Abstract

A fiber-based snapshot imaging spectrometer was developed with a maximum of 31853 (~188 x 170) spatial sampling and 61 spectral channels in the 450nm-750nm range. A compact, custom-fabricated fiber bundle was used to sample the object image at the input and create void spaces between rows at the output for dispersion. The bundle was built using multicore 6x6 fiber block ribbons. To avoid overlap between the cores in the direction of dispersion, we selected a subset of cores using two alternative approaches; a lenslet array and a photomask. To calibrate the >30000 spatial samples of the system, a rapid spatial calibration method was developed based on phase-shifting interferometry (PSI). System crosstalk and spectral resolution were also characterized. Preliminary hyperspectral imaging results of the Rice University campus landscape, obtained with the spectrometer, are presented to demonstrate the system’s spectral imaging capability for distant scenes. The spectrum of different plant species with different health conditions, obtained with the spectrometer, was in accordance with reference instrument measurements. We also imaged Houston traffic to demonstrate the system’s snapshot hyperspectral imaging capability. Potential applications of the system include terrestrial monitoring, land use, air pollution, water resources, and lightning spectroscopy. The fiber-based system design potentially allows tuning between spatial and spectral sampling to meet specific imaging requirements.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy

Jason G. Dwight and Tomasz S. Tkaczyk
Biomed. Opt. Express 8(3) 1950-1964 (2017)

Snapshot fiber spectral imaging using speckle correlations and compressive sensing

Rebecca French, Sylvain Gigan, and Otto l. Muskens
Opt. Express 26(24) 32302-32316 (2018)

Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy

Liang Gao, Robert T. Kester, Nathan Hagen, and Tomasz S. Tkaczyk
Opt. Express 18(14) 14330-14344 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
    [Crossref] [PubMed]
  2. N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  3. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
    [Crossref] [PubMed]
  4. L. Gao and R. T. Smith, “Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition,” J. Biophotonics 8(6), 441–456 (2015).
    [Crossref] [PubMed]
  5. P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39(13), 2210–2220 (2000).
    [Crossref] [PubMed]
  6. P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” PLoS One 8(5), e64320 (2013).
    [Crossref] [PubMed]
  7. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
    [Crossref] [PubMed]
  8. J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,” Biomed. Opt. Express 8(3), 1950–1964 (2017).
    [Crossref] [PubMed]
  9. Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
    [Crossref] [PubMed]
  10. M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).
  11. T. Mu, F. Han, D. Bao, C. Zhang, and R. Liang, “Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter,” Opt. Lett. 44(5), 1281–1284 (2019).
    [Crossref] [PubMed]
  12. D. W. Fletcher-Holmes and A. R. Harvey, “Real-time imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005).
    [Crossref]
  13. N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
    [Crossref]
  14. J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system (HyperVideo),” Proc. SPIE 8390, 83900T (2012).
    [Crossref]
  15. P. S. Hsu, D. Lauriola, N. Jiang, J. D. Miller, J. R. Gord, and S. Roy, “Fiber-coupled, UV-SWIR hyperspectral imaging sensor for combustion diagnostics,” Appl. Opt. 56(21), 6029–6034 (2017).
    [Crossref] [PubMed]
  16. B. Khoobehi, A. Khoobehi, and P. Fournier, “Snapshot hyperspectral imaging to measure oxygen saturation in the retina using fiber bundle and multi-slit spectrometer,” Proc. SPIE 8229, 82291E (2012).
    [Crossref]
  17. B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
    [Crossref] [PubMed]
  18. N. Bedard and T. S. Tkaczyk, “Snapshot spectrally encoded fluorescence imaging through a fiber bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
    [Crossref] [PubMed]
  19. H. T. Lim and V. M. Murukeshan, “A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications,” Sci. Rep. 6(1), 24044 (2016).
    [Crossref] [PubMed]
  20. A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta Agraria Debreceniensis 150, 221–225 (2018).
    [Crossref]
  21. C. Carrizo, A. Gilerson, R. Foster, A. Golovin, and A. El-Habashi, “Characterization of radiance from the ocean surface by hyperspectral imaging,” Opt. Express 27(2), 1750–1768 (2019).
    [Crossref] [PubMed]
  22. R. M. Suggs, W. J. Cooke, R. J. Suggs, W. R. Swift, and N. Hollon, “The NASA lunar impact monitoring program,” in Advances in Meteoroid and Meteor Science (Springer, 2007), pp. 293–298.
  23. S. Ackelson, T. Bell, H. Dierssen, J. Goodman, R. Green, L. Guild, E. Hochberg, V. V. Klemas, S. Lavender, C. Lee, P. Minnett, F. Muller-Karger, J. Ortiz, S. Palacios, D. R. Thompson, K. Turpie, and R. Zimmerman, Global Observations of Coastal and Inland Aquatic Habitats, (NASA, 2016), pp. 1−18.
  24. G. Dobler, M. Ghandehari, S. E. Koonin, and M. S. Sharma, “A hyperspectral survey of New York City lighting technology,” Sensors (Basel) 16(12), 2047 (2016).
    [Crossref] [PubMed]
  25. C. Weidman, A. Boye, and L. Crowell, “Lightning spectra in the 850‐to 1400‐nm near‐infrared region,” J. Geophys. Res. D Atmospheres 94, 13249–13257 (1989).
    [Crossref]
  26. R. Y. Tsien, “Fluorescent probes of cell signaling,” Annu. Rev. Neurosci. 12(1), 227–253 (1989).
    [Crossref] [PubMed]
  27. D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
    [Crossref] [PubMed]
  28. M. Descour and E. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34(22), 4817–4826 (1995).
    [Crossref] [PubMed]
  29. N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
    [Crossref] [PubMed]
  30. D. Jackson, T. Bartindale, and P. Olivier, “FiberBoard: compact multi-touch display using channeled light,” in Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ACM, 2009) pp. 25–28.
    [Crossref]
  31. D. Malacara, Optical shop testing (John Wiley & Sons, 2007), Chap. 14.
  32. R. Leach, Optical measurement of surface topography (Springer, 2011)
  33. P. R. Fernández, J. L. Lázaro Galilea, A. Gardel Vicente, I. Bravo Muñoz, A. E. Cano García, and C. Luna Vázquez, “Improving the calibration of image sensors based on IOFBs, using Differential Gray-Code Space Encoding,” Sensors (Basel) 12(7), 9006–9023 (2012).
    [Crossref] [PubMed]
  34. P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2(1), 13–23 (1966).
    [Crossref]
  35. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987).
    [Crossref] [PubMed]
  36. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22(21), 3421–3432 (1983).
    [Crossref] [PubMed]
  37. J. C. Wyant and K. N. Prettyjohns, U.S. Patent No. 4,639,139. Washington, DC: U.S. Patent and Trademark Office (1987).
  38. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13(11), 2693–2703 (1974).
    [Crossref] [PubMed]
  39. K. G. Larkin and B. F. Oreb, “Design and assessment of symmetrical phase-shifting algorithms,” J. Opt. Soc. Am. A 9(10), 1740–1748 (1992).
    [Crossref]
  40. H. Guo, H. He, and M. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43(14), 2906–2914 (2004).
    [Crossref] [PubMed]
  41. D. C. Ghiglia and M. D. Pritt, “Two-dimensional phase unwrapping: theory, algorithms, and software,” (Wiley, 1998).
  42. R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981).
    [Crossref]
  43. D. Bruton [Accessed March 27, 2019];Color Science. http://www.midnightkite.com/color.html .
  44. A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125, 4833–4840 (2012).
    [Crossref] [PubMed]
  45. J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral image mapping spectrometry for retinal oximetry measurements in four diseased eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
    [Crossref] [PubMed]
  46. B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001).
    [Crossref] [PubMed]
  47. Y. Murakami, K. Nakazaki, and M. Yamaguchi, “Hybrid-resolution spectral video system using low-resolution spectral sensor,” Opt. Express 22(17), 20311–20325 (2014).
    [Crossref] [PubMed]
  48. T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
    [Crossref] [PubMed]

