Abstract

We examine the electro-optic effect at wavelengths ranging from 1.31 to 2.02 μm for: (1) an Electronic Variable Optical Attenuator (EVOA); and (2) a Micro-Ring Resonator (MRR). For the EVOA, simulations were performed to ascertain the relationship between free-carrier concentration and optical attenuation, and are in agreement with our observation of an increase in attenuation with increasing wavelength. MRRs were fabricated for use around wavelengths of 2 μm to explore the sensitivity of operation to bus-to-ring coupling gap and p-n junction offset. Trends observed in the experiment are replicated by simulation, calibrated using the observations of the EVOA operation. The previously proposed efficiency increase of operation around 2 μm compared to more traditional wavelengths is demonstrated. Future development of devices for these wavelengths, supported by amplification using Thulium Doped Fiber Amplifier (TDFA) technology, is a promising route to aid in the alleviation of increasing demands on communication networks.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed silicon modulators for the 2  μm wavelength band

Wei Cao, David Hagan, David J. Thomson, Milos Nedeljkovic, Callum G. Littlejohns, Andy Knights, Shaif-Ul Alam, Junjia Wang, Frederic Gardes, Weiwei Zhang, Shenghao Liu, Ke Li, Mohamed Said Rouifed, Guo Xin, Wanjun Wang, Hong Wang, Graham T. Reed, and Goran Z. Mashanovich
Optica 5(9) 1055-1062 (2018)

Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO

Junsu Baek, Jong-Bum You, and Kyoungsik Yu
Opt. Express 23(12) 15863-15876 (2015)

Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides

J. Matres, C. Lacava, G. C. Ballesteros, P. Minzioni, I. Cristiani, J. M. Fédéli, J. Martí, and C. J. Oton
Opt. Express 20(21) 23838-23845 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  2. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
    [Crossref]
  3. B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for Silicon Mid-IR Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
    [Crossref]
  4. R. Won, “View from... Communication Networks Beyond the Capacity Crunch: Is it crunch time?” Nat. Photonics 9, 424–426 (2015).
    [Crossref]
  5. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 – 2050 nm window,” Opt. Express 21, 26450 (2013).
    [Crossref] [PubMed]
  6. Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).
  7. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
    [Crossref]
  8. M. A. Van Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20, 28009 (2012).
    [Crossref] [PubMed]
  9. D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2μm–2.5μm in silicon,” Opt. Express 22, 10825 (2014).
    [Crossref] [PubMed]
  10. T. Xiaogang, L. Jun, and X. Chenyang, “Thermal nonlinear effect in high Q factor silicon-on-insulator microring resonator,” Opt. Commun. 395, 207–211 (2017).
    [Crossref]
  11. Z. Zhang, G. I. Ng, H. Qiu, W. Wang, X. Guo, M. S. Rouifed, C. Liu, and H. Wang, “Compact microring resonators integrated with grating couplers working at 2 μm wavelength on silicon-on-insulator platform,” Appl. Opt. 56, 5444 (2017).
    [Crossref] [PubMed]
  12. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  13. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low V_pp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484 (2009).
    [Crossref]
  14. W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).
  15. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photonics J. 3, 1171–1180 (2011).
    [Crossref]
  16. D. E. Hagan and A. P. Knights, “Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2 μm,” J. Opt. 19, 025801 (2017).
    [Crossref]
  17. A. Martin, D. Feng, J. Luff, and M. Asghari, “Technical Challenges for Silicon Photonics Transceivers for Data Center Applications,” in Optical Fiber Communication Conference, (Optical Society of America, 2016).
    [Crossref]
  18. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
    [Crossref]
  19. S. M. Sze and K. K. Ng, Physics of semiconductor devices (Wiley-Interscience, 2007).
  20. D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16, 16754 (2008).
    [Crossref] [PubMed]
  21. J. Xia, J. Yu, Q. Yan, and Z. Liu, “High-speed electrooptical VOA integrated in silicon-on-insulator,” Chin. Opt. Lett. 1, 217–219 (2003).
  22. L. Chrostowski and M. Hochberg, Silicon Photonics Design: from devices to systems (Cambridge University, Cambridge, 2015).
    [Crossref]
  23. D. L. Lee, Electromagnetic principles of integrated optics (John Wiley & Sons Inc, 1986).
  24. A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
    [Crossref]
  25. S. S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. von den Driesch, J. Müller, S. Mantl, D. Buca, and J. Witzens, “Low V_π Silicon photonics modulators with highly linear epitaxially grown phase shifters,” Opt. Express 23, 23526 (2015).
    [Crossref] [PubMed]
  26. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435 (2011).
    [Crossref] [PubMed]

