Abstract

We present here the first time-resolved tilt-angle and retardance measurements for large-tilt (>45°) flexoelectro-optic liquid crystal modulators. These devices have potential for next generation fast switching (>1 kHz), 0-2π analog phase spatial light modulators (SLMs), with applications in optical beamsteering, microscopy and micromachining. The chiral nematic device used consisted of a mixture of CBC7CB and the chiral dopant R5011 in a nominally 5 µm-thick cell, aligned in the uniform lying helix mode. As the device is dynamically switched over angles of ± 54°, retardance changes of up to 0.17λ are observed. Furthermore, the time-resolved measurements reveal an asymmetry in the tilt in the optic-axis depending on the polarity of the applied electric field. The change in the optic-axis exhibits a pattern dependence, whereby it is determined by both the pulse history and the applied field. This pattern dependence results in tilt-angle errors of up to 8.8°, which could manifest as phase errors as large as 35.2° in potential SLMs. These time domain measurements may allow correction of these deterministic errors, to realize practical devices.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices

Julian A. J. Fells, Steve J. Elston, Martin J. Booth, and Stephen M. Morris
Opt. Express 26(5) 6126-6142 (2018)

Flexoelectro-optic liquid crystal analog phase-only modulator with a 2π range and 1  kHz switching

Julian A. J. Fells, Xiuze Wang, Steve J. Elston, Chris Welch, Georg H. Mehl, Martin J. Booth, and Stephen M. Morris
Opt. Lett. 43(18) 4362-4365 (2018)

High speed liquid crystal over silicon display based on the flexoelectro-optic effect

Jing Chen, Stephen M. Morris, Timothy D. Wilkinson, Jon P. Freeman, and Harry J. Coles
Opt. Express 17(9) 7130-7137 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
    [Crossref] [PubMed]
  2. J. S. Patel and S. Lee, “Fast linear electro‐optic effect based on cholesteric liquid crystals,” J. Appl. Phys. 66(4), 1879–1881 (1989).
    [Crossref]
  3. S. M. Morris, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Structure-flexoelastic properties of bimesogenic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041701 (2007).
    [Crossref] [PubMed]
  4. P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24(3), 329–334 (1998).
    [Crossref]
  5. J. Chen, S. M. Morris, T. D. Wilkinson, J. P. Freeman, and H. J. Coles, “High speed liquid crystal over silicon display based on the flexoelectro-optic effect,” Opt. Express 17(9), 7130–7137 (2009).
    [Crossref] [PubMed]
  6. J. A. J. Fells, X. Wang, S. J. Elston, C. Welch, G. H. Mehl, M. J. Booth, S. M. Morris, M. J. Booth, and S. M. Morris, “Flexoelectro-optic liquid crystal analog phase-only modulator with a 2π range and 1 kHz switching,” Opt. Lett. 43(18), 4362–4365 (2018).
    [Crossref] [PubMed]
  7. P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76(12), 7778–7783 (1994).
    [Crossref]
  8. P. Rudquist, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect in a cholesteric liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4735–4743 (1994).
    [Crossref] [PubMed]
  9. P. Rudquist, T. Carlsson, L. Komitov, and S. T. Lagerwall, “The flexoelectro-optic effect in cholesterics,” Liq. Cryst. 22(4), 445–449 (1997).
    [Crossref]
  10. H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
    [Crossref]
  11. S. D. Lee, J. S. Patel, and R. B. Meyer, “Effect of flexoelectric coupling on helix distortions in cholesteric liquid crystals,” J. Appl. Phys. 67(3), 1293–1297 (1990).
    [Crossref]
  12. D. R. Corbett and S. J. Elston, “Modeling the helical flexoelectro-optic effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(4), 041706 (2011).
    [Crossref] [PubMed]
  13. J. E. Stockley, G. D. Sharp, S. A. Serati, and K. M. Johnson, “Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals,” Opt. Lett. 20(23), 2441 (1995).
    [Crossref] [PubMed]
  14. K. L. Atkinson, S. M. Morris, F. Castles, M. M. Qasim, D. J. Gardiner, and H. J. Coles, “Flexoelectric and elastic coefficients of odd and even homologous bimesogens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 012701 (2012).
    [Crossref] [PubMed]
  15. K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
    [Crossref] [PubMed]
  16. A. Varanytsia and L.-C. Chien, “Bimesogen-enhanced flexoelectro-optic behavior of polymer stabilized cholesteric liquid crystal,” J. Appl. Phys. 119(1), 014502 (2016).
    [Crossref]
  17. A. Varanytsia and L.-C. Chien, “Giant Flexoelectro-optic Effect with Liquid Crystal Dimer CB7CB,” Sci. Rep. 7(1), 41333 (2017).
    [Crossref] [PubMed]
  18. I. Wood and A. Glazer, “Ferroelastic phase transition in BiVO4 I. Birefringence measurements using the rotating-analyser method,” J. Appl. Cryst. 13(3), 217–223 (1980).
    [Crossref]
  19. G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
    [Crossref] [PubMed]
  20. J. A. J. Fells, S. J. Elston, M. J. Booth, and S. M. Morris, “Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices,” Opt. Express 26(5), 6126–6142 (2018).
    [Crossref] [PubMed]
  21. J. J. Sandford O’Neill, J. A. J. Fells, C. Welch, G. Mehl, W. C. Yip, T. D. Wilkinson, M. J. Booth, S. J. Elston, and S. M. Morris, “Robust measurement of flexoelectro-optic switching with different surface alignments,” J. Appl. Phys. 125(9), 093104 (2019).
    [Crossref]
  22. W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 50 (1991).
    [Crossref]
  23. B. J. Broughton, M. J. Clarke, S. M. Morris, A. E. Blatch, and H. J. Coles, “Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching,” J. Appl. Phys. 99(2), 023511 (2006).
    [Crossref]
  24. I. Dierking, P. Rudquist, L. Komitov, S. T. Lagerwall, and B. Stebler, “Investigations on the flexoelectric and electroclinic effect in a cholesteric phase with twist inversion,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 304(1), 389–402 (1997).
    [Crossref]
  25. F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
    [Crossref] [PubMed]
  26. P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, (Clarendon Press, 1995).

