Abstract

We propose new ways to produce strong terahertz (THz) magneto-optical phenomena from monolayer graphene based on bound states in the continuum (BICs) and Fano resonances. The BICs and Fano resonances of radiation modes in the monolayer graphene are realized by designing the photonic crystal slab-graphene-slab structure. Based on them, the magnetic circular dichroism near 100% has been achieved. Importantly, such magneto-optical phenomena can be modulated in intensity and frequency using only electrostatic doping at a fixed magnetic field. Comparing two ways to produce magneto-optical phenomena, it is found that the way based on BICs exhibits some advantages such as good electrical tenability due to narrower resonance width, higher conversion efficiency and more stability with the change of incident angle. These phenomena can appear in a broad THz range by designing the nanostructures, which are very beneficial to polarization conversion and optoelectronic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improved third-order nonlinear effect in graphene based on bound states in the continuum

Tiecheng Wang and Xiangdong Zhang
Photon. Res. 5(6) 629-639 (2017)

Improved generation of correlated photon pairs from monolayer WS2 based on bound states in the continuum

Tiecheng Wang, Zhixin Li, and Xiangdong Zhang
Photon. Res. 7(3) 341-350 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).
  2. W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
    [Crossref]
  3. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  4. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
    [Crossref] [PubMed]
  5. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
    [Crossref] [PubMed]
  6. A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
    [Crossref]
  7. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
    [Crossref]
  8. K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
    [Crossref]
  9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  10. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
    [Crossref]
  11. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
    [Crossref] [PubMed]
  12. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  13. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
    [Crossref] [PubMed]
  14. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
    [Crossref] [PubMed]
  15. J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
    [Crossref] [PubMed]
  16. M. Mansuripur, “The Physical Principles of Magneto-optical Recording.” Cambridge University Press, (1995).
  17. H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59(12), 1665–1735 (1996).
    [Crossref]
  18. T. Wang and X. Zhang, “Magnetic response at visible and near-infrared frequencies from black phosphorus sheet arrays,” Opt. Express 23(24), 30667–30680 (2015).
    [Crossref] [PubMed]
  19. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
    [Crossref] [PubMed]
  20. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  21. D. Sylgacheva, N. Khokhlov, A. Kalish, S. Dagesyan, A. Prokopov, A. Shaposhnikov, V. Berzhansky, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. Belotelov, “Transverse magnetic field impact on waveguide modes of photonic crystals,” Opt. Lett. 41(16), 3813–3816 (2016).
    [Crossref] [PubMed]
  22. X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
    [Crossref]
  23. Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017).
    [Crossref]
  24. I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
    [Crossref]
  25. M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).
  26. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
    [Crossref] [PubMed]
  27. M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
    [Crossref]
  28. W. Zhao, K. Shi, and Z. Lu, “Greatly enhanced ultrabroadband light absorption by monolayer graphene,” Opt. Lett. 38(21), 4342–4345 (2013).
    [Crossref] [PubMed]
  29. X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
    [Crossref] [PubMed]
  30. S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
    [Crossref] [PubMed]
  31. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
    [Crossref] [PubMed]
  32. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
    [Crossref] [PubMed]
  33. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  34. A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
    [Crossref]
  35. B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
    [Crossref] [PubMed]
  36. T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
    [Crossref] [PubMed]
  37. W. Zhang, J. Ren, and X. Zhang, “Tunable superradiance and quantum phase gate based on graphene wrapped nanowire,” Opt. Express 23(17), 22347–22361 (2015).
    [Crossref] [PubMed]
  38. W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
    [Crossref] [PubMed]
  39. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
    [Crossref] [PubMed]
  40. E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008).
    [Crossref]
  41. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
    [Crossref] [PubMed]
  42. M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
    [Crossref] [PubMed]
  43. J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
    [Crossref] [PubMed]
  44. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
    [Crossref] [PubMed]
  45. C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
    [Crossref]
  46. F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
    [Crossref]
  47. Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
    [Crossref] [PubMed]
  48. M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
    [Crossref] [PubMed]
  49. J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
    [Crossref] [PubMed]
  50. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
    [Crossref]
  51. E. N. Bulgakov and D. N. Maksimov, “Optical response induced by bound states in the continuum in arrays of dielectric spheres,” J. Opt. Soc. Am. B 35(10), 2443–2452 (2018).
    [Crossref]
  52. M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
    [Crossref] [PubMed]
  53. J. H. Li, J. Ren, and X. D. Zhang, “Three-dimensional vector wave bound states in a continuum,” J. Opt. Soc. Am. B 34(3), 559 (2017).
    [Crossref]
  54. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
    [Crossref] [PubMed]
  55. T. C. Wang and X. D. Zhang, “Improved third-order nonlinear effect in graphene based on bound states in the continuum,” Photon. Res. 5(6), 629–639 (2017).
    [Crossref]
  56. K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
    [Crossref] [PubMed]
  57. S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
    [Crossref] [PubMed]
  58. J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).
  59. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
    [Crossref]
  60. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  61. Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).
  62. M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A (Coll. Park) 93(1), 013832 (2016).
    [Crossref]