2019 (2)

2018 (2)

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta Agraria Debreceniensis 150, 221–225 (2018).
[Crossref]

2017 (4)

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,” Biomed. Opt. Express 8(3), 1950–1964 (2017).
[Crossref] [PubMed]

P. S. Hsu, D. Lauriola, N. Jiang, J. D. Miller, J. R. Gord, and S. Roy, “Fiber-coupled, UV-SWIR hyperspectral imaging sensor for combustion diagnostics,” Appl. Opt. 56(21), 6029–6034 (2017).
[Crossref] [PubMed]

2016 (4)

H. T. Lim and V. M. Murukeshan, “A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications,” Sci. Rep. 6(1), 24044 (2016).
[Crossref] [PubMed]

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral image mapping spectrometry for retinal oximetry measurements in four diseased eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref] [PubMed]

G. Dobler, M. Ghandehari, S. E. Koonin, and M. S. Sharma, “A hyperspectral survey of New York City lighting technology,” Sensors (Basel) 16(12), 2047 (2016).
[Crossref] [PubMed]

2015 (1)

L. Gao and R. T. Smith, “Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition,” J. Biophotonics 8(6), 441–456 (2015).
[Crossref] [PubMed]

2014 (3)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Y. Murakami, K. Nakazaki, and M. Yamaguchi, “Hybrid-resolution spectral video system using low-resolution spectral sensor,” Opt. Express 22(17), 20311–20325 (2014).
[Crossref] [PubMed]

2013 (2)

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

2012 (6)

N. Bedard and T. S. Tkaczyk, “Snapshot spectrally encoded fluorescence imaging through a fiber bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system (HyperVideo),” Proc. SPIE 8390, 83900T (2012).
[Crossref]

