. Wang, J. E. Randolph, and J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30(5), 590–597 (1991), doi:.
    [Crossref]
  2. M. S. Scholl and Y. Wang, “Design of a high-resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34(11), 3222–3228 (1995), doi:.
    [Crossref]
  3. R. K. Kerschner, “Catadioptric lens system for a scanning device,” US Patent 6,639,203 B1 (2003) Oct. 28.
  4. C. Lee, K. Lee, S. Jung, and D. Kim, “Solid immersion mirror type objective lens and optical pickup device adopting the same,” US Patent 6,801,492 B2 (2004) Oct. 5.
  5. T. Tsunashima, “Catadioptric lens,” US Patent 6,169,637 B1 (2001) Jan. 2.
  6. J. E. Webb, “Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light,” US Patent 7,564,633 B2 (2009) Jul. 21.
  7. M. Yamakawa, “Photoelectric sensor having a folded light path,” US Patent 4,978,843 (1990) Dec. 18.
  8. Y. Seko, “Positional measurement system and lens for positional measurement,” US Patent 7,554,676 B2 (2009) Jun. 30.
  9. B. A. Cameron and G. R. Sturiale, “Solid Catadioptric Lens,” US Patent 5,793,538 (1998) Aug. 11.
  10. Z. Maresse, “Ultra compact mono-bloc catadoptric maging lens,” US Patent 7,391,580 B2 (2008) Jun. 24.
  11. M. Strojnik and M. S. Kirk, “Telescopes,” in Handbook of Optical Engineering: Fundamentals and Basic Optical Instruments, D. Malacara, B. Thompson, Eds. (CRC Press, 2017, 325–375). https://www.crcpress.com/Fundamentals-and-Basic-Optical-Instruments/Hernandez/p/book/ 9781498720748.
  12. R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973, pp. 402–404).
  13. R. Kingslake, Lens Design Fundamentals (Academic Press, 1978, pp. 79–80).
  14. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000, pp. 421–423), IVth ed.

1995 (1)

M. S. Scholl and Y. Wang, “Design of a high-resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34(11), 3222–3228 (1995), doi:.
[Crossref]

1991 (1)

M. S. Scholl, Y. Wang, J. E. Randolph, and J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30(5), 590–597 (1991), doi:.
[Crossref]

Ayon, J. A.

M. S. Scholl, Y. Wang, J. E. Randolph, and J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30(5), 590–597 (1991), doi:.
[Crossref]

Randolph, J. E.

M. S. Scholl, Y. Wang, J. E. Randolph, and J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30(5), 590–597 (1991), doi:.
[Crossref]

Scholl, M. S.

M. S. Scholl and Y. Wang, “Design of a high-resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34(11), 3222–3228 (1995), doi:.
[Crossref]

M. S. Scholl, Y. Wang, J. E. Randolph, and J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30(5), 590–597 (1991), doi:.
[Crossref]

Wang, Y.

M. S. Scholl and Y. Wang, “Design of a high-resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34(11), 3222–3228 (1995), doi:.
[Crossref]

M. S. Scholl, Y. Wang, J. E. Randolph, and J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30(5), 590–597 (1991), doi:.
[Crossref]

Opt. Eng. (2)

M. S. Scholl, Y. Wang, J. E. Randolph, and J. A. Ayon, “Site certification imaging sensor for Mars exploration,” Opt. Eng. 30(5), 590–597 (1991), doi:.
[Crossref]

M. S. Scholl and Y. Wang, “Design of a high-resolution telescope for an imaging sensor to characterize a (Martian) landing-site,” Opt. Eng. 34(11), 3222–3228 (1995), doi:.
[Crossref]

Other (12)

R. K. Kerschner, “Catadioptric lens system for a scanning device,” US Patent 6,639,203 B1 (2003) Oct. 28.

C. Lee, K. Lee, S. Jung, and D. Kim, “Solid immersion mirror type objective lens and optical pickup device adopting the same,” US Patent 6,801,492 B2 (2004) Oct. 5.