2018 (6)

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

E. N. Bulgakov and D. N. Maksimov, “Optical response induced by bound states in the continuum in arrays of dielectric spheres,” J. Opt. Soc. Am. B 35(10), 2443–2452 (2018).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

2017 (7)

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

J. H. Li, J. Ren, and X. D. Zhang, “Three-dimensional vector wave bound states in a continuum,” J. Opt. Soc. Am. B 34(3), 559 (2017).
[Crossref]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

T. C. Wang and X. D. Zhang, “Improved third-order nonlinear effect in graphene based on bound states in the continuum,” Photon. Res. 5(6), 629–639 (2017).
[Crossref]

Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017).
[Crossref]

W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
[Crossref] [PubMed]

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

2016 (5)

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

D. Sylgacheva, N. Khokhlov, A. Kalish, S. Dagesyan, A. Prokopov, A. Shaposhnikov, V. Berzhansky, M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. Belotelov, “Transverse magnetic field impact on waveguide modes of photonic crystals,” Opt. Lett. 41(16), 3813–3816 (2016).
[Crossref] [PubMed]

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A (Coll. Park) 93(1), 013832 (2016).
[Crossref]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

2015 (4)

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
[Crossref] [PubMed]

W. Zhang, J. Ren, and X. Zhang, “Tunable superradiance and quantum phase gate based on graphene wrapped nanowire,” Opt. Express 23(17), 22347–22361 (2015).
[Crossref] [PubMed]

T. Wang and X. Zhang, “Magnetic response at visible and near-infrared frequencies from black phosphorus sheet arrays,” Opt. Express 23(24), 30667–30680 (2015).
[Crossref] [PubMed]

2014 (4)

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

2013 (9)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

W. Zhao, K. Shi, and Z. Lu, “Greatly enhanced ultrabroadband light absorption by monolayer graphene,” Opt. Lett. 38(21), 4342–4345 (2013).
[Crossref] [PubMed]

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

2012 (11)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

2011 (4)

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

2010 (1)

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

2009 (1)

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

2008 (3)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008).
[Crossref]

2007 (1)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

2004 (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

1996 (1)

H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59(12), 1665–1735 (1996).
[Crossref]

1929 (1)

J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).

Ajayan, P. M.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Alameh, K.

Alu’, A.

F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

Andrews, A. M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Azzam, S. I.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

Bahari, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Banerjee, S.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Baranowski, J. M.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Belotelov, V.

Belotelov, V. I.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Bergman, D. J.

Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017).
[Crossref]

Berzhansky, V.

Berzhansky, V. N.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Bianco, G. V.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Blank, V.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Bogdanov, A.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

Bogdanov, A. A.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Boisen, A.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Boltasseva, A.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Bostwick, A.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Bruno, G.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Bulgakov, E. N.

E. N. Bulgakov and D. N. Maksimov, “Optical response induced by bound states in the continuum in arrays of dielectric spheres,” J. Opt. Soc. Am. B 35(10), 2443–2452 (2018).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008).
[Crossref]

Chattopadhyay, U.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Chernov, A. I.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Choi, C.-G.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, E. J.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Choi, H. K.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, M.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Choi, S.-Y.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Chong, Y. D.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Chua, S.-L.

