Abstract

Our first principles studies predict that PbZnO3 will realize the phase transition from LiNbO3-type to perovskite-type and finally to post-post-perovskite-type with the gradual increase of pressure. Three types of PbZnO3 quantum dots are constructed based on such three phases, and their plasmon properties are investigated. It is found that the perovskite-type PbZnO3 can realize the regulation of optical absorption in near-infrared to ultraviolet regions, and the dipole oscillation mode of post-post-perovskite PbZnO3 plasmons can change from short range to long range. More accurately, we estimated the electric polarization of LiNbO3-type PbZnO3 to be 116µC/cm2. Our investigations confirm the excellent properties and great application prospect of PbZnO3 materials in different photoelectric fields.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast carrier dynamics in all-inorganic CsPbBr3 perovskite across the pressure-induced phase transition

Xiaochun Liu, Jianhui Han, You Li, Bifa Cao, Chaofan Sun, Hang Yin, Ying Shi, Mingxing Jin, Cailong Liu, Mengtao Sun, and Dajun Ding
Opt. Express 27(16) A995-A1003 (2019)

Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots

Ke Wei, Zhongjie Xu, Runze Chen, Xin Zheng, Xiangai Cheng, and Tian Jiang
Opt. Lett. 41(16) 3821-3824 (2016)

Radiation-pressure-induced photoluminescence enhancement of all-inorganic perovskite CsPbBr3 quantum dots