B. Khoobehi, A. Khoobehi, and P. Fournier, “Snapshot hyperspectral imaging to measure oxygen saturation in the retina using fiber bundle and multi-slit spectrometer,” Proc. SPIE 8229, 82291E (2012).
[Crossref]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125, 4833–4840 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

P. R. Fernández, J. L. Lázaro Galilea, A. Gardel Vicente, I. Bravo Muñoz, A. E. Cano García, and C. Luna Vázquez, “Improving the calibration of image sensors based on IOFBs, using Differential Gray-Code Space Encoding,” Sensors (Basel) 12(7), 9006–9023 (2012).
[Crossref] [PubMed]

2010 (1)

2006 (2)

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
[Crossref] [PubMed]

2005 (1)

D. W. Fletcher-Holmes and A. R. Harvey, “Real-time imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005).
[Crossref]

2004 (1)

2001 (1)

2000 (1)

1995 (1)

1992 (1)

1989 (2)

C. Weidman, A. Boye, and L. Crowell, “Lightning spectra in the 850‐to 1400‐nm near‐infrared region,” J. Geophys. Res. D Atmospheres 94, 13249–13257 (1989).
[Crossref]

R. Y. Tsien, “Fluorescent probes of cell signaling,” Annu. Rev. Neurosci. 12(1), 227–253 (1989).
[Crossref] [PubMed]

1987 (1)

1983 (1)

1981 (1)

R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981).
[Crossref]

1974 (1)

1966 (1)

P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2(1), 13–23 (1966).
[Crossref]

Bao, D.

Barth, S. F.

D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
[Crossref] [PubMed]

Bartindale, T.

D. Jackson, T. Bartindale, and P. Olivier, “FiberBoard: compact multi-touch display using channeled light,” in Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ACM, 2009) pp. 25–28.
[Crossref]

Bedard, N.

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

N. Bedard and T. S. Tkaczyk, “Snapshot spectrally encoded fluorescence imaging through a fiber bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125, 4833–4840 (2012).
[Crossref] [PubMed]

Berlich, R.

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

Boye, A.

C. Weidman, A. Boye, and L. Crowell, “Lightning spectra in the 850‐to 1400‐nm near‐infrared region,” J. Geophys. Res. D Atmospheres 94, 13249–13257 (1989).
[Crossref]

Brangaccio, D. J.

Bravo Muñoz, I.

P. R. Fernández, J. L. Lázaro Galilea, A. Gardel Vicente, I. Bravo Muñoz, A. E. Cano García, and C. Luna Vázquez, “Improving the calibration of image sensors based on IOFBs, using Differential Gray-Code Space Encoding,” Sensors (Basel) 12(7), 9006–9023 (2012).
[Crossref] [PubMed]

Bruning, J. H.

Brüning, R.

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

Brunner, R.

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

Burow, R.

Byars, J. M.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Cano García, A. E.

P. R. Fernández, J. L. Lázaro Galilea, A. Gardel Vicente, I. Bravo Muñoz, A. E. Cano García, and C. Luna Vázquez, “Improving the calibration of image sensors based on IOFBs, using Differential Gray-Code Space Encoding,” Sensors (Basel) 12(7), 9006–9023 (2012).
[Crossref] [PubMed]

Carré, P.

P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2(1), 13–23 (1966).
[Crossref]

Carrizo, C.

Chen, M.

Chen, Z.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

Chrien, T. G.

Coffee, R. E.

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral image mapping spectrometry for retinal oximetry measurements in four diseased eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Crowell, L.

C. Weidman, A. Boye, and L. Crowell, “Lightning spectra in the 850‐to 1400‐nm near‐infrared region,” J. Geophys. Res. D Atmospheres 94, 13249–13257 (1989).
[Crossref]

Cutler, P. J.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

De Li, M.

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

Dereniak, E.

Descour, M.

Dicker, D. T.

D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
[Crossref] [PubMed]

Dobler, G.

G. Dobler, M. Ghandehari, S. E. Koonin, and M. S. Sharma, “A hyperspectral survey of New York City lighting technology,” Sensors (Basel) 16(12), 2047 (2016).
[Crossref] [PubMed]

Dwight, J. G.

J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,” Biomed. Opt. Express 8(3), 1950–1964 (2017).
[Crossref] [PubMed]

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral image mapping spectrometry for retinal oximetry measurements in four diseased eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Eiju, T.

El-Deiry, W. S.

D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
[Crossref] [PubMed]

Elder, D. E.

D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
[Crossref] [PubMed]

El-Habashi, A.

Elliott, A. D.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125, 4833–4840 (2012).
[Crossref] [PubMed]

Elssner, K. E.

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Fernández, P. R.

P. R. Fernández, J. L. Lázaro Galilea, A. Gardel Vicente, I. Bravo Muñoz, A. E. Cano García, and C. Luna Vázquez, “Improving the calibration of image sensors based on IOFBs, using Differential Gray-Code Space Encoding,” Sensors (Basel) 12(7), 9006–9023 (2012).
[Crossref] [PubMed]

Firn, K.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Fletcher-Holmes, D. W.