2019 (1)

J. J. Sandford O’Neill, J. A. J. Fells, C. Welch, G. Mehl, W. C. Yip, T. D. Wilkinson, M. J. Booth, S. J. Elston, and S. M. Morris, “Robust measurement of flexoelectro-optic switching with different surface alignments,” J. Appl. Phys. 125(9), 093104 (2019).
[Crossref]

2018 (2)

2017 (2)

A. Varanytsia and L.-C. Chien, “Giant Flexoelectro-optic Effect with Liquid Crystal Dimer CB7CB,” Sci. Rep. 7(1), 41333 (2017).
[Crossref] [PubMed]

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
[Crossref] [PubMed]

2016 (1)

A. Varanytsia and L.-C. Chien, “Bimesogen-enhanced flexoelectro-optic behavior of polymer stabilized cholesteric liquid crystal,” J. Appl. Phys. 119(1), 014502 (2016).
[Crossref]

2012 (2)

K. L. Atkinson, S. M. Morris, F. Castles, M. M. Qasim, D. J. Gardiner, and H. J. Coles, “Flexoelectric and elastic coefficients of odd and even homologous bimesogens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 012701 (2012).
[Crossref] [PubMed]

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

2011 (1)

D. R. Corbett and S. J. Elston, “Modeling the helical flexoelectro-optic effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(4), 041706 (2011).
[Crossref] [PubMed]

2009 (2)

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

J. Chen, S. M. Morris, T. D. Wilkinson, J. P. Freeman, and H. J. Coles, “High speed liquid crystal over silicon display based on the flexoelectro-optic effect,” Opt. Express 17(9), 7130–7137 (2009).
[Crossref] [PubMed]

2007 (1)

S. M. Morris, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Structure-flexoelastic properties of bimesogenic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041701 (2007).
[Crossref] [PubMed]

2006 (2)

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

B. J. Broughton, M. J. Clarke, S. M. Morris, A. E. Blatch, and H. J. Coles, “Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching,” J. Appl. Phys. 99(2), 023511 (2006).
[Crossref]

1998 (1)

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24(3), 329–334 (1998).
[Crossref]

1997 (2)