2017 (3)

T. Xiaogang, L. Jun, and X. Chenyang, “Thermal nonlinear effect in high Q factor silicon-on-insulator microring resonator,” Opt. Commun. 395, 207–211 (2017).
[Crossref]

D. E. Hagan and A. P. Knights, “Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2 μm,” J. Opt. 19, 025801 (2017).
[Crossref]

Z. Zhang, G. I. Ng, H. Qiu, W. Wang, X. Guo, M. S. Rouifed, C. Liu, and H. Wang, “Compact microring resonators integrated with grating couplers working at 2 μm wavelength on silicon-on-insulator platform,” Appl. Opt. 56, 5444 (2017).
[Crossref] [PubMed]

2016 (2)

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

2015 (3)

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

R. Won, “View from... Communication Networks Beyond the Capacity Crunch: Is it crunch time?” Nat. Photonics 9, 424–426 (2015).
[Crossref]

S. S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. von den Driesch, J. Müller, S. Mantl, D. Buca, and J. Witzens, “Low V_π Silicon photonics modulators with highly linear epitaxially grown phase shifters,” Opt. Express 23, 23526 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

M. A. Van Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20, 28009 (2012).
[Crossref] [PubMed]

2011 (2)

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435 (2011).
[Crossref] [PubMed]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photonics J. 3, 1171–1180 (2011).
[Crossref]

2010 (2)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (1)

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for Silicon Mid-IR Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[Crossref]

2003 (1)

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Ackert, J. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2μm–2.5μm in silicon,” Opt. Express 22, 10825 (2014).
[Crossref] [PubMed]

Alam, S. U.

Alam, S.-U.

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Asghari, M.

Assefa, S.

Azadeh, S. S.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

Barwicz, T.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Bradley, T. D.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Brimont, A.

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

Buca, D.

Cao, W.

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Chen, Y.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Chenyang, X.

T. Xiaogang, L. Jun, and X. Chenyang, “Thermal nonlinear effect in high Q factor silicon-on-insulator microring resonator,” Opt. Commun. 395, 207–211 (2017).
[Crossref]

Chrostowski, L.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: from devices to systems (Cambridge University, Cambridge, 2015).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

Cueff, S.

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

Cunningham, J. E.

Daniel, J. M. O.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

Dimitropoulos, D.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for Silicon Mid-IR Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[Crossref]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

Fathpour, S.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for Silicon Mid-IR Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[Crossref]

Feng, D.

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low V_pp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484 (2009).
[Crossref]

A. Martin, D. Feng, J. Luff, and M. Asghari, “Technical Challenges for Silicon Photonics Transceivers for Data Center Applications,” in Optical Fiber Communication Conference, (Optical Society of America, 2016).
[Crossref]

Gardes, F.

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Gill, D. M.

Gray, D. R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Green, W. M. J.

Griol, A.

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

Guo, X.

Hagan, D. E.

D. E. Hagan and A. P. Knights, “Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2 μm,” J. Opt. 19, 025801 (2017).
[Crossref]

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Hayes, J. R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Heidt, A. M.

Hochberg, M.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: from devices to systems (Cambridge University, Cambridge, 2015).
[Crossref]

Hu, X.

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

Huante-Ceron, E.

Jalali, B.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for Silicon Mid-IR Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[Crossref]

Jasion, G. T.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Jessop, P. E.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

Jun, L.

T. Xiaogang, L. Jun, and X. Chenyang, “Thermal nonlinear effect in high Q factor silicon-on-insulator microring resonator,” Opt. Commun. 395, 207–211 (2017).
[Crossref]

Jung, Y.

Knights, A. P.

D. E. Hagan and A. P. Knights, “Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2 μm,” J. Opt. 19, 025801 (2017).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2μm–2.5μm in silicon,” Opt. Express 22, 10825 (2014).
[Crossref] [PubMed]

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Krishnamoorthy, A. V.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

Kung, C.-C.

Lee, D. L.

D. L. Lee, Electromagnetic principles of integrated optics (John Wiley & Sons Inc, 1986).

Li, G.

Li, Z.

Liang, H.

Liao, S.

Littlejohns, C. G.

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Liu, C.

Liu, Z.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

J. Xia, J. Yu, Q. Yan, and Z. Liu, “High-speed electrooptical VOA integrated in silicon-on-insulator,” Chin. Opt. Lett. 1, 217–219 (2003).

Luff, J.

A. Martin, D. Feng, J. Luff, and M. Asghari, “Technical Challenges for Silicon Photonics Transceivers for Data Center Applications,” in Optical Fiber Communication Conference, (Optical Society of America, 2016).
[Crossref]

Luo, Y.

