Abstract

The tolerance of continuous-variable quantum key distribution to co-propagating DWDM channels is investigated. The quantum channel is operated in the S-band or L-band and multiplexed with a commercial C-band DWDM system. The results show that, compared to previously proposed configurations, the number of co-propagating channels can be doubled. At a fiber length of 25 km, 56 DWDM channels with a total launch power of 14.5 dBm are tolerated by the quantum channel.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integrating quantum key distribution with classical communications in backbone fiber network

Yingqiu Mao, Bi-Xiao Wang, Chunxu Zhao, Guangquan Wang, Ruichun Wang, Honghai Wang, Fei Zhou, Jimin Nie, Qing Chen, Yong Zhao, Qiang Zhang, Jun Zhang, Teng-Yun Chen, and Jian-Wei Pan
Opt. Express 26(5) 6010-6020 (2018)

Optimized channel allocation scheme for jointly reducing four-wave mixing and Raman scattering in the DWDM-QKD system

Jia-Ning Niu, Yong-Mei Sun, Chun Cai, and Yue-Feng Ji
Appl. Opt. 57(27) 7987-7996 (2018)

Quantum-classical access networks with embedded optical wireless links

Osama Elmabrok, Masoud Ghalaii, and Mohsen Razavi
J. Opt. Soc. Am. B 35(3) 487-499 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on Post-Quantum Cryptography,” Tech. Rep. NIST IR 8105, National Institute of Standards and Technology (2016).
  2. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
    [Crossref]
  3. I. Choi, Y. R. Zhou, J. F. Dynes, Z. Yuan, A. Klar, A. Sharpe, A. Plews, M. Lucamarini, C. Radig, J. Neubert, H. Griesser, M. Eiselt, C. Chunnilall, G. Lepert, A. Sinclair, J.-P. Elbers, A. Lord, and A. Shields, “Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber,” Opt. Express 22, 23121 (2014).
    [Crossref] [PubMed]
  4. S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Perspectives and limitations of QKD integration in metropolitan area networks,” Opt. Express 23, 10359 (2015).
    [Crossref] [PubMed]
  5. Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26, 6010 (2018).
    [Crossref] [PubMed]
  6. J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Reports 6, 35149 (2016).
    [Crossref]
  7. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
    [Crossref]
  8. P. Jouguet, S. Kunz-Jacques, R. Kumar, H. Qin, R. Gabet, E. Diamanti, and R. Alléaume, “Experimental demonstration of the coexistence of continuous-variable quantum key distribution with an intense DWDM classical channel,” in Proceedings for 3rd Annual Conference on Quantum Cryptography, (2013).
  9. R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
    [Crossref]
  10. F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
    [Crossref]
  11. T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
    [Crossref]
  12. S. Bigo, S. Gauchard, A. Bertaina, and J.-P. Hamaide, “Experimental investigation of stimulated Raman scattering limitation on WDM transmission over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11, 671–673 (1999).
    [Crossref]
  13. R. Engelbrecht, Nichtlineare Faseroptik (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014).
  14. S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
    [Crossref]
  15. S. Kleis and C. G. Schaeffer, “Improving the Secret Key Rate of Coherent Quantum Key Distribution with Bayesian Inference,” J. Light. Technol. 37, 722–728 (2019).
  16. H. P. Yuen and V. W. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177–179 (1983).
    [Crossref] [PubMed]

2019 (1)

S. Kleis and C. G. Schaeffer, “Improving the Secret Key Rate of Coherent Quantum Key Distribution with Bayesian Inference,” J. Light. Technol. 37, 722–728 (2019).

2018 (2)

Y. Mao, B.-X. Wang, C. Zhao, G. Wang, R. Wang, H. Wang, F. Zhou, J. Nie, Q. Chen, Y. Zhao, Q. Zhang, J. Zhang, T.-Y. Chen, and J.-W. Pan, “Integrating quantum key distribution with classical communications in backbone fiber network,” Opt. Express 26, 6010 (2018).
[Crossref] [PubMed]

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

2016 (1)

J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Reports 6, 35149 (2016).
[Crossref]

2015 (2)

S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Perspectives and limitations of QKD integration in metropolitan area networks,” Opt. Express 23, 10359 (2015).
[Crossref] [PubMed]

R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
[Crossref]

2014 (1)

2013 (1)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

2009 (2)

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

1999 (1)

S. Bigo, S. Gauchard, A. Bertaina, and J.-P. Hamaide, “Experimental investigation of stimulated Raman scattering limitation on WDM transmission over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11, 671–673 (1999).
[Crossref]

1983 (1)

Aleksic, S.