P. Rudquist, T. Carlsson, L. Komitov, and S. T. Lagerwall, “The flexoelectro-optic effect in cholesterics,” Liq. Cryst. 22(4), 445–449 (1997).
[Crossref]

I. Dierking, P. Rudquist, L. Komitov, S. T. Lagerwall, and B. Stebler, “Investigations on the flexoelectric and electroclinic effect in a cholesteric phase with twist inversion,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 304(1), 389–402 (1997).
[Crossref]

1995 (1)

1994 (2)

P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76(12), 7778–7783 (1994).
[Crossref]

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect in a cholesteric liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4735–4743 (1994).
[Crossref] [PubMed]

1991 (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 50 (1991).
[Crossref]

1990 (1)

S. D. Lee, J. S. Patel, and R. B. Meyer, “Effect of flexoelectric coupling on helix distortions in cholesteric liquid crystals,” J. Appl. Phys. 67(3), 1293–1297 (1990).
[Crossref]

1989 (1)

J. S. Patel and S. Lee, “Fast linear electro‐optic effect based on cholesteric liquid crystals,” J. Appl. Phys. 66(4), 1879–1881 (1989).
[Crossref]

1987 (1)

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

1980 (1)

I. Wood and A. Glazer, “Ferroelastic phase transition in BiVO4 I. Birefringence measurements using the rotating-analyser method,” J. Appl. Cryst. 13(3), 217–223 (1980).
[Crossref]

Atkinson, K. L.

K. L. Atkinson, S. M. Morris, F. Castles, M. M. Qasim, D. J. Gardiner, and H. J. Coles, “Flexoelectric and elastic coefficients of odd and even homologous bimesogens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 012701 (2012).
[Crossref] [PubMed]

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

Babakhanova, G.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
[Crossref] [PubMed]

Blatch, A. E.

S. M. Morris, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Structure-flexoelastic properties of bimesogenic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041701 (2007).
[Crossref] [PubMed]

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

B. J. Broughton, M. J. Clarke, S. M. Morris, A. E. Blatch, and H. J. Coles, “Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching,” J. Appl. Phys. 99(2), 023511 (2006).
[Crossref]

Booth, M. J.

Broughton, B. J.

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

B. J. Broughton, M. J. Clarke, S. M. Morris, A. E. Blatch, and H. J. Coles, “Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching,” J. Appl. Phys. 99(2), 023511 (2006).
[Crossref]

Buivydas, M.

P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76(12), 7778–7783 (1994).
[Crossref]

Carlsson, T.

P. Rudquist, T. Carlsson, L. Komitov, and S. T. Lagerwall, “The flexoelectro-optic effect in cholesterics,” Liq. Cryst. 22(4), 445–449 (1997).
[Crossref]

Castles, F.

K. L. Atkinson, S. M. Morris, F. Castles, M. M. Qasim, D. J. Gardiner, and H. J. Coles, “Flexoelectric and elastic coefficients of odd and even homologous bimesogens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 012701 (2012).
[Crossref] [PubMed]

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

Chen, J.

Chien, L.-C.

A. Varanytsia and L.-C. Chien, “Giant Flexoelectro-optic Effect with Liquid Crystal Dimer CB7CB,” Sci. Rep. 7(1), 41333 (2017).
[Crossref] [PubMed]

A. Varanytsia and L.-C. Chien, “Bimesogen-enhanced flexoelectro-optic behavior of polymer stabilized cholesteric liquid crystal,” J. Appl. Phys. 119(1), 014502 (2016).
[Crossref]

Choi, S. S.

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

Clarke, M. J.

S. M. Morris, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Structure-flexoelastic properties of bimesogenic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041701 (2007).
[Crossref] [PubMed]

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

B. J. Broughton, M. J. Clarke, S. M. Morris, A. E. Blatch, and H. J. Coles, “Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching,” J. Appl. Phys. 99(2), 023511 (2006).
[Crossref]

Coles, H. J.