Ying Zhang, Haiou Zhu, Taiwu Huang, Zongpeng Song, and Shuangchen Ruan
Photon. Res. 7(8) 837-846 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, “Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles,” Chem. Mater. 27(22), 7549–7558 (2015).
    [Crossref]
  2. A. S. Bhalla, R.-Y. Guo, and R. Roy, “The perovskite structure - a review of its role in ceramic science and technology,” Mater. Res. Innov. 4(1), 3–26 (2000).
    [Crossref]
  3. M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, and S. W. Boettcher, “Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media,” J. Phys. Chem. Lett. 6(18), 3737–3742 (2015).
    [Crossref] [PubMed]
  4. K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
    [Crossref]
  5. Y. Han, S. Wang, Y. Liu, D. Ma, D. He, and Y. Zhao, “Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure,” High Press. Res. 38(2), 136–144 (2018).
    [Crossref]
  6. K. Nishimura, I. Yamada, K. Oka, Y. Shimakawa, and M. Azuma, “High-pressure synthesis of BaVO3: A new cubic perovskite,” J. Phys. Chem. Solids 75(6), 710–712 (2014).
    [Crossref]
  7. J. B. Goodenough and J. Zhou, “Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru),” Sci. Technol. Adv. Mater. 16(3), 036003 (2015).
    [Crossref] [PubMed]
  8. Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru, and M. Koizumi, “High-pressure Synthesis of Perovskite-Type Pb (Zn1/3Nb2/3) O3,” J. Am. Ceram. Soc. 52(9), 516–517 (1969).
    [Crossref]
  9. C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
    [Crossref] [PubMed]
  10. Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
    [Crossref] [PubMed]
  11. Y. Xu, X. Hao, C. Franchini, and F. Gao, “Structural, electronic, and ferroelectric properties of compressed CdPbO3 polymorphs,” Inorg. Chem. 52(2), 1032–1039 (2013).
    [Crossref] [PubMed]
  12. S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, “Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films,” Phys. Rev. Lett. 111(8), 087601 (2013).
    [Crossref] [PubMed]
  13. O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc. 70(5), 97–98 (1987).
    [Crossref]
  14. M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, “Post-perovskite phase transition in MgSiO3,” Science 304(5672), 855–858 (2004).
    [Crossref] [PubMed]
  15. H.-Z. Liu, J. Chen, J. Hu, C. Martin, D. Weidner, D. Häusermann, and H.-K. Mao, “Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure,” Geophys. Res. Lett. 32(4), L04304 (2005).
    [Crossref]
  16. X. Wu, Y. Dong, S. Qin, M. Abbas, and Z. Wu, “First-principles study of the pressure-induced phase transition in CaTiO3,” Solid State Commun. 136(7), 416–420 (2005).
    [Crossref]
  17. V. V. Yakovlev, V. Lazarov, J. Reynolds, and M. Gajdardziska-Josifovska, “Laser-induced phase transformations in semiconductor quantum dots,” Appl. Phys. Lett. 76(15), 2050–2052 (2000).
    [Crossref]
  18. K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, and T. Jiang, “Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots,” Opt. Lett. 41(16), 3821–3824 (2016).
    [Crossref] [PubMed]
  19. A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W.-L. Mao, and H. I. Karunadasa, “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2(4), 201–209 (2016).
    [Crossref] [PubMed]
  20. V. L. Solozhenko, O. O. Kurakevych, D. Andrault, Y. Le Godec, and M. Mezouar, “Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5,” Phys. Rev. Lett. 102(1), 015506 (2009).
    [Crossref] [PubMed]
  21. L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2(4), 17005 (2017).
    [Crossref]
  22. Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
    [Crossref]
  23. F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119(10), 107001 (2017).
    [Crossref] [PubMed]
  24. D. Mori, K. Tanaka, H. Saitoh, T. Kikegawa, and Y. Inaguma, “Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3,” Inorg. Chem. 54(23), 11405–11410 (2015).
    [Crossref] [PubMed]
  25. F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
    [Crossref] [PubMed]
  26. Z. Xu and K. B. Crozier, “All-dielectric nanotweezers for trapping and observation of a single quantum dot,” Opt. Express 27(4), 4034–4045 (2019).
    [Crossref] [PubMed]
  27. C. Li, Z. Zang, W. Chen, Z. Hu, X. Tang, W. Hu, K. Sun, X. Liu, and W. Chen, “Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes,” Opt. Express 24(13), 15071–15078 (2016).
    [Crossref] [PubMed]
  28. J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
    [Crossref]
  29. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
    [Crossref] [PubMed]
  30. M. Fan, M. Thompson, M. L. Andrade, and A. G. Brolo, “Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing,” Anal. Chem. 82(15), 6350–6352 (2010).
    [Crossref] [PubMed]
  31. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  32. Y. Inaguma, M. Yoshida, and T. Katsumata, “A polar oxide ZnSnO3 with a LiNbO3-type structure,” J. Am. Chem. Soc. 130(21), 6704–6705 (2008).
    [Crossref] [PubMed]
  33. G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na(0.5)Bi(0.5)TiO(3),” Acta Crystallogr. B 58(Pt 2), 168–178 (2002).
    [PubMed]
  34. A. A. Belik, S. Y. Stefanovich, B. I. Lazoryak, and E. Takayama-Muromachi, “BiInO3: A polar oxide with GdFeO3-type perovskite structure,” Chem. Mater. 18(7), 1964–1968 (2006).
    [Crossref]
  35. A. Glazer, “The classification of tilted octahedra in perovskites,” Acta Crystallogr. A 28(11), 3384–3392 (1972).
    [Crossref]
  36. M. D. Peel, S. P. Thompson, A. Daoud-Aladine, S. E. Ashbrook, and P. Lightfoot, “New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3,” Inorg. Chem. 51(12), 6876–6889 (2012).
    [Crossref] [PubMed]
  37. K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
    [Crossref]
  38. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
    [Crossref]
  39. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B Condens. Matter Mater. Phys. 59(3), 1758–1775 (1999).
    [Crossref]
  40. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
    [Crossref] [PubMed]
  41. D. M. Ceperley and B. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566–569 (1980).
    [Crossref]
  42. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref] [PubMed]
  43. M. A. Marques, A. Castro, G. F. Bertsch, and A. Rubio, “octopus: a first-principles tool for excited electron–ion dynamics,” Comput. Phys. Commun. 151(1), 60–78 (2003).
    [Crossref]
  44. C. Hartwigsen, S. Gœdecker, and J. Hutter, “Relativistic separable dual-space Gaussian pseudopotentials from H to Rn,” Phys. Rev. B Condens. Matter Mater. Phys. 58(7), 3641–3662 (1998).
    [Crossref]
  45. A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. Wills, “Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure,” Phys. Rev. B Condens. Matter Mater. Phys. 58(8), 4345–4351 (1998).
    [Crossref]
  46. J. Yan, Z. Yuan, and S. Gao, “End and central plasmon resonances in linear atomic chains,” Phys. Rev. Lett. 98(21), 216602 (2007).
    [Crossref] [PubMed]
  47. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
    [Crossref] [PubMed]
  48. H. T. Stokes and D. M. Hatch, “FINDSYM: program for identifying the space-group symmetry of a crystal,” J. Appl. Cryst. 38(1), 237–238 (2005).
    [Crossref]
  49. R. Resta, M. Posternak, and A. Baldereschi, “Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3,” Phys. Rev. Lett. 70(7), 1010–1013 (1993).
    [Crossref] [PubMed]
  50. C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
    [Crossref]
  51. H. Yin and H. Zhang, “Plasmons in graphene nanostructures,” J. Appl. Phys. 111(10), 103502 (2012).
    [Crossref]
  52. J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Megaelectronvolt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass,” Appl. Phys. Lett. 83(20), 4137–4139 (2003).
    [Crossref]
  53. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in Bi Fe O 3,” Phys. Rev. B Condens. Matter Mater. Phys. 74(22), 224412 (2006).
    [Crossref]