Mangan, B. J.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Mantl, S.

Martin, A.

A. Martin, D. Feng, J. Luff, and M. Asghari, “Technical Challenges for Silicon Photonics Transceivers for Data Center Applications,” in Optical Fiber Communication Conference, (Optical Society of America, 2016).
[Crossref]

Mashanovich, G. Z.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2μm–2.5μm in silicon,” Opt. Express 22, 10825 (2014).
[Crossref] [PubMed]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photonics J. 3, 1171–1180 (2011).
[Crossref]

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Member, S.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Merget, F.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Moscoso-Mártir, A.

Müller, J.

Nedeljkovic, M.

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2μm–2.5μm in silicon,” Opt. Express 22, 10825 (2014).
[Crossref] [PubMed]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photonics J. 3, 1171–1180 (2011).
[Crossref]

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Ng, G. I.

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of semiconductor devices (Wiley-Interscience, 2007).

Numkam, E.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Numkam Fokoua, E.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Orobtchouk, R.

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Peacock, A. C.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2μm–2.5μm in silicon,” Opt. Express 22, 10825 (2014).
[Crossref] [PubMed]

Petrovich, M. N.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Poletti, F.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Qian, W.

Qiu, H.

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Raghunathan, V.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for Silicon Mid-IR Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[Crossref]

Raj, K.

Reed, G. T.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Rice, P. M.

Richardson, D. J.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 – 2050 nm window,” Opt. Express 21, 26450 (2013).
[Crossref] [PubMed]

Rojo Romeo, P.

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

Romero-García, S.

Rouifed, M. S.

Rouifed, M.-S.

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Saint Girons, G.

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

Sanchis, P.

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

Sandoghchi, S. R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Shafiiha, R.

Shank, S. M.

Shen, L.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2μm–2.5μm in silicon,” Opt. Express 22, 10825 (2014).
[Crossref] [PubMed]

Shori, R.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for Silicon Mid-IR Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[Crossref]

Shubin, I.

Simakov, N.

Slavík, R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Smith, B. T.

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photonics J. 3, 1171–1180 (2011).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Stafsudd, O.

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for Silicon Mid-IR Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[Crossref]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of semiconductor devices (Wiley-Interscience, 2007).

Thacker, H.

Thomson, D. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2μm–2.5μm in silicon,” Opt. Express 22, 10825 (2014).
[Crossref] [PubMed]

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Topuria, T.

Van Camp, M. A.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

von den Driesch, N.

Wang, H.

Z. Zhang, G. I. Ng, H. Qiu, W. Wang, X. Guo, M. S. Rouifed, C. Liu, and H. Wang, “Compact microring resonators integrated with grating couplers working at 2 μm wavelength on silicon-on-insulator platform,” Appl. Opt. 56, 5444 (2017).
[Crossref] [PubMed]

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Wang, J.

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Wang, W.

Z. Zhang, G. I. Ng, H. Qiu, W. Wang, X. Guo, M. S. Rouifed, C. Liu, and H. Wang, “Compact microring resonators integrated with grating couplers working at 2 μm wavelength on silicon-on-insulator platform,” Appl. Opt. 56, 5444 (2017).
[Crossref] [PubMed]

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Wheeler, N. V.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

Witzens, J.

Won, R.

R. Won, “View from... Communication Networks Beyond the Capacity Crunch: Is it crunch time?” Nat. Photonics 9, 424–426 (2015).
[Crossref]

Xia, J.

Xiaogang, T.

T. Xiaogang, L. Jun, and X. Chenyang, “Thermal nonlinear effect in high Q factor silicon-on-insulator microring resonator,” Opt. Commun. 395, 207–211 (2017).
[Crossref]

Xin, T. G.

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

Yan, Q.

Yao, J.

Yu, J.

Zanzi, A.

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

Zhang, Z.

Zheng, D.

Zheng, D. W.

Zheng, X.

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for Silicon Mid-IR Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 12, 1618 (2006).
[Crossref]

IEEE Photonics J. (1)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-μm infrared wavelength range,” IEEE Photonics J. 3, 1171–1180 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Brimont, X. Hu, S. Cueff, P. Rojo Romeo, G. Saint Girons, A. Griol, A. Zanzi, P. Sanchis, and R. Orobtchouk, “Low-Loss and Compact Silicon Rib Waveguide Bends,” IEEE Photonics Technol. Lett. 28, 299–302 (2016).
[Crossref]

J. Light. Technol. (1)

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, S. Member, F. Poletti, M. N. Petrovich, D. J. Richardson, Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam, J. R. Hayes, N. V. Wheeler, D. R. Gray, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission,” J. Light. Technol. 34, 104 (2016).