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

K. L. Atkinson, S. M. Morris, F. Castles, M. M. Qasim, D. J. Gardiner, and H. J. Coles, “Flexoelectric and elastic coefficients of odd and even homologous bimesogens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 012701 (2012).
[Crossref] [PubMed]

J. Chen, S. M. Morris, T. D. Wilkinson, J. P. Freeman, and H. J. Coles, “High speed liquid crystal over silicon display based on the flexoelectro-optic effect,” Opt. Express 17(9), 7130–7137 (2009).
[Crossref] [PubMed]

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

S. M. Morris, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Structure-flexoelastic properties of bimesogenic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041701 (2007).
[Crossref] [PubMed]

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

B. J. Broughton, M. J. Clarke, S. M. Morris, A. E. Blatch, and H. J. Coles, “Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching,” J. Appl. Phys. 99(2), 023511 (2006).
[Crossref]

Corbett, D. R.

D. R. Corbett and S. J. Elston, “Modeling the helical flexoelectro-optic effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(4), 041706 (2011).
[Crossref] [PubMed]

Dierking, I.

I. Dierking, P. Rudquist, L. Komitov, S. T. Lagerwall, and B. Stebler, “Investigations on the flexoelectric and electroclinic effect in a cholesteric phase with twist inversion,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 304(1), 389–402 (1997).
[Crossref]

Elston, S. J.

J. J. Sandford O’Neill, J. A. J. Fells, C. Welch, G. Mehl, W. C. Yip, T. D. Wilkinson, M. J. Booth, S. J. Elston, and S. M. Morris, “Robust measurement of flexoelectro-optic switching with different surface alignments,” J. Appl. Phys. 125(9), 093104 (2019).
[Crossref]

J. A. J. Fells, S. J. Elston, M. J. Booth, and S. M. Morris, “Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices,” Opt. Express 26(5), 6126–6142 (2018).
[Crossref] [PubMed]

J. A. J. Fells, X. Wang, S. J. Elston, C. Welch, G. H. Mehl, M. J. Booth, S. M. Morris, M. J. Booth, and S. M. Morris, “Flexoelectro-optic liquid crystal analog phase-only modulator with a 2π range and 1 kHz switching,” Opt. Lett. 43(18), 4362–4365 (2018).
[Crossref] [PubMed]

D. R. Corbett and S. J. Elston, “Modeling the helical flexoelectro-optic effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(4), 041706 (2011).
[Crossref] [PubMed]

Fells, J. A. J.

Freeman, J. P.

Gardiner, D. J.

K. L. Atkinson, S. M. Morris, F. Castles, M. M. Qasim, D. J. Gardiner, and H. J. Coles, “Flexoelectric and elastic coefficients of odd and even homologous bimesogens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 012701 (2012).
[Crossref] [PubMed]

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

Gibbons, W. M.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 50 (1991).
[Crossref]

Glazer, A.

I. Wood and A. Glazer, “Ferroelastic phase transition in BiVO4 I. Birefringence measurements using the rotating-analyser method,” J. Appl. Cryst. 13(3), 217–223 (1980).
[Crossref]

Hands, P. J. W.

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

Johnson, K. M.

Kim, W. S.

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

Komitov, L.

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24(3), 329–334 (1998).
[Crossref]

P. Rudquist, T. Carlsson, L. Komitov, and S. T. Lagerwall, “The flexoelectro-optic effect in cholesterics,” Liq. Cryst. 22(4), 445–449 (1997).
[Crossref]

I. Dierking, P. Rudquist, L. Komitov, S. T. Lagerwall, and B. Stebler, “Investigations on the flexoelectric and electroclinic effect in a cholesteric phase with twist inversion,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 304(1), 389–402 (1997).
[Crossref]

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect in a cholesteric liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4735–4743 (1994).
[Crossref] [PubMed]

P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76(12), 7778–7783 (1994).
[Crossref]

Lagerwall, S. T.

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24(3), 329–334 (1998).
[Crossref]

P. Rudquist, T. Carlsson, L. Komitov, and S. T. Lagerwall, “The flexoelectro-optic effect in cholesterics,” Liq. Cryst. 22(4), 445–449 (1997).
[Crossref]

I. Dierking, P. Rudquist, L. Komitov, S. T. Lagerwall, and B. Stebler, “Investigations on the flexoelectric and electroclinic effect in a cholesteric phase with twist inversion,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 304(1), 389–402 (1997).
[Crossref]

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect in a cholesteric liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4735–4743 (1994).
[Crossref] [PubMed]

P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76(12), 7778–7783 (1994).
[Crossref]

Lavrentovich, O. D.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
[Crossref] [PubMed]

Lee, S.