D. W. Fletcher-Holmes and A. R. Harvey, “Real-time imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005).
[Crossref]

Ford, B.

Foster, R.

Fournier, P.

B. Khoobehi, A. Khoobehi, and P. Fournier, “Snapshot hyperspectral imaging to measure oxygen saturation in the retina using fiber bundle and multi-slit spectrometer,” Proc. SPIE 8229, 82291E (2012).
[Crossref]

Gallagher, J. E.

Gao, L.

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref] [PubMed]

L. Gao and R. T. Smith, “Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition,” J. Biophotonics 8(6), 441–456 (2015).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125, 4833–4840 (2012).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

Gardel Vicente, A.

P. R. Fernández, J. L. Lázaro Galilea, A. Gardel Vicente, I. Bravo Muñoz, A. E. Cano García, and C. Luna Vázquez, “Improving the calibration of image sensors based on IOFBs, using Differential Gray-Code Space Encoding,” Sensors (Basel) 12(7), 9006–9023 (2012).
[Crossref] [PubMed]

Garman, J.

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

Gassner, C.

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

Gat, N.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system (HyperVideo),” Proc. SPIE 8390, 83900T (2012).
[Crossref]

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

Ghandehari, M.

G. Dobler, M. Ghandehari, S. E. Koonin, and M. S. Sharma, “A hyperspectral survey of New York City lighting technology,” Sensors (Basel) 16(12), 2047 (2016).
[Crossref] [PubMed]

Gilerson, A.

Golovin, A.

Gord, J. R.

Green, R. O.

Grzanna, J.

Guerry, D.

D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
[Crossref] [PubMed]

Guo, H.

Hagen, N.

Hagen, N. A.

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Han, F.

Hariharan, P.

Harvey, A. R.

D. W. Fletcher-Holmes and A. R. Harvey, “Real-time imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005).
[Crossref]

Hay, S.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

He, H.

Herlyn, M.

D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
[Crossref] [PubMed]

Herriott, D. R.

Hsu, P. S.

Hubold, M.

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

Jackson, D.

D. Jackson, T. Bartindale, and P. Olivier, “FiberBoard: compact multi-touch display using channeled light,” in Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ACM, 2009) pp. 25–28.
[Crossref]

Jiang, N.

Jung, A.

A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta Agraria Debreceniensis 150, 221–225 (2018).
[Crossref]

Kester, R.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125, 4833–4840 (2012).
[Crossref] [PubMed]

Kester, R. T.

Keys, R.

R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981).
[Crossref]

Khoobehi, A.

B. Khoobehi, A. Khoobehi, and P. Fournier, “Snapshot hyperspectral imaging to measure oxygen saturation in the retina using fiber bundle and multi-slit spectrometer,” Proc. SPIE 8229, 82291E (2012).
[Crossref]

Khoobehi, B.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

B. Khoobehi, A. Khoobehi, and P. Fournier, “Snapshot hyperspectral imaging to measure oxygen saturation in the retina using fiber bundle and multi-slit spectrometer,” Proc. SPIE 8229, 82291E (2012).
[Crossref]

Koonin, S. E.

G. Dobler, M. Ghandehari, S. E. Koonin, and M. S. Sharma, “A hyperspectral survey of New York City lighting technology,” Sensors (Basel) 16(12), 2047 (2016).
[Crossref] [PubMed]

Kriesel, J.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system (HyperVideo),” Proc. SPIE 8390, 83900T (2012).
[Crossref]

Kudenov, M. W.

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Larkin, K. G.

Lauriola, D.

Lázaro Galilea, J. L.

P. R. Fernández, J. L. Lázaro Galilea, A. Gardel Vicente, I. Bravo Muñoz, A. E. Cano García, and C. Luna Vázquez, “Improving the calibration of image sensors based on IOFBs, using Differential Gray-Code Space Encoding,” Sensors (Basel) 12(7), 9006–9023 (2012).
[Crossref] [PubMed]

Lerner, J.

D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
[Crossref] [PubMed]

Liang, R.

T. Mu, F. Han, D. Bao, C. Zhang, and R. Liang, “Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter,” Opt. Lett. 44(5), 1281–1284 (2019).
[Crossref] [PubMed]

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

Lidke, D. S.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Lidke, K. A.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Lim, H. T.

H. T. Lim and V. M. Murukeshan, “A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications,” Sci. Rep. 6(1), 24044 (2016).
[Crossref] [PubMed]

Liu, S.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Luna Vázquez, C.

P. R. Fernández, J. L. Lázaro Galilea, A. Gardel Vicente, I. Bravo Muñoz, A. E. Cano García, and C. Luna Vázquez, “Improving the calibration of image sensors based on IOFBs, using Differential Gray-Code Space Encoding,” Sensors (Basel) 12(7), 9006–9023 (2012).
[Crossref] [PubMed]

Lynch, R.

Malik, M. D.

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Merkel, K.

Michels, R.

A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta Agraria Debreceniensis 150, 221–225 (2018).
[Crossref]

Miller, J. D.