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Colombo, L.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Coquillat, D.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Crassee, I.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

D’Orazio, A.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Dagesyan, S.

de Abajo, F. J. G.

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

de Ceglia, D.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

De Vittorio, M.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Detz, H.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Dreisow, F.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ebert, H.

H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59(12), 1665–1735 (1996).
[Crossref]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Fainman, Y.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Faist, J.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Faugeras, C.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Fedyanin, A. A.

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

Ferrari, A. C.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Ferreira, A.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Furchi, M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

García de Abajo, F. J.

S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

García-Vidal, F. J.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Geng, L.

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gómez Rivas, J.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Gómez-Santos, G.

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

Grande, M.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, Q.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Hahn, R.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Hansen, O.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Heinrich, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hsu, C. W.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

Hwang, E. H.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Hwang, J. Y.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Jena, D.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jin, Z.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Jo, I.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kalish, A.

Kaneko, R.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Kanté, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Kawayama, I.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Khanikaev, A. B.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Khokhlov, N.

Kildishev, A. V.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

Kim, J.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Kim, J. Y.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Kim, S.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Kim, T.-T.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Kivshar, Y.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

Kivshar, Y. S.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
[Crossref] [PubMed]

Klang, P.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Knap, W.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Kodigala, A.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Kono, J.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Koschny, T.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Koshelev, K.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

Koshelev, K. L.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Kozhaev, M. A.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Kuwata-Gonokami, M.

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

Kuzmenko, A. B.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Lee, S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, S. S.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Lee, W.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Lepeshov, S.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

Lepetit, T.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

Levallois, J.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Leykam, D.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Li, J. H.

Li, Z.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Liang, Y.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

Lilley, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Limonov, M. F.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Liu, L.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Liu, M.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, P. Q.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Liu, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Liu, Z. K.

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Lombardo, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Lozano, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Lu, Z.

Lyubin, E. V.

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

Magnusson, R.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
[Crossref] [PubMed]

Maksimov, D. N.

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Martín Moreno, L.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Martinez, G.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Martin-Moreno, L.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Merano, M.

M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A (Coll. Park) 93(1), 013832 (2016).
[Crossref]

Min, B.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

Miroshnichenko, A. E.

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
[Crossref] [PubMed]

Molina, M. I.

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
[Crossref] [PubMed]

Monticone, F.

F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mortensen, N. A.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Mueller, T.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Nah, J.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Nanot, S.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Nikitin, A. Y.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Noda, S.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

Nolte, S.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Nur-E-Alam, M.

Orlita, M.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Ostler, M.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Padilla, W. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Pan, D. K.

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Peiponen, K.

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

Peleg, O.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Pellegrini, V.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Peng, C.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

Peres, N. M. R.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

Petruzzelli, V.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Pirruccio, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Plotnik, Y.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Polini, M.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Pospischil, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Potemski, M.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Poumirol, J.-M.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Prokopov, A.

Prokopov, A. R.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Qiu, W.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Rabia, K.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Ren, J.

Ren, L.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Ribeiro, R. M.

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

Romodina, M. N.

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

Roskos, H. G.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Rotenberg, E.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Rybin, M. V.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Sadreev, A. F.

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008).
[Crossref]

Sadrieva, Z. F.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Samusev, K. B.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

Scalora, M.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Schmidt, M. S.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Schrenk, W.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Segev, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Seyller, T.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Shahrjerdi, D.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Shalaev, V. M.

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

Shapira, O.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Shaposhnikov, A.

Shaposhnikov, A. N.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shi, K.

Shi, L.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Slipchenko, T. M.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Smith, D. R.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Soboleva, I. V.

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Song, P.

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Song, S. H.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
[Crossref] [PubMed]

Soukoulis, C. M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Stauber, T.

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

Stepniewski, R.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Stomeo, T.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Stone, A. D.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Strasser, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Strelniker, Y. M.

Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017).
[Crossref]

Strupi’nski, W.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Sun, Z.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Sylgacheva, D.