J. S. Patel and S. Lee, “Fast linear electro‐optic effect based on cholesteric liquid crystals,” J. Appl. Phys. 66(4), 1879–1881 (1989).
[Crossref]

Lee, S. D.

S. D. Lee, J. S. Patel, and R. B. Meyer, “Effect of flexoelectric coupling on helix distortions in cholesteric liquid crystals,” J. Appl. Phys. 67(3), 1293–1297 (1990).
[Crossref]

Mehl, G.

J. J. Sandford O’Neill, J. A. J. Fells, C. Welch, G. Mehl, W. C. Yip, T. D. Wilkinson, M. J. Booth, S. J. Elston, and S. M. Morris, “Robust measurement of flexoelectro-optic switching with different surface alignments,” J. Appl. Phys. 125(9), 093104 (2019).
[Crossref]

Mehl, G. H.

Meyer, R. B.

S. D. Lee, J. S. Patel, and R. B. Meyer, “Effect of flexoelectric coupling on helix distortions in cholesteric liquid crystals,” J. Appl. Phys. 67(3), 1293–1297 (1990).
[Crossref]

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Morris, S. M.

J. J. Sandford O’Neill, J. A. J. Fells, C. Welch, G. Mehl, W. C. Yip, T. D. Wilkinson, M. J. Booth, S. J. Elston, and S. M. Morris, “Robust measurement of flexoelectro-optic switching with different surface alignments,” J. Appl. Phys. 125(9), 093104 (2019).
[Crossref]

J. A. J. Fells, S. J. Elston, M. J. Booth, and S. M. Morris, “Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices,” Opt. Express 26(5), 6126–6142 (2018).
[Crossref] [PubMed]

J. A. J. Fells, X. Wang, S. J. Elston, C. Welch, G. H. Mehl, M. J. Booth, S. M. Morris, M. J. Booth, and S. M. Morris, “Flexoelectro-optic liquid crystal analog phase-only modulator with a 2π range and 1 kHz switching,” Opt. Lett. 43(18), 4362–4365 (2018).
[Crossref] [PubMed]

J. A. J. Fells, X. Wang, S. J. Elston, C. Welch, G. H. Mehl, M. J. Booth, S. M. Morris, M. J. Booth, and S. M. Morris, “Flexoelectro-optic liquid crystal analog phase-only modulator with a 2π range and 1 kHz switching,” Opt. Lett. 43(18), 4362–4365 (2018).
[Crossref] [PubMed]

K. L. Atkinson, S. M. Morris, F. Castles, M. M. Qasim, D. J. Gardiner, and H. J. Coles, “Flexoelectric and elastic coefficients of odd and even homologous bimesogens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 012701 (2012).
[Crossref] [PubMed]

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

J. Chen, S. M. Morris, T. D. Wilkinson, J. P. Freeman, and H. J. Coles, “High speed liquid crystal over silicon display based on the flexoelectro-optic effect,” Opt. Express 17(9), 7130–7137 (2009).
[Crossref] [PubMed]

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

S. M. Morris, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Structure-flexoelastic properties of bimesogenic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041701 (2007).
[Crossref] [PubMed]

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

B. J. Broughton, M. J. Clarke, S. M. Morris, A. E. Blatch, and H. J. Coles, “Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching,” J. Appl. Phys. 99(2), 023511 (2006).
[Crossref]

Nastishin, Y. A.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
[Crossref] [PubMed]

Paladugu, S.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
[Crossref] [PubMed]

Parsouzi, Z.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
[Crossref] [PubMed]

Patel, J. S.

S. D. Lee, J. S. Patel, and R. B. Meyer, “Effect of flexoelectric coupling on helix distortions in cholesteric liquid crystals,” J. Appl. Phys. 67(3), 1293–1297 (1990).
[Crossref]

J. S. Patel and S. Lee, “Fast linear electro‐optic effect based on cholesteric liquid crystals,” J. Appl. Phys. 66(4), 1879–1881 (1989).
[Crossref]

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Qasim, M. M.

K. L. Atkinson, S. M. Morris, F. Castles, M. M. Qasim, D. J. Gardiner, and H. J. Coles, “Flexoelectric and elastic coefficients of odd and even homologous bimesogens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 012701 (2012).
[Crossref] [PubMed]

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

Rudquist, P.