Alléaume, R.

R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
[Crossref]

P. Jouguet, S. Kunz-Jacques, R. Kumar, H. Qin, R. Gabet, E. Diamanti, and R. Alléaume, “Experimental demonstration of the coexistence of continuous-variable quantum key distribution with an intense DWDM classical channel,” in Proceedings for 3rd Annual Conference on Quantum Cryptography, (2013).

Awaji, Y.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Bertaina, A.

S. Bigo, S. Gauchard, A. Bertaina, and J.-P. Hamaide, “Experimental investigation of stimulated Raman scattering limitation on WDM transmission over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11, 671–673 (1999).
[Crossref]

Bettelli, S.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Bigo, S.

S. Bigo, S. Gauchard, A. Bertaina, and J.-P. Hamaide, “Experimental investigation of stimulated Raman scattering limitation on WDM transmission over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11, 671–673 (1999).
[Crossref]

Brunner, H. H.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Chan, V. W.

Chapuran, T. E.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Chen, L.

L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on Post-Quantum Cryptography,” Tech. Rep. NIST IR 8105, National Institute of Standards and Technology (2016).

Chen, Q.

Chen, T.-Y.

Choi, I.

Chunnilall, C.

Comandar, L. C.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Dallmann, N.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Debuisschert, T.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

Diamanti, E.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

P. Jouguet, S. Kunz-Jacques, R. Kumar, H. Qin, R. Gabet, E. Diamanti, and R. Alléaume, “Experimental demonstration of the coexistence of continuous-variable quantum key distribution with an intense DWDM classical channel,” in Proceedings for 3rd Annual Conference on Quantum Cryptography, (2013).

Dynes, J. F.

Edwards, T.

J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Reports 6, 35149 (2016).
[Crossref]

Eiselt, M.

Elbers, J.-P.

Engelbrecht, R.

R. Engelbrecht, Nichtlineare Faseroptik (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014).

Eriksson, T. A.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Fossier, S.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

Franzl, G.

Fröhlich, B.

J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Reports 6, 35149 (2016).
[Crossref]

Fujiwara, M.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Fung, C.-H. F.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Gabet, R.

P. Jouguet, S. Kunz-Jacques, R. Kumar, H. Qin, R. Gabet, E. Diamanti, and R. Alléaume, “Experimental demonstration of the coexistence of continuous-variable quantum key distribution with an intense DWDM classical channel,” in Proceedings for 3rd Annual Conference on Quantum Cryptography, (2013).

Gauchard, S.

S. Bigo, S. Gauchard, A. Bertaina, and J.-P. Hamaide, “Experimental investigation of stimulated Raman scattering limitation on WDM transmission over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11, 671–673 (1999).
[Crossref]

Goodman, M. S.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

Griesser, H.

Hamaide, J.-P.

S. Bigo, S. Gauchard, A. Bertaina, and J.-P. Hamaide, “Experimental investigation of stimulated Raman scattering limitation on WDM transmission over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11, 671–673 (1999).
[Crossref]

Hillerkuss, D.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Hipp, F.

Hirano, T.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Hughes, R. J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Jackel, J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Jordan, S.

L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on Post-Quantum Cryptography,” Tech. Rep. NIST IR 8105, National Institute of Standards and Technology (2016).

Jouguet, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, R. Kumar, H. Qin, R. Gabet, E. Diamanti, and R. Alléaume, “Experimental demonstration of the coexistence of continuous-variable quantum key distribution with an intense DWDM classical channel,” in Proceedings for 3rd Annual Conference on Quantum Cryptography, (2013).

Karinou, F.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Klar, A.

Kleis, S.

S. Kleis and C. G. Schaeffer, “Improving the Secret Key Rate of Coherent Quantum Key Distribution with Bayesian Inference,” J. Light. Technol. 37, 722–728 (2019).

Kumar, R.

R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
[Crossref]

P. Jouguet, S. Kunz-Jacques, R. Kumar, H. Qin, R. Gabet, E. Diamanti, and R. Alléaume, “Experimental demonstration of the coexistence of continuous-variable quantum key distribution with an intense DWDM classical channel,” in Proceedings for 3rd Annual Conference on Quantum Cryptography, (2013).

Kunz-Jacques, S.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, R. Kumar, H. Qin, R. Gabet, E. Diamanti, and R. Alléaume, “Experimental demonstration of the coexistence of continuous-variable quantum key distribution with an intense DWDM classical channel,” in Proceedings for 3rd Annual Conference on Quantum Cryptography, (2013).

Kuschnerov, M.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Lepert, G.