Sylgacheva, D. A.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Szameit, A.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Teng, J.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Thomson, M. D.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tonouchi, M.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Tour, J. M.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Tredicucci, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Tutuc, E.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Unterrainer, K.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Urich, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

van der Marel, D.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Vasiliev, M.

Vicarelli, L.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Vincenti, M. A.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

Vitiello, M. S.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

von Neumann, J.

J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).

Walter, A. L.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Wang, B.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, T.

Wang, T. C.

Wang, Y.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Wigner, E.

J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).

Witowski, A. M.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Wu, T.

W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
[Crossref] [PubMed]

Wysmolek, A.

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Xiao, S.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Xie, Y. N.

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Xing, H. G.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Yan, R.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Yan, Z.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

Yao, J.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Yao, Z.

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Yin, X.

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoon, J. W.

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
[Crossref] [PubMed]

Yu, K.

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

Yuan, X.

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

Zeitler, A.

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, M.

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

Zhang, Q.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
[Crossref] [PubMed]

W. Zhang, J. Ren, and X. Zhang, “Tunable superradiance and quantum phase gate based on graphene wrapped nanowire,” Opt. Express 23(17), 22347–22361 (2015).
[Crossref] [PubMed]

Zhang, X.

W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
[Crossref] [PubMed]

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

T. Wang and X. Zhang, “Magnetic response at visible and near-infrared frequencies from black phosphorus sheet arrays,” Opt. Express 23(24), 30667–30680 (2015).
[Crossref] [PubMed]

W. Zhang, J. Ren, and X. Zhang, “Tunable superradiance and quantum phase gate based on graphene wrapped nanowire,” Opt. Express 23(17), 22347–22361 (2015).
[Crossref] [PubMed]

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Zhang, X. D.

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhao, W.

Zhen, B.

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Zhou, X.

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Zi, J.

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Zouaghi, W.

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Zvezdin, A. K.

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

ACS Nano (1)

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and Broadband Enhanced Optical Absorption in Graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102(23), 231111 (2013).
[Crossref]

S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. Banerjee, “Realization of a high mobility dual gated graphene field-effect transistor with 23 Al O dielectric,” Appl. Phys. Lett. 94(6), 062107 (2009).
[Crossref]

Appl. Sci. (1)

I. V. Soboleva, M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, “Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals,” Appl. Sci. 8(1), 127 (2018).
[Crossref]

Chin. Phys. Lett. (1)

Z. K. Liu, Y. N. Xie, L. Geng, D. K. Pan, and P. Song, “Scattering of Circularly Polarized Terahertz Waves on a Graphene Nanoantenna,” Chin. Phys. Lett. 33(2), 027802 (2016).

Eur. J. Phys. (1)

W. Zouaghi, M. D. Thomson, K. Rabia, R. Hahn, V. Blank, and H. G. Roskos, “Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications,” Eur. J. Phys. 34(6), S179–S199 (2013).
[Crossref]

Hongwai Yu Jiguang Gongcheng (1)

K. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, “Terahertz Spectroscopy and Imaging [J],” Hongwai Yu Jiguang Gongcheng 171(2), 359–368 (2013).

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

Light Sci. Appl. (1)

C. W. Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light Sci. Appl. 2(7), e84 (2013).
[Crossref]

Nano Lett. (5)

X. Zhu, L. Shi, M. S. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao, and N. A. Mortensen, “Enhanced Light-Matter Interactions in Graphene-Covered Gold Nanovoid Arrays,” Nano Lett. 13(10), 4690–4696 (2013).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. G. de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays,” Nano Lett. 14(1), 299–304 (2014).
[Crossref] [PubMed]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-Integrated Graphene Photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene,” Nano Lett. 12(7), 3711–3715 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref] [PubMed]

Nat. Mater. (2)

S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11(11), 936–941 (2012).
[Crossref] [PubMed]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Phys. (1)

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van der Marel, and A. B. Kuzmenko, “Giant Faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48 (2011).
[Crossref]

Nat. Rev. Mater. (1)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater. 1(9), 16048 (2016).
[Crossref]

Nature (3)