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24(3), 329–334 (1998).
[Crossref]

P. Rudquist, T. Carlsson, L. Komitov, and S. T. Lagerwall, “The flexoelectro-optic effect in cholesterics,” Liq. Cryst. 22(4), 445–449 (1997).
[Crossref]

I. Dierking, P. Rudquist, L. Komitov, S. T. Lagerwall, and B. Stebler, “Investigations on the flexoelectric and electroclinic effect in a cholesteric phase with twist inversion,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 304(1), 389–402 (1997).
[Crossref]

P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76(12), 7778–7783 (1994).
[Crossref]

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect in a cholesteric liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4735–4743 (1994).
[Crossref] [PubMed]

Sandford O’Neill, J. J.

J. J. Sandford O’Neill, J. A. J. Fells, C. Welch, G. Mehl, W. C. Yip, T. D. Wilkinson, M. J. Booth, S. J. Elston, and S. M. Morris, “Robust measurement of flexoelectro-optic switching with different surface alignments,” J. Appl. Phys. 125(9), 093104 (2019).
[Crossref]

Serati, S. A.

Shannon, P. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 50 (1991).
[Crossref]

Sharp, G. D.

Shiyanovskii, S. V.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
[Crossref] [PubMed]

Sprunt, S.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
[Crossref] [PubMed]

Stebler, B.

I. Dierking, P. Rudquist, L. Komitov, S. T. Lagerwall, and B. Stebler, “Investigations on the flexoelectric and electroclinic effect in a cholesteric phase with twist inversion,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 304(1), 389–402 (1997).
[Crossref]

Stockley, J. E.

Sun, S.-T.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 50 (1991).
[Crossref]

Swetlin, B. J.

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 50 (1991).
[Crossref]

Varanytsia, A.

A. Varanytsia and L.-C. Chien, “Giant Flexoelectro-optic Effect with Liquid Crystal Dimer CB7CB,” Sci. Rep. 7(1), 41333 (2017).
[Crossref] [PubMed]

A. Varanytsia and L.-C. Chien, “Bimesogen-enhanced flexoelectro-optic behavior of polymer stabilized cholesteric liquid crystal,” J. Appl. Phys. 119(1), 014502 (2016).
[Crossref]

Wang, H.

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
[Crossref] [PubMed]

Wang, X.

Welch, C.

J. J. Sandford O’Neill, J. A. J. Fells, C. Welch, G. Mehl, W. C. Yip, T. D. Wilkinson, M. J. Booth, S. J. Elston, and S. M. Morris, “Robust measurement of flexoelectro-optic switching with different surface alignments,” J. Appl. Phys. 125(9), 093104 (2019).
[Crossref]

J. A. J. Fells, X. Wang, S. J. Elston, C. Welch, G. H. Mehl, M. J. Booth, S. M. Morris, M. J. Booth, and S. M. Morris, “Flexoelectro-optic liquid crystal analog phase-only modulator with a 2π range and 1 kHz switching,” Opt. Lett. 43(18), 4362–4365 (2018).
[Crossref] [PubMed]

Wilkinson, T. D.

J. J. Sandford O’Neill, J. A. J. Fells, C. Welch, G. Mehl, W. C. Yip, T. D. Wilkinson, M. J. Booth, S. J. Elston, and S. M. Morris, “Robust measurement of flexoelectro-optic switching with different surface alignments,” J. Appl. Phys. 125(9), 093104 (2019).
[Crossref]

J. Chen, S. M. Morris, T. D. Wilkinson, J. P. Freeman, and H. J. Coles, “High speed liquid crystal over silicon display based on the flexoelectro-optic effect,” Opt. Express 17(9), 7130–7137 (2009).
[Crossref] [PubMed]

Wood, I.

I. Wood and A. Glazer, “Ferroelastic phase transition in BiVO4 I. Birefringence measurements using the rotating-analyser method,” J. Appl. Cryst. 13(3), 217–223 (1980).
[Crossref]

Yip, W. C.