Mouroulis, P.

Mu, T.

T. Mu, F. Han, D. Bao, C. Zhang, and R. Liang, “Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter,” Opt. Lett. 44(5), 1281–1284 (2019).
[Crossref] [PubMed]

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

Murakami, Y.

Murukeshan, V. M.

H. T. Lim and V. M. Murukeshan, “A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications,” Sci. Rep. 6(1), 24044 (2016).
[Crossref] [PubMed]

Nagaraj, S.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system (HyperVideo),” Proc. SPIE 8390, 83900T (2012).
[Crossref]

Nakazaki, K.

Olivier, P.

D. Jackson, T. Bartindale, and P. Olivier, “FiberBoard: compact multi-touch display using channeled light,” in Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ACM, 2009) pp. 25–28.
[Crossref]

Oreb, B. F.

Pacheco, S.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

Pawlowski, M. E.

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral image mapping spectrometry for retinal oximetry measurements in four diseased eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

Piston, D. W.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125, 4833–4840 (2012).
[Crossref] [PubMed]

Rainer, G.

A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta Agraria Debreceniensis 150, 221–225 (2018).
[Crossref]

Rodebeck, E.

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Rosenfeld, D. P.

Roy, S.

Schwider, J.

Scriven, G.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system (HyperVideo),” Proc. SPIE 8390, 83900T (2012).
[Crossref]

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

Sharma, M. S.

G. Dobler, M. Ghandehari, S. E. Koonin, and M. S. Sharma, “A hyperspectral survey of New York City lighting technology,” Sensors (Basel) 16(12), 2047 (2016).
[Crossref] [PubMed]

Smith, R. T.

L. Gao and R. T. Smith, “Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition,” J. Biophotonics 8(6), 441–456 (2015).
[Crossref] [PubMed]

Spolaczyk, R.

Swaminathan, V.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system (HyperVideo),” Proc. SPIE 8390, 83900T (2012).
[Crossref]

Tkaczyk, T. S.

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

J. G. Dwight and T. S. Tkaczyk, “Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,” Biomed. Opt. Express 8(3), 1950–1964 (2017).
[Crossref] [PubMed]

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral image mapping spectrometry for retinal oximetry measurements in four diseased eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125, 4833–4840 (2012).
[Crossref] [PubMed]

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

N. Bedard and T. S. Tkaczyk, “Snapshot spectrally encoded fluorescence imaging through a fiber bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

Tsien, R. Y.

R. Y. Tsien, “Fluorescent probes of cell signaling,” Annu. Rev. Neurosci. 12(1), 227–253 (1989).
[Crossref] [PubMed]

Ustione, A.

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125, 4833–4840 (2012).
[Crossref] [PubMed]

Van Belle, P.

D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
[Crossref] [PubMed]

Wang, L. V.

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

Weidman, C.

C. Weidman, A. Boye, and L. Crowell, “Lightning spectra in the 850‐to 1400‐nm near‐infrared region,” J. Geophys. Res. D Atmospheres 94, 13249–13257 (1989).
[Crossref]

Weng, C. Y.

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral image mapping spectrometry for retinal oximetry measurements in four diseased eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

White, A. D.

Willson, P.

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system (HyperVideo),” Proc. SPIE 8390, 83900T (2012).
[Crossref]

Yamaguchi, M.

Zhang, C.

T. Mu, F. Han, D. Bao, C. Zhang, and R. Liang, “Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter,” Opt. Lett. 44(5), 1281–1284 (2019).
[Crossref] [PubMed]

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

Zhang, J.

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

Acta Agraria Debreceniensis (1)

A. Jung, R. Michels, and G. Rainer, “Portable snapshot spectral imaging for agriculture,” Acta Agraria Debreceniensis 150, 221–225 (2018).
[Crossref]

Acta Ophthalmol. (1)

B. Khoobehi, K. Firn, E. Rodebeck, and S. Hay, “A new snapshot hyperspectral imaging system to image optic nerve head tissue,” Acta Ophthalmol. 92(3), e241 (2014).
[Crossref] [PubMed]

Annu. Rev. Neurosci. (1)

R. Y. Tsien, “Fluorescent probes of cell signaling,” Annu. Rev. Neurosci. 12(1), 227–253 (1989).
[Crossref] [PubMed]

Appl. Opt. (7)

Biomed. Opt. Express (1)

Cancer Biol. Ther. (1)

D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, “Differentiation of normal skin and melanoma using high resolution hyperspectral imaging,” Cancer Biol. Ther. 5(8), 1033–1038 (2006).
[Crossref] [PubMed]

IEEE Trans. Acoust. Speech Signal Process. (1)

R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981).
[Crossref]

Int. Ophthalmol. Clin. (1)

J. G. Dwight, C. Y. Weng, R. E. Coffee, M. E. Pawlowski, and T. S. Tkaczyk, “Hyperspectral image mapping spectrometry for retinal oximetry measurements in four diseased eyes,” Int. Ophthalmol. Clin. 56(4), 25–38 (2016).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