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541(7636), 196–199 (2017).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. A (Coll. Park) (1)

M. Merano, “Fresnel coefficients of a two-dimensional atomic crystal,” Phys. Rev. A (Coll. Park) 93(1), 013832 (2016).
[Crossref]

Phys. Rev. B (3)

K. Yu, J. Kim, J. Y. Kim, W. Lee, J. Y. Hwang, E. H. Hwang, and E. J. Choi, “Infrared spectroscopic study of carrier scattering in gated CVD graphene,” Phys. Rev. B 94(23), 235404 (2016).
[Crossref]

X. Zhou, D. Leykam, U. Chattopadhyay, A. B. Khanikaev, and Y. D. Chong, “Realization of a magneto-optical near-zero index medium by an unpaired Dirac point,” Phys. Rev. B 98(20), 205115 (2018).
[Crossref]

Y. M. Strelniker and D. J. Bergman, “Thermoelectric response of a periodic composite medium in the presence of a magnetic field: Angular anisotropy,” Phys. Rev. B 96(23), 235308 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (4)

A. Ferreira, N. M. R. Peres, R. M. Ribeiro, and T. Stauber, “Graphene-based photodetector with two cavities,” Phys. Rev. B Condens. Matter Mater. Phys. 85(11), 115438 (2012).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B Condens. Matter Mater. Phys. 78(7), 075105 (2008).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

A. M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J. M. Baranowski, W. Strupi’nski, C. Faugeras, G. Martinez, and M. Potemski, “Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene,” Phys. Rev. B Condens. Matter Mater. Phys. 82(16), 165305 (2010).
[Crossref]

Phys. Rev. Lett. (13)

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107(18), 183901 (2011).
[Crossref] [PubMed]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface Bound States in the Continuum,” Phys. Rev. Lett. 108(7), 070401 (2012).
[Crossref] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and Differentiation of Unique High-Q Optical Resonances Near Zero Wave Vector in Macroscopic Photonic Crystal Slabs,” Phys. Rev. Lett. 109(6), 067401 (2012).
[Crossref] [PubMed]

F. Monticone and A. Alu’, “Embedded Photonic Eigenvalues in 3D Nanostructures,” Phys. Rev. Lett. 112(21), 213903 (2014).
[Crossref]

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev. Lett. 113(3), 037401 (2014).
[Crossref] [PubMed]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref] [PubMed]

S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of Bound States in the Continuum in Hybrid Plasmonic-Photonic Systems,” Phys. Rev. Lett. 121(25), 253901 (2018).
[Crossref] [PubMed]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref] [PubMed]

B. Wang, X. Zhang, F. J. García-Vidal, X. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109(7), 073901 (2012).
[Crossref] [PubMed]

T. Stauber, G. Gómez-Santos, and F. J. G. de Abajo, “Extraordinary Absorption of Decorated Undoped Graphene,” Phys. Rev. Lett. 112(7), 077401 (2014).
[Crossref] [PubMed]

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound States in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri and F. J. García de Abajo, “Optical Field Enhancement by Strong Plasmon Interaction in Graphene Nanostructures,” Phys. Rev. Lett. 110(18), 187401 (2013).
[Crossref] [PubMed]

Phys. Z. (1)

J. von Neumann and E. Wigner, “Uber merkwürdige diskrete Eigenwerte, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z. 30, 465–467 (1929).

Rep. Prog. Phys. (1)

H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59(12), 1665–1735 (1996).
[Crossref]

Sci. Rep. (3)

M. Zhang and X. Zhang, “Ultrasensitive optical absorption in graphene based on bound states in the continuum,” Sci. Rep. 5(1), 8266 (2015).
[Crossref] [PubMed]

J. W. Yoon, S. H. Song, and R. Magnusson, “Critical field enhancement of asymptotic optical bound states in the continuum,” Sci. Rep. 5(1), 18301 (2015).
[Crossref] [PubMed]

W. Zhang, T. Wu, and X. Zhang, “Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems,” Sci. Rep. 7(1), 11407 (2017).
[Crossref] [PubMed]

Science (3)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Scientific Reports (1)

M. A. Kozhaev, A. I. Chernov, D. A. Sylgacheva, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Giant peak of the Inverse Faraday effect in the band gap of magnetophotonic microcavity,” Scientific Reports 8(1), 11435 (2018).