Leverrier, A.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

Liu, Y.-K.

L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on Post-Quantum Cryptography,” Tech. Rep. NIST IR 8105, National Institute of Standards and Technology (2016).

Lord, A.

Lucamarini, M.

Luís, R. S.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Mao, Y.

McCabe, K. P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

McNown, S. R.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Mikroulis, S.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Moody, D.

L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on Post-Quantum Cryptography,” Tech. Rep. NIST IR 8105, National Institute of Standards and Technology (2016).

Namiki, R.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Neubert, J.

Nie, J.

Pan, J.-W.

Peev, M.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Peralta, R.

L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on Post-Quantum Cryptography,” Tech. Rep. NIST IR 8105, National Institute of Standards and Technology (2016).

Perlner, R.

L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on Post-Quantum Cryptography,” Tech. Rep. NIST IR 8105, National Institute of Standards and Technology (2016).

Peters, N. A.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Plews, A.

Poppe, A.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

S. Aleksic, F. Hipp, D. Winkler, A. Poppe, B. Schrenk, and G. Franzl, “Perspectives and limitations of QKD integration in metropolitan area networks,” Opt. Express 23, 10359 (2015).
[Crossref] [PubMed]

Puttnam, B. J.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Qin, H.

R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
[Crossref]

P. Jouguet, S. Kunz-Jacques, R. Kumar, H. Qin, R. Gabet, E. Diamanti, and R. Alléaume, “Experimental demonstration of the coexistence of continuous-variable quantum key distribution with an intense DWDM classical channel,” in Proceedings for 3rd Annual Conference on Quantum Cryptography, (2013).

Rademacher, G.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Radig, C.

Runser, R. J.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Sasaki, M.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Schaeffer, C. G.

S. Kleis and C. G. Schaeffer, “Improving the Secret Key Rate of Coherent Quantum Key Distribution with Bayesian Inference,” J. Light. Technol. 37, 722–728 (2019).

Schrenk, B.

Sharpe, A.

Sharpe, A. W.

J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Reports 6, 35149 (2016).
[Crossref]

Shields, A.

Shields, A. J.

J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Reports 6, 35149 (2016).
[Crossref]

Sinclair, A.

Smith-Tone, D.

L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on Post-Quantum Cryptography,” Tech. Rep. NIST IR 8105, National Institute of Standards and Technology (2016).

Straw, A.

J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Reports 6, 35149 (2016).
[Crossref]

Takeoka, M.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Tam, W. W.-S.

J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Reports 6, 35149 (2016).
[Crossref]

Toliver, P.

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Tualle-Brouri, R.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

Wada, N.

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

Wang, B.-X.

Wang, D.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Wang, G.

Wang, H.

Wang, R.

Winkler, D.

Xie, C.

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

Yuan, Z.

Yuen, H. P.

Zhang, J.

Zhang, Q.

Zhao, C.

Zhao, Y.

Zhou, F.

Zhou, Y. R.

IEEE Photonics Technol. Lett. (2)

F. Karinou, H. H. Brunner, C.-H. F. Fung, L. C. Comandar, S. Bettelli, D. Hillerkuss, M. Kuschnerov, S. Mikroulis, D. Wang, C. Xie, M. Peev, and A. Poppe, “Toward the Integration of CV Quantum Key Distribution in Deployed Optical Networks,” IEEE Photonics Technol. Lett. 30, 650–653 (2018).
[Crossref]

S. Bigo, S. Gauchard, A. Bertaina, and J.-P. Hamaide, “Experimental investigation of stimulated Raman scattering limitation on WDM transmission over various types of fiber infrastructures,” IEEE Photonics Technol. Lett. 11, 671–673 (1999).
[Crossref]

J. Light. Technol. (1)

S. Kleis and C. G. Schaeffer, “Improving the Secret Key Rate of Coherent Quantum Key Distribution with Bayesian Inference,” J. Light. Technol. 37, 722–728 (2019).

J. Phys. B: At. Mol. Opt. Phys. (1)

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers,” J. Phys. B: At. Mol. Opt. Phys. 42, 114014 (2009).
[Crossref]

Nat. Photonics (1)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7, 378–381 (2013).
[Crossref]

New J. Phys. (2)

R. Kumar, H. Qin, and R. Alléaume, “Coexistence of continuous variable QKD with intense DWDM classical channels,” New J. Phys. 17, 043027 (2015).
[Crossref]

T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, and K. P. McCabe, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Sci. Reports (1)

J. F. Dynes, W. W.-S. Tam, A. Plews, B. Fröhlich, A. W. Sharpe, M. Lucamarini, Z. Yuan, C. Radig, A. Straw, T. Edwards, and A. J. Shields, “Ultra-high bandwidth quantum secured data transmission,” Sci. Reports 6, 35149 (2016).
[Crossref]

Other (4)

P. Jouguet, S. Kunz-Jacques, R. Kumar, H. Qin, R. Gabet, E. Diamanti, and R. Alléaume, “Experimental demonstration of the coexistence of continuous-variable quantum key distribution with an intense DWDM classical channel,” in Proceedings for 3rd Annual Conference on Quantum Cryptography, (2013).