N. Bedard and T. S. Tkaczyk, “Snapshot spectrally encoded fluorescence imaging through a fiber bundle,” J. Biomed. Opt. 17(8), 080508 (2012).
[Crossref] [PubMed]

J. Biophotonics (1)

L. Gao and R. T. Smith, “Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition,” J. Biophotonics 8(6), 441–456 (2015).
[Crossref] [PubMed]

J. Cell Sci. (1)

A. D. Elliott, L. Gao, A. Ustione, N. Bedard, R. Kester, D. W. Piston, and T. S. Tkaczyk, “Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer,” J. Cell Sci. 125, 4833–4840 (2012).
[Crossref] [PubMed]

J. Geophys. Res. D Atmospheres (1)

C. Weidman, A. Boye, and L. Crowell, “Lightning spectra in the 850‐to 1400‐nm near‐infrared region,” J. Geophys. Res. D Atmospheres 94, 13249–13257 (1989).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

D. W. Fletcher-Holmes and A. R. Harvey, “Real-time imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

Metrologia (1)

P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures,” Metrologia 2(1), 13–23 (1966).
[Crossref]

Opt. Eng. (3)

N. Bedard, N. Hagen, L. Gao, and T. S. Tkaczyk, “Image mapping spectrometry: calibration and characterization,” Opt. Eng. 51(11), 111711 (2012).
[Crossref] [PubMed]

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Y. Wang, M. E. Pawlowski, and T. S. Tkaczyk, “High spatial sampling light-guide snapshot spectrometer,” Opt. Eng. 56(8), 081803 (2017).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rep. (1)

L. Gao and L. V. Wang, “A review of snapshot multidimensional optical imaging: measuring photon tags in parallel,” Phys. Rep. 616, 1–37 (2016).
[Crossref] [PubMed]

PLoS One (1)

P. J. Cutler, M. D. Malik, S. Liu, J. M. Byars, D. S. Lidke, and K. A. Lidke, “Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope,” PLoS One 8(5), e64320 (2013).
[Crossref] [PubMed]

Proc. SPIE (4)

M. Hubold, R. Berlich, C. Gassner, R. Brüning, and R. Brunner, “Ultra-compact micro-optical system for multispectral imaging,” Proc. SPIE 10545, 105450V (2018).

N. Gat, G. Scriven, J. Garman, M. De Li, and J. Zhang, “Development of four-dimensional imaging spectrometers (4D-IS),” Proc. SPIE 6302, 63020M (2006).
[Crossref]

J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan, “Snapshot hyperspectral fovea vision system (HyperVideo),” Proc. SPIE 8390, 83900T (2012).
[Crossref]

B. Khoobehi, A. Khoobehi, and P. Fournier, “Snapshot hyperspectral imaging to measure oxygen saturation in the retina using fiber bundle and multi-slit spectrometer,” Proc. SPIE 8229, 82291E (2012).
[Crossref]

Sci. Rep. (2)

H. T. Lim and V. M. Murukeshan, “A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications,” Sci. Rep. 6(1), 24044 (2016).
[Crossref] [PubMed]

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

Sensors (Basel) (2)

G. Dobler, M. Ghandehari, S. E. Koonin, and M. S. Sharma, “A hyperspectral survey of New York City lighting technology,” Sensors (Basel) 16(12), 2047 (2016).
[Crossref] [PubMed]

P. R. Fernández, J. L. Lázaro Galilea, A. Gardel Vicente, I. Bravo Muñoz, A. E. Cano García, and C. Luna Vázquez, “Improving the calibration of image sensors based on IOFBs, using Differential Gray-Code Space Encoding,” Sensors (Basel) 12(7), 9006–9023 (2012).
[Crossref] [PubMed]

Other (8)

J. C. Wyant and K. N. Prettyjohns, U.S. Patent No. 4,639,139. Washington, DC: U.S. Patent and Trademark Office (1987).

D. Jackson, T. Bartindale, and P. Olivier, “FiberBoard: compact multi-touch display using channeled light,” in Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ACM, 2009) pp. 25–28.
[Crossref]

D. Malacara, Optical shop testing (John Wiley & Sons, 2007), Chap. 14.

R. Leach, Optical measurement of surface topography (Springer, 2011)

R. M. Suggs, W. J. Cooke, R. J. Suggs, W. R. Swift, and N. Hollon, “The NASA lunar impact monitoring program,” in Advances in Meteoroid and Meteor Science (Springer, 2007), pp. 293–298.

S. Ackelson, T. Bell, H. Dierssen, J. Goodman, R. Green, L. Guild, E. Hochberg, V. V. Klemas, S. Lavender, C. Lee, P. Minnett, F. Muller-Karger, J. Ortiz, S. Palacios, D. R. Thompson, K. Turpie, and R. Zimmerman, Global Observations of Coastal and Inland Aquatic Habitats, (NASA, 2016), pp. 1−18.