Other (1)

M. Mansuripur, “The Physical Principles of Magneto-optical Recording.” Cambridge University Press, (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Diagram of the photonic crystal-slab structure and coordinate. Magnetic field is along Z-axis, B=7T.The photonic crystal is arranged in a square lattice with the lattice constant a=9.5194μm.The radii of air cylinders in photonic crystal are r=0.3*a.The photonic crystal thickness is d 1 =0.3*a.The slab is placed next to the photonic crystal and the thickness is d 2 =0.3*a. (b) Cross sections of the reflection coefficient at 0 o and 2 o incidence angles show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonance. Blue and red arrows point to the BICs and quasi-BICs. All the incident light in the above figure is linearly polarized light, and the polarization direction of the electric field along the X axis. (c) Eigenfrequency analysis withθ for BICs and Fano resonances. Blue and red lines overlap at λ=11.25μm. (d) The quality factor changes with θ, and it can be found that the Q factor decreases rapidly along the direction of Γ point. The frequencies used are consistent with those in Fig. 1(c). (e) The electric field intensity at the λ=12.95μm corresponds to the electric field distribution under quasi-BICs. (f) The electric field intensity at λ=11.25μm corresponds to the electric field distribution under Fano resonances.
Fig. 2
Fig. 2 (a) Lateral view after graphene was introduced. The red line is where the graphene put. The doping level of graphene is n=7.9* 10 12 c m 2 . (b) The reflection coefficient at incidence angles of 0 o and 2 o show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonances. (c) The transmission coefficient at incidence angles of 0 o and 2 o show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonances. (d) The absorption coefficient at incidence angles of 0 o and 2 o show the appearance of the collapsed symmetry-protected BICs to sharp Fano resonance. All the incident light in the above figure is linearly polarized light, and the polarization direction of the electric field along X axis. Blue and red arrows point to the BICs and quasi-BICs. The other parameters are identical with those in Fig. 1.
Fig. 3
Fig. 3 (a) and (b) show the transmissivity with LH/RH circular polarizations incident on the photonic crystal-graphene-slab structure in different magnetic field intensity, respectively, at quasi-BICs. (c) The MCD in different magnetic field intensity at quasi-BICs. (d) and (e) show the corresponding transmissivity with LH/RH circular polarizations incident on the structure at Fano resonances. (f) The MCD in different magnetic field intensity at Fano resonances. θ= 2 ° is taken for the quasi-BICs and the vertical incidence for Fano resonances. The other parameters are identical with those in Fig. 1.
Fig. 4
Fig. 4 (a) The MCD on the photonic crystal-graphene-slab structure in different carrier doping level at quasi-BICs. (b) The corresponding results of MCD at Fano resonances. θ= 2 ° is taken for the quasi-BICs and the vertical incidence for Fano resonances. The other parameters are identical with those in Fig. 1 and Fig. 2.
Fig. 5
Fig. 5 (a) The MCD on the photonic crystal-graphene-slab structure in different incident angle at quasi-BICs. (b) The corresponding results of MCD at Fano resonances. The other parameters are identical with those in Fig. 1 and Fig. 2.
Fig. 6
Fig. 6 The MCD with Different structure parameters. (a), (b) and (c) shows the MCD on the photonic crystal-graphene-slab structure with different radii of air cylinder, photonic crystal thickness, thickness of slab, respectively, at quasi-BICs. (d), (e) and (f) shows the corresponding results of MCD at Fano resonances. θ= 2 ° is taken for the quasi-BICs and the vertical incidence for Fano resonances. The other parameters are identical with those in Fig. 1 and Fig. 2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ ±( ω ) = D π i ω ω c + i τ
D( n )= e 2 v f π| n |
ω c ( n,B )= eB v f sign( n ) π| n |
τ= e v f μ π| n | ,
E f = v f π| n | ,
MCD=( T - T + )/( T + T + )
n=α( V g V CNP )

Metrics