T. Tsunashima, “Catadioptric lens,” US Patent 6,169,637 B1 (2001) Jan. 2.

J. E. Webb, “Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light,” US Patent 7,564,633 B2 (2009) Jul. 21.

M. Yamakawa, “Photoelectric sensor having a folded light path,” US Patent 4,978,843 (1990) Dec. 18.

Y. Seko, “Positional measurement system and lens for positional measurement,” US Patent 7,554,676 B2 (2009) Jun. 30.

B. A. Cameron and G. R. Sturiale, “Solid Catadioptric Lens,” US Patent 5,793,538 (1998) Aug. 11.

Z. Maresse, “Ultra compact mono-bloc catadoptric maging lens,” US Patent 7,391,580 B2 (2008) Jun. 24.

M. Strojnik and M. S. Kirk, “Telescopes,” in Handbook of Optical Engineering: Fundamentals and Basic Optical Instruments, D. Malacara, B. Thompson, Eds. (CRC Press, 2017, 325–375). https://www.crcpress.com/Fundamentals-and-Basic-Optical-Instruments/Hernandez/p/book/ 9781498720748.

R. S. Longhurst, Geometrical and Physical Optics (Longman, 1973, pp. 402–404).

R. Kingslake, Lens Design Fundamentals (Academic Press, 1978, pp. 79–80).

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000, pp. 421–423), IVth ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Ray trace in the SoCatS with a monolithic body. The stop is located at the secondary mirror for better aberration control.
Fig. 2
Fig. 2 Polychromatic MTFs of the monolithic SoCatS as a function of spatial frequency, for spectral interval 8.0 to 12.0 μm and FOV of 4.2 by 4.2 degrees. The MTFs are shown for several field positions in degrees and compared with the diffraction limited MTF.
Fig. 3
Fig. 3 Polychromatic MTFs of the monolithic SoCatS as a function of spatial frequency, for spectral interval 3.0 to 5.0 μm and FOV of 4.2 by 4.2 degrees. The MTFs are shown for several field positions in degrees and compared with the diffraction limited MTF.
Fig. 4
Fig. 4 Polychromatic spot diagrams of the monolithic SoCatS for spectral interval 8.0 to 12.0 μm and FOV of 4.2 by 4.2 degrees. The spot diagrams are presented for several field positions.
Fig. 5
Fig. 5 Polychromatic spot diagrams of the monolithic SoCatS for spectral interval 3.0 to 5.0 μm and FOV of 4.2 by 4.2 degrees. The spot diagrams are presented for several field positions.
Fig. 6
Fig. 6 A cemented SoCatS doublet featuring two different substrates for applications requiring additional control of chromatic aberration, as in the visible 0.4 μm – 1 μm. The stop at the secondary mirror provides better aberration control.
Fig. 7
Fig. 7 Polychromatic MTFs of the cemented SoCatS as a function of spatial frequency, from 0.4 to 1.0 μm and FOV of 4.2 by 4.2 degrees. The tangential MTFs are shown for several field positions in degrees and compared with the diffraction limited MTF.
Fig. 8
Fig. 8 Polychromatic spot diagrams of the monolithic SoCatS for spectral interval 0.4 to 1.0 μm and FOV of 4.2 by 4.2 degrees. The spot diagrams are presented for several field positions.

Tables (1)

Tables Icon

Table 1 Spot size parameters for Figs. 4, 5 and 8. System requirements are FOV = 4.2 by 4.2°, F/# = 4.3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

0= Φ 1 ν 1 + Φ 2 ν 2
1 f =Φ(v,f)= Φ 1 ( v 1 , f 1 )+ Φ 2 ( v 2 , f 2 )
Φ 1 (v,f)= v 1 f( v 1 v 2 )
Φ 2 (v,f)= v 2 f( v 1 v 2 )

Metrics