J. J. Sandford O’Neill, J. A. J. Fells, C. Welch, G. Mehl, W. C. Yip, T. D. Wilkinson, M. J. Booth, S. J. Elston, and S. M. Morris, “Robust measurement of flexoelectro-optic switching with different surface alignments,” J. Appl. Phys. 125(9), 093104 (2019).
[Crossref]

J. Appl. Cryst. (1)

I. Wood and A. Glazer, “Ferroelastic phase transition in BiVO4 I. Birefringence measurements using the rotating-analyser method,” J. Appl. Cryst. 13(3), 217–223 (1980).
[Crossref]

J. Appl. Phys. (7)

A. Varanytsia and L.-C. Chien, “Bimesogen-enhanced flexoelectro-optic behavior of polymer stabilized cholesteric liquid crystal,” J. Appl. Phys. 119(1), 014502 (2016).
[Crossref]

H. J. Coles, M. J. Clarke, S. M. Morris, B. J. Broughton, and A. E. Blatch, “Strong flexoelectric behavior in bimesogenic liquid crystals,” J. Appl. Phys. 99(3), 034104 (2006).
[Crossref]

S. D. Lee, J. S. Patel, and R. B. Meyer, “Effect of flexoelectric coupling on helix distortions in cholesteric liquid crystals,” J. Appl. Phys. 67(3), 1293–1297 (1990).
[Crossref]

J. S. Patel and S. Lee, “Fast linear electro‐optic effect based on cholesteric liquid crystals,” J. Appl. Phys. 66(4), 1879–1881 (1989).
[Crossref]

P. Rudquist, M. Buivydas, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect based on flexoelectricity in a cholesteric with sign change of dielectric anisotropy,” J. Appl. Phys. 76(12), 7778–7783 (1994).
[Crossref]

J. J. Sandford O’Neill, J. A. J. Fells, C. Welch, G. Mehl, W. C. Yip, T. D. Wilkinson, M. J. Booth, S. J. Elston, and S. M. Morris, “Robust measurement of flexoelectro-optic switching with different surface alignments,” J. Appl. Phys. 125(9), 093104 (2019).
[Crossref]

B. J. Broughton, M. J. Clarke, S. M. Morris, A. E. Blatch, and H. J. Coles, “Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching,” J. Appl. Phys. 99(2), 023511 (2006).
[Crossref]

Liq. Cryst. (2)

P. Rudquist, T. Carlsson, L. Komitov, and S. T. Lagerwall, “The flexoelectro-optic effect in cholesterics,” Liq. Cryst. 22(4), 445–449 (1997).
[Crossref]

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Volume-stabilized ULH structure for the flexoelectro-optic effect and the phase-shift effect in cholesterics,” Liq. Cryst. 24(3), 329–334 (1998).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

I. Dierking, P. Rudquist, L. Komitov, S. T. Lagerwall, and B. Stebler, “Investigations on the flexoelectric and electroclinic effect in a cholesteric phase with twist inversion,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 304(1), 389–402 (1997).
[Crossref]

Nature (1)

W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351(6321), 50 (1991).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

K. L. Atkinson, S. M. Morris, M. M. Qasim, F. Castles, D. J. Gardiner, P. J. W. Hands, S. S. Choi, W. S. Kim, and H. J. Coles, “Increasing the flexoelastic ratio of liquid crystals using highly fluorinated ester-linked bimesogens,” Phys. Chem. Chem. Phys. 14(47), 16377–16385 (2012).
[Crossref] [PubMed]

Phys. Rev. E (1)

G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, and O. D. Lavrentovich, “Elastic and viscous properties of the nematic dimer CB7CB,” Phys. Rev. E 96(6), 062704 (2017).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

K. L. Atkinson, S. M. Morris, F. Castles, M. M. Qasim, D. J. Gardiner, and H. J. Coles, “Flexoelectric and elastic coefficients of odd and even homologous bimesogens,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1), 012701 (2012).
[Crossref] [PubMed]

D. R. Corbett and S. J. Elston, “Modeling the helical flexoelectro-optic effect,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(4), 041706 (2011).
[Crossref] [PubMed]

S. M. Morris, M. J. Clarke, A. E. Blatch, and H. J. Coles, “Structure-flexoelastic properties of bimesogenic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 041701 (2007).
[Crossref] [PubMed]

F. Castles, S. M. Morris, and H. J. Coles, “Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(3), 031709 (2009).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

P. Rudquist, L. Komitov, and S. T. Lagerwall, “Linear electro-optic effect in a cholesteric liquid crystal,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4735–4743 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Varanytsia and L.-C. Chien, “Giant Flexoelectro-optic Effect with Liquid Crystal Dimer CB7CB,” Sci. Rep. 7(1), 41333 (2017).
[Crossref] [PubMed]

Other (1)

P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, (Clarendon Press, 1995).