2019 (1)

2018 (2)

K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
[Crossref]

Y. Han, S. Wang, Y. Liu, D. Ma, D. He, and Y. Zhao, “Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure,” High Press. Res. 38(2), 136–144 (2018).
[Crossref]

2017 (2)

L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2(4), 17005 (2017).
[Crossref]

F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119(10), 107001 (2017).
[Crossref] [PubMed]

2016 (4)

C. Li, Z. Zang, W. Chen, Z. Hu, X. Tang, W. Hu, K. Sun, X. Liu, and W. Chen, “Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes,” Opt. Express 24(13), 15071–15078 (2016).
[Crossref] [PubMed]

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, and T. Jiang, “Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots,” Opt. Lett. 41(16), 3821–3824 (2016).
[Crossref] [PubMed]

A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W.-L. Mao, and H. I. Karunadasa, “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2(4), 201–209 (2016).
[Crossref] [PubMed]

2015 (6)

M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, “Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles,” Chem. Mater. 27(22), 7549–7558 (2015).
[Crossref]

J. B. Goodenough and J. Zhou, “Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru),” Sci. Technol. Adv. Mater. 16(3), 036003 (2015).
[Crossref] [PubMed]

M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, and S. W. Boettcher, “Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media,” J. Phys. Chem. Lett. 6(18), 3737–3742 (2015).
[Crossref] [PubMed]

D. Mori, K. Tanaka, H. Saitoh, T. Kikegawa, and Y. Inaguma, “Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3,” Inorg. Chem. 54(23), 11405–11410 (2015).
[Crossref] [PubMed]

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

2014 (1)

K. Nishimura, I. Yamada, K. Oka, Y. Shimakawa, and M. Azuma, “High-pressure synthesis of BaVO3: A new cubic perovskite,” J. Phys. Chem. Solids 75(6), 710–712 (2014).
[Crossref]

2013 (2)

Y. Xu, X. Hao, C. Franchini, and F. Gao, “Structural, electronic, and ferroelectric properties of compressed CdPbO3 polymorphs,” Inorg. Chem. 52(2), 1032–1039 (2013).
[Crossref] [PubMed]

S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, “Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films,” Phys. Rev. Lett. 111(8), 087601 (2013).
[Crossref] [PubMed]

2012 (4)

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

M. D. Peel, S. P. Thompson, A. Daoud-Aladine, S. E. Ashbrook, and P. Lightfoot, “New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3,” Inorg. Chem. 51(12), 6876–6889 (2012).
[Crossref] [PubMed]

H. Yin and H. Zhang, “Plasmons in graphene nanostructures,” J. Appl. Phys. 111(10), 103502 (2012).
[Crossref]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

2011 (2)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

2010 (2)

M. Fan, M. Thompson, M. L. Andrade, and A. G. Brolo, “Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing,” Anal. Chem. 82(15), 6350–6352 (2010).
[Crossref] [PubMed]

Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
[Crossref]

2009 (1)

V. L. Solozhenko, O. O. Kurakevych, D. Andrault, Y. Le Godec, and M. Mezouar, “Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5,” Phys. Rev. Lett. 102(1), 015506 (2009).
[Crossref] [PubMed]

2008 (2)

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Y. Inaguma, M. Yoshida, and T. Katsumata, “A polar oxide ZnSnO3 with a LiNbO3-type structure,” J. Am. Chem. Soc. 130(21), 6704–6705 (2008).
[Crossref] [PubMed]

2007 (2)