D. C. Ghiglia and M. D. Pritt, “Two-dimensional phase unwrapping: theory, algorithms, and software,” (Wiley, 1998).

D. Bruton [Accessed March 27, 2019];Color Science. http://www.midnightkite.com/color.html .

Supplementary Material (1)

NameDescription
» Visualization 1       Hyperspectral “video” recording of the urban traffic on Main Street, Houston, TX. Horizontal axis for all plots: wavelength/nm; vertical axis for all plots: normalized intensity. The spectra shown is averaged over the respective areas marked in the c

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1 Schematic illustration of the principle of fiber-based imaging spectrometer system.
Fig. 2
Fig. 2 (a) Schematic illustration of the minimum collector lens diameter (D) determined by the fiber bundle output area (diagonal length L) and the fibers’ numerical aperture (NA). (b) A micrograph of the Schott multicore fiber ribbon’s cross-section, with annotations indicating dimension. (c) A heat map of the required collector lens f/# calculated using different values of L and D, with fiber NA 0.65. (d) A heat map of the required collector lens f/# calculated using different values of L and D, with fiber NA 0.28.
Fig. 3
Fig. 3 (a) A simplified plot showing the designed input end with 4 x 6 fibers reformatted into 2 x 12 fibers at the output. Each row of fibers is marked with a different color. (b) A simplified plot showing the same input end as (a), and the coupling of each exit lenslet’s sub-pupil image into a 10µm diameter core, creating void space for dispersion without overlapping. (c) The reformatted output end of the same fibers in (b). (d) The dispersed cores in (c).
Fig. 4
Fig. 4 Schematic system layout with two alternative approaches to selectively sample the object with a subset of cores using lenslet array (a) and a photomask (b).
Fig. 5
Fig. 5 (Left) The design of a photomask to maximize the core density. (Center) The perfect alignment of the pinholes with the fiber cores. (Right) The sketch plot of dispersed cores in one row of fibers in the center Fig.
Fig. 6
Fig. 6 The required f/# of the collector lens depending on the lens diameter for the 30mm diagonal fiber bundle output area and 0.28 fiber NA.
Fig. 7
Fig. 7 Zemax OpticStudio simulation of four representative configurations for a pair of identical achromatic doublet lens. (a) Telecentric setup (lens distance twice the focal length), 0.05 system NA, un-conventional lens orientation (higher curvature surface facing the object). (b) Compact setup (lens distance as close as possible, was set to 40mm to leave space for the disperser and aperture stop), 0.05 system NA, conventional lens orientation (lower curvature surface facing the object). (c) Compact setup, 0.05 system NA, un-conventional lens orientation, was chosen as the final solution. (d) Same setup as (c), with a 0.15 system NA.
Fig. 8
Fig. 8 Fiber bundle fabrication process. (a) The schematic plot for the whole assembling and cutting procedure. (b) Photo of a fiber ribbon segment which was cut into 8 inches, containing two complete fixed sections and one complete freeform section. (c) Photo showing the fixed section at the input side split into two halves by a razor blade. (d) Photo of the two halves of the input end stacked above each other. (e) Photo of the whole segment placed into the gluing mold made of laser-cut acrylic board, showing the room for the gluing epoxy. (f) Photo of the assembled bundle in the mold cut by the diamond saw.
Fig. 9
Fig. 9 (a) Photo of the fiber bundle’s input side after diamond saw cutting, with red dashed square indicating the fibers. (b) Photo of the fiber bundle’s output side after diamond saw cutting, with the red dashed square indicating the fibers. (c) Micrograph of the fibers at the input end before polishing, showing the tightly packed 36-core fibers. (d) Micrograph of one row of fibers at the output end before polishing (e) Photo of the fiber bundle mounted on an automatic polisher (Nanopol fiber polishing system, Ultra-Tec) for polishing. (f) Micrograph of one row of fibers at the output end after polishing.
Fig. 10
Fig. 10 Photo of the system setup.
Fig. 11
Fig. 11 (a) A portion of the single-wavelength image captured by the detector using a 1-nm wide bandpass filter (632.8nm), with the fiber bundle coupled with a lenslet array (37µm pitch rectangular alignment, 188µm focal length). (b) The corresponding broadband image of (a). (c) A portion of the single-wavelength image captured by the detector using a 1-nm wide bandpass filter (632.8nm), with the fiber bundle coupled with a photomask (37µm pitch rectangular alignment, 10µm pinhole diameter). (d) The corresponding broadband image of (c).
Fig. 12
Fig. 12 (a) (left numbers) A set of shifted phases between 0 and 2π with a constant step π/3; (first column images) the corresponding 6 phase-shifted sinusoidal patterns generated for the x-direction only, with the same spatial frequency but phases shifted by a constant step shown in the left column. (Second column images) A portion of the corresponding raw images recorded on the detector. (b) The calculated phase in x-direction plotted for all the pixels in the raw image (c) The calculated phase in y-direction plotted for all the pixels in the raw image.