Supplementary Material (1)

NameDescription
» Data File 1       Underlying data for figure 2 and subsequent figures. Experimentally measured tilt-angle, retardance and transmissivity over time for i) a poorly aligned and ii) a well aligned chiral nematic, flexoelectro-optic liquid crystal device.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Microscope images of the liquid crystal device between crossed polarizers under a 1 kHz square-wave electric field, (a) with ‘good’ alignment, (b) with ‘poor’ alignment. (i)-(iii) with applied electric field, E = ± 0.1 Vµm−1 and orientations of 0°, 45° and 22.5° to the transmission axis of one the polarizers, respectively. (iv) with applied electric field E = ± 4.3 Vµm−1 and an orientation of 22.5° to the transmission axis of one the polarizers.
Fig. 2
Fig. 2 Time-resolved measurements of the liquid crystal device consisting of the bimesogen, CBC7CB, doped with 3 wt% chiral dopant (R5011) in a 4.7 µm-thick glass cell. (a) input electric field; (b) tilt angle of the optic axis for ‘good’ alignment; (c) tilt angle of the optic axis for ‘poor’ alignment; (d) retardance for ‘good’ alignment; (e) retardance for ‘poor’ alignment. The underlying data is provided in Data File 1.
Fig. 3
Fig. 3 Time-resolved measurements of the CBC7CB + 3wt% R5011 liquid crystal device, driven by a pattern consisting of the sequence E = {-5.3, 5.3, -x, x, -x, x, -x, -x, x, x, -x, x, -x, -x, -x, x, x, x, -x, x, −5.3, 5.3} Vµm−1, where x is an electric field amplitude that is different for each sequence. Ten sequences with equally-spaced values of x between 0 and 5.3 Vµm−1 are overlaid. (a) for the device under ‘good’ alignment; (b) for the device under ‘poor’ alignment. The arrows indicate points where the angle of optic-axis is different from subsequent pulses of the same electric field magnitude, as a result of the higher magnitude preceding pulse.
Fig. 4
Fig. 4 Device parameters determined from the time-resolved measurements on the CBC7CB + 3wt% R5011 liquid crystal device. (a) The angle of the optic-axis as a function of the applied electric field separated into two components: the flexoelectro-optic half-angle and the mean angle of the optic axis. (─ blue) measured half-angle under ‘good’ alignment; ( × red) measured half-angle under ‘poor’ alignment; (─ ─ blue) mean angle of the optic-axis under ‘good’ alignment; ( + red) mean angle of optic-axis under ‘poor’ alignment; (···· black) theoretical prediction of tilt-angle from Eq. (2). (b) The rise time and retardance change. (─ blue) rise time under ‘good’ alignment; ( × red) rise time under ‘poor’ alignment; (─ ─ blue) retardance change under ‘good’ alignment; ( + red) retardance change under ‘poor’ alignment.
Fig. 5
Fig. 5 The flexoelectro-optic tilt-angle over time for the CBC7CB + 3wt% R5011 liquid crystal device when subjected to a pseudo-random waveform pattern. The pattern consists of a repeated sequence {-x, -x, x, x}, where x is pseudo-random. (a) for the device under ‘good’ alignment; (b) for the device under ‘poor’ alignment. (─) Measured angle of the optic axis; (- -) Predicted angle of optic axis, taking into account the asymmetry in the tilt-angle versus electric field. Errors between the measured angle and the predicted angle (taken at the end of each pulse) greater than 3° are labelled below the relevant pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tanφ= ( e 1 e 3 ) ( K 11 + K 33 ) p 2π E
tanφ= ( e 1 e 3 )p 4π K 22 E ( K 11 2 K 22 + K 33 )sinφ 2 K 22
E c =± π 2 p ( K 22 ε 0 Δε )

Metrics