J. Opt. (1)

D. E. Hagan and A. P. Knights, “Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2 μm,” J. Opt. 19, 025801 (2017).
[Crossref]

Laser & Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser & Photonics Rev. 6, 47–73 (2012).
[Crossref]

Nat. Photonics (4)

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9, 393–396 (2015).
[Crossref]

R. Won, “View from... Communication Networks Beyond the Capacity Crunch: Is it crunch time?” Nat. Photonics 9, 424–426 (2015).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4, 561–564 (2010).
[Crossref]

Opt. Commun. (1)

T. Xiaogang, L. Jun, and X. Chenyang, “Thermal nonlinear effect in high Q factor silicon-on-insulator microring resonator,” Opt. Commun. 395, 207–211 (2017).
[Crossref]

Opt. Express (7)

D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16, 16754 (2008).
[Crossref] [PubMed]

S. S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. von den Driesch, J. Müller, S. Mantl, D. Buca, and J. Witzens, “Low V_π Silicon photonics modulators with highly linear epitaxially grown phase shifters,” Opt. Express 23, 23526 (2015).
[Crossref] [PubMed]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435 (2011).
[Crossref] [PubMed]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800 – 2050 nm window,” Opt. Express 21, 26450 (2013).
[Crossref] [PubMed]

M. A. Van Camp, S. Assefa, D. M. Gill, T. Barwicz, S. M. Shank, P. M. Rice, T. Topuria, and W. M. J. Green, “Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer,” Opt. Express 20, 28009 (2012).
[Crossref] [PubMed]

D. J. Thomson, L. Shen, J. J. Ackert, E. Huante-Ceron, A. P. Knights, M. Nedeljkovic, A. C. Peacock, and G. Z. Mashanovich, “Optical detection and modulation at 2μm–2.5μm in silicon,” Opt. Express 22, 10825 (2014).
[Crossref] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low V_pp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484 (2009).
[Crossref]

Other (5)

W. Cao, D. E. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. P. Knights, S.-U. Alam, J. Wang, F. Gardes, M.-S. Rouifed, T. G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High speed modulators in silicon-on-insulator for the 2 μm wavelength band,” Optica (to be published).

S. M. Sze and K. K. Ng, Physics of semiconductor devices (Wiley-Interscience, 2007).

A. Martin, D. Feng, J. Luff, and M. Asghari, “Technical Challenges for Silicon Photonics Transceivers for Data Center Applications,” in Optical Fiber Communication Conference, (Optical Society of America, 2016).
[Crossref]

L. Chrostowski and M. Hochberg, Silicon Photonics Design: from devices to systems (Cambridge University, Cambridge, 2015).
[Crossref]

D. L. Lee, Electromagnetic principles of integrated optics (John Wiley & Sons Inc, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 MRR modulator schematic layout (left) and phase-shifter cross-section (right).
Fig. 2
Fig. 2 Normalized EVOA optical attenuation under forward bias for a range of input wavelengths.
Fig. 3
Fig. 3 Normalized attenuation isocurrent lines as a function of wavelength. Dotted lines represent a linear regression of measured data.
Fig. 4
Fig. 4 Simulated free-carrier absorption in the VOA as a function of carrier concentration. Measured data at fixed driving currents are also plotted.
Fig. 5
Fig. 5 Measured MRR spectrum for biases from −10 to 1 V (left) and extracted resonance shift (right). The dashed lines denote zero bias resonance positions.
Fig. 6
Fig. 6 Measured and simulated reverse-bias resonance shift for a MRR modulator with a 30 nm p-n junction offset. Dashed black line indicates simulation of a 1.55 μm MRR modulator with 450 nm waveguide width.
Fig. 7
Fig. 7 Measured and simulated reverse-bias resonance shift for varying p-n junction offset. Dashed line denotes simulated results

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n = ( e 2 λ 2 8 π 2 c 2 ε 0 n ) [ Δ N e m ce * 2 + Δ N h m ch * 2 ] ,
Δ α = ( e 3 λ 2 4 π 2 c 3 ε 0 n ) [ Δ N e m ce * 2 + Δ N h m ch * 2 ] ,
Δ α = 3.22 x 10 20 Δ N e 1.149 + 6.21 x 10 20 Δ N h 1.119 ,
Δ n = 1.91 x 10 21 Δ N e 0.992 + 2.28 x 10 18 Δ N h 0.841
λ res = n eff L m , m = 1 , 2 , 3 ,
f 0 = c Q λ = c α π n g ,

Metrics