R. Engelbrecht, Nichtlineare Faseroptik (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014).

T. A. Eriksson, T. Hirano, G. Rademacher, B. J. Puttnam, R. S. Luís, M. Fujiwara, R. Namiki, Y. Awaji, M. Takeoka, N. Wada, and M. Sasaki, “Joint Propagation of Continuous Variable Quantum Key Distribution and 18×24.5 Gbaud PM-16QAM Channels,” in ECOC 2018; Proceedings of 44th European Conference on Optical Communication, (Rome, 2018).
[Crossref]

L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on Post-Quantum Cryptography,” Tech. Rep. NIST IR 8105, National Institute of Standards and Technology (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Measured Raman scattering spectra at the output of a 25 km SMF-28 fiber. The peak power normalized spectra are shown when a CW laser at 1530 nm (left) respectively 1565 nm (right) was launched with a power of 1.4 dBm and recorded with a resolution bandwidth of 1 nm.
Fig. 2
Fig. 2 Experimental setups for multiplexing the DWDM system with the quantum channel and schematic representations of the corresponding spectra at the fiber input. Setup A is for a quantum channel in the S-band and Setup B for a quantum channel in the L-band. The number of DWDM channels Nch is varied in two different configurations: Either “Blue WDM” or “Red WDM”. The OSA is used to measure the optical noise at the quantum channel wavelength before each transmission experiment. During the transmission experiments the OSA is not connected.
Fig. 3
Fig. 3 Heterodyne quantum communication system with free-running LO and ADC. Two frequency-multiplexed pilots are used to support Bob’s quantum signal demodulation. A detailed description of the DSP can be found in [15]. Alice applies a bivariate Gaussian modulation to the quantum signal. Multiplexer and demultiplexer are as shown in Fig. 2.
Fig. 4
Fig. 4 Experimental results for a fiber length of 25 km and a launch power of 0 dBm per DWDM channel. The launch power of the quantum channel was 2.4 ph/sym.
Fig. 5
Fig. 5 Experimental results for a reduced launch power of −3 dBm per channel in the S-band configuration with a “Red WDM” map. Results are shown for a fiber length of 50 km and 25 km where the quantum channel launch power was 2 ph/sym and 2.4 ph/sym respectively.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ξ Bob ( opt ) = 2 η P Bob ( λ Q , B Q ) h ν Q B Q .
ξ Bob ( opt ) = 2 η P OSA ( λ Q , Δ λ RBW ) h ν Q Δ ν RBW ,
ξ Bob ( opt ) 2 η P OSA ( λ Q , Δ λ RBW ) Δ λ RBW λ Q 3 c 0 2 h .
d P S d z = α P S + γ R , DWDM P S P 0 e α z + γ R , DWDM h ν Q B ( 1 + N BE ) P 0 e α z ,
d P AS d z = α P AS + γ R , DWDM P AS P 0 e α z + γ R , DWDM h ν Q B N BE P 0 e α z .
P S ( z ) h ν Q B ( 1 + N BE ) , P AS ( z ) h ν Q B N BE .
ξ Alice ( S ) = ξ Bob ( S ) η e α z 2 ( 1 + N BE ) e α z , ξ Alice ( AS ) 2 N BE e α z .
P S ( z ) = γ R h ν Q B ( 1 + N BE ) P 0 z e α z , P AS ( z ) = γ R h ν Q B N BE P 0 z e α z .
ξ Alice ( Ram ) ( L ) P S / AS ( L ) e α L P 0 L .
m ( t ) = s ( t ) exp ( j 2 π f s t ) + exp ( j 2 π f P 2 t ) .
P ^ tot = | b ( n ) | 2 , P ^ N , tot = | b N , tot ( n ) | 2 , P ^ N , el = | b N , el ( n ) | 2 .
P ^ Q = | a ( n ) b * ( n ) | 2 .
ξ ^ = P ^ tot P ^ N , tot P ^ Q N ^ 0 = 2 P ^ tot P ^ N , tot P ^ Q P ^ N , tot P ^ N , el .

Metrics