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

J. Yan, Z. Yuan, and S. Gao, “End and central plasmon resonances in linear atomic chains,” Phys. Rev. Lett. 98(21), 216602 (2007).
[Crossref] [PubMed]

2006 (2)

P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in Bi Fe O 3,” Phys. Rev. B Condens. Matter Mater. Phys. 74(22), 224412 (2006).
[Crossref]

A. A. Belik, S. Y. Stefanovich, B. I. Lazoryak, and E. Takayama-Muromachi, “BiInO3: A polar oxide with GdFeO3-type perovskite structure,” Chem. Mater. 18(7), 1964–1968 (2006).
[Crossref]

2005 (3)

H.-Z. Liu, J. Chen, J. Hu, C. Martin, D. Weidner, D. Häusermann, and H.-K. Mao, “Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure,” Geophys. Res. Lett. 32(4), L04304 (2005).
[Crossref]

X. Wu, Y. Dong, S. Qin, M. Abbas, and Z. Wu, “First-principles study of the pressure-induced phase transition in CaTiO3,” Solid State Commun. 136(7), 416–420 (2005).
[Crossref]

H. T. Stokes and D. M. Hatch, “FINDSYM: program for identifying the space-group symmetry of a crystal,” J. Appl. Cryst. 38(1), 237–238 (2005).
[Crossref]

2004 (1)

M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, “Post-perovskite phase transition in MgSiO3,” Science 304(5672), 855–858 (2004).
[Crossref] [PubMed]

2003 (2)

M. A. Marques, A. Castro, G. F. Bertsch, and A. Rubio, “octopus: a first-principles tool for excited electron–ion dynamics,” Comput. Phys. Commun. 151(1), 60–78 (2003).
[Crossref]

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Megaelectronvolt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass,” Appl. Phys. Lett. 83(20), 4137–4139 (2003).
[Crossref]

2002 (1)

G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na(0.5)Bi(0.5)TiO(3),” Acta Crystallogr. B 58(Pt 2), 168–178 (2002).
[PubMed]

2000 (2)

V. V. Yakovlev, V. Lazarov, J. Reynolds, and M. Gajdardziska-Josifovska, “Laser-induced phase transformations in semiconductor quantum dots,” Appl. Phys. Lett. 76(15), 2050–2052 (2000).
[Crossref]

A. S. Bhalla, R.-Y. Guo, and R. Roy, “The perovskite structure - a review of its role in ceramic science and technology,” Mater. Res. Innov. 4(1), 3–26 (2000).
[Crossref]

1999 (1)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B Condens. Matter Mater. Phys. 59(3), 1758–1775 (1999).
[Crossref]

1998 (2)

C. Hartwigsen, S. Gœdecker, and J. Hutter, “Relativistic separable dual-space Gaussian pseudopotentials from H to Rn,” Phys. Rev. B Condens. Matter Mater. Phys. 58(7), 3641–3662 (1998).
[Crossref]

A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. Wills, “Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure,” Phys. Rev. B Condens. Matter Mater. Phys. 58(8), 4345–4351 (1998).
[Crossref]

1996 (2)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

1993 (1)

R. Resta, M. Posternak, and A. Baldereschi, “Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3,” Phys. Rev. Lett. 70(7), 1010–1013 (1993).
[Crossref] [PubMed]

1987 (1)

O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc. 70(5), 97–98 (1987).
[Crossref]

1980 (1)

D. M. Ceperley and B. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566–569 (1980).
[Crossref]

1972 (1)

A. Glazer, “The classification of tilted octahedra in perovskites,” Acta Crystallogr. A 28(11), 3384–3392 (1972).
[Crossref]

1969 (1)

Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru, and M. Koizumi, “High-pressure Synthesis of Perovskite-Type Pb (Zn1/3Nb2/3) O3,” J. Am. Ceram. Soc. 52(9), 516–517 (1969).
[Crossref]

1965 (1)

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Abbas, M.

X. Wu, Y. Dong, S. Qin, M. Abbas, and Z. Wu, “First-principles study of the pressure-induced phase transition in CaTiO3,” Solid State Commun. 136(7), 416–420 (2005).
[Crossref]

Aizpurua, J.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Akamatsu, H.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Alder, B.

D. M. Ceperley and B. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566–569 (1980).
[Crossref]

Andrade, M. L.

M. Fan, M. Thompson, M. L. Andrade, and A. G. Brolo, “Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing,” Anal. Chem. 82(15), 6350–6352 (2010).
[Crossref] [PubMed]

Andrault, D.