Fig. 13
Fig. 13 Comparison of the reconstructed image using multi-period phase-shifting calibration.
Fig. 14
Fig. 14 (a) A portion of the thresholded single-wavelength (632.8nm) image. (b) Identified individual fiber cores with computed centroids shown in red circles. (c) A portion of the flat field image superimposed by the centroid positions (488.0nm, 514.5nm, 632.8nm) marked with blue, green and red circles respectively. (d) The complete lines with all desired wavelength positions interpolated (red stars) according to the three single-wavelength locations in (c).
Fig. 15
Fig. 15 (a) The look-up table after the spectral calibration, designating the coordinate on the detector to find each voxel in the datacube. (b) The fiber core’s final phase averaged from all wavelengths. (c) The final lookup table, with two appended columns representing the fiber core’s x and y coordinate on the object plane.
Fig. 16
Fig. 16 The reconstructed image using different thresholds to filter-out the cores with low modulations.
Fig. 17
Fig. 17 (a) Raw image captured on the detector when imaging buildings on the Rice University campus. (b) The composite image reconstructed from the raw image in (a) without flat-field correction (c) a flat-field image of a uniform white daytime sky. (d) Reconstructed image with flat-field correction.
Fig. 18
Fig. 18 The spectral response of filters at 488, 514, 532, 589 and 633nm.
Fig. 19
Fig. 19 (a) The schematic system layout showing that the campus landscape scene outside the window was redirected 90 degrees by a mirror and relayed to the system’s object plane by a photographic objective. (b) The image of the fresh leaf relayed to the system’s object plane by two photographic objectives.
Fig. 20
Fig. 20 (Left half) A series of reconstructed single-channel images for one field of view. 12 images out of 61 were selected for display. (Right half) The pseudo-colored composite image formed by combining all spectral channels, together with four spectral features of interest: a spectrum from trees, a spectrum from a red roof, a spectrum from the brick wall, and a spectrum from blue glass.
Fig. 21
Fig. 21 (Top row) A set of composite images taken by our system for six different fields of views by adjusting the mirror’s angle. (Bottom row) The corresponding RGB images of the same field of view (sunlight condition slightly different) taken by a Digital Single Lens Reflex camera (Canon EOS 5D Mark IV DSLR Camera body, Mitakon Zhongyi Speedmaster 85mm f/1.2 Lens).
Fig. 22
Fig. 22 (a) The reconstructed composite image of the scene in which the positions of the trees were marked in white rectangles: (1) Live Oak, (2) Laurel Oak and (3) Bald Cypress. (b) Horizontal axis for all plots: wavelength/nm; vertical axis for all plots: normalized intensity. Top row: the mean reflectance spectrum for the three trees determined by averaging the spectrum for every pixel over the marked area in (a). Middle row: the mean reflectance spectrum for the three leaves from the three trees determined by averaging the spectrum for every pixel over the marked area in (c). Bottom row: the measured spectrum of the same area of each leaf provided by an OceanOptics modular spectrometer as the reference data. (c) Photo of the fresh leaves from the three imaged trees collected from the campus, with the imaged area marked as white rectangles.
Fig. 23
Fig. 23 Horizontal axis for all plots: wavelength/nm; vertical axis for all plots: normalized intensity. Left photo: 4 collected leaves from a Bald Cypress tree at four different stages of color changing with the imaged area marked as white rectangles. First row on the right: the reconstructed composite images of the four leaves. Second row on the right: averaged reflectance spectrum over the whole imaged area of the leaves. Third row on the right: the measured spectrum of the same area of each leaf provided by an OceanOptics modular spectrometer as the reference data.
Fig. 24
Fig. 24 Sample frames of the hyperspectral “video” recording (see Visualization 1) of the urban traffic on Main Street, Houston. Horizontal axis for all plots: wavelength/nm; vertical axis for all plots: normalized intensity. The spectra shown in (d)-(i) were averaged over the respective areas marked in frames (a)-(c).

Tables (4)

Tables Icon

Table 1 Spatial samplings provided by photomasks with 10µm pinholes and different pitch

Tables Icon

Table 2 Spatial samplings provided by photomasks with a 31.5µm pitch and different pinhole diameters

Tables Icon

Table 3 Crosstalk using photomasks with 10µm pinholes and different pitch

Tables Icon

Table 4 Crosstalk using photomasks with a 31.5µm pitch and different pinhole diameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

output area = core area × spatial sampling × spectral sampling
f#= DL 2Dtan(arcsinα)
I i ( x,y )=I'+I"cos[ ψ( x,y )+ φ i ]
tanψ( x,y )= 3 ( I 2 ( x,y )+ I 3 ( x,y ) I 4 ( x,y ) I 5 ( y,y ) ) 2 I 1 ( x,y )+ I 2 ( x,y ) I 3 ( x,y )2 I 4 ( x,y ) I 5 ( x,y )+ I 6 ( x,y )
C= Rd fd
π 1 2 π 2 2 = π [ Ftan( arcsin0.05 ) ] 2 π [ Ftan( arcsin0.28 ) ] 2 =2.95%

Metrics