V. L. Solozhenko, O. O. Kurakevych, D. Andrault, Y. Le Godec, and M. Mezouar, “Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5,” Phys. Rev. Lett. 102(1), 015506 (2009).
[Crossref] [PubMed]

Ashbrook, S. E.

M. D. Peel, S. P. Thompson, A. Daoud-Aladine, S. E. Ashbrook, and P. Lightfoot, “New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3,” Inorg. Chem. 51(12), 6876–6889 (2012).
[Crossref] [PubMed]

Atwater, H. A.

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Megaelectronvolt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass,” Appl. Phys. Lett. 83(20), 4137–4139 (2003).
[Crossref]

Auluck, S.

S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, “Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films,” Phys. Rev. Lett. 111(8), 087601 (2013).
[Crossref] [PubMed]

Aydil, E. S.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

Azuma, M.

K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
[Crossref]

K. Nishimura, I. Yamada, K. Oka, Y. Shimakawa, and M. Azuma, “High-pressure synthesis of BaVO3: A new cubic perovskite,” J. Phys. Chem. Solids 75(6), 710–712 (2014).
[Crossref]

Baldereschi, A.

R. Resta, M. Posternak, and A. Baldereschi, “Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3,” Phys. Rev. Lett. 70(7), 1010–1013 (1993).
[Crossref] [PubMed]

Basu, J.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

Batchellor, A. S.

M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, “Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles,” Chem. Mater. 27(22), 7549–7558 (2015).
[Crossref]

Beavers, C. M.

A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W.-L. Mao, and H. I. Karunadasa, “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2(4), 201–209 (2016).
[Crossref] [PubMed]

Belik, A. A.

A. A. Belik, S. Y. Stefanovich, B. I. Lazoryak, and E. Takayama-Muromachi, “BiInO3: A polar oxide with GdFeO3-type perovskite structure,” Chem. Mater. 18(7), 1964–1968 (2006).
[Crossref]

Bellaiche, L.

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

Bertsch, G. F.

M. A. Marques, A. Castro, G. F. Bertsch, and A. Rubio, “octopus: a first-principles tool for excited electron–ion dynamics,” Comput. Phys. Commun. 151(1), 60–78 (2003).
[Crossref]

Bhalla, A. S.

A. S. Bhalla, R.-Y. Guo, and R. Roy, “The perovskite structure - a review of its role in ceramic science and technology,” Mater. Res. Innov. 4(1), 3–26 (2000).
[Crossref]

Boercker, J. E.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

Boettcher, S. W.

M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, and S. W. Boettcher, “Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media,” J. Phys. Chem. Lett. 6(18), 3737–3742 (2015).
[Crossref] [PubMed]

M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, “Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles,” Chem. Mater. 27(22), 7549–7558 (2015).
[Crossref]

Borisov, A. G.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Brabec, C. J.

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

Brolo, A. G.

M. Fan, M. Thompson, M. L. Andrade, and A. G. Brolo, “Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing,” Anal. Chem. 82(15), 6350–6352 (2010).
[Crossref] [PubMed]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Burke, M. S.

M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, and S. W. Boettcher, “Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media,” J. Phys. Chem. Lett. 6(18), 3737–3742 (2015).
[Crossref] [PubMed]

M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, “Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles,” Chem. Mater. 27(22), 7549–7558 (2015).
[Crossref]

Carter, C. B.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

Castro, A.

M. A. Marques, A. Castro, G. F. Bertsch, and A. Rubio, “octopus: a first-principles tool for excited electron–ion dynamics,” Comput. Phys. Commun. 151(1), 60–78 (2003).
[Crossref]

Ceperley, D. M.

D. M. Ceperley and B. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566–569 (1980).
[Crossref]

Chen, C.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Chen, J.

H.-Z. Liu, J. Chen, J. Hu, C. Martin, D. Weidner, D. Häusermann, and H.-K. Mao, “Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure,” Geophys. Res. Lett. 32(4), L04304 (2005).
[Crossref]

Chen, R.

Chen, W.

Cheng, X.

Crozier, K. B.

Cui, T.

Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
[Crossref]

Daoud-Aladine, A.

M. D. Peel, S. P. Thompson, A. Daoud-Aladine, S. E. Ashbrook, and P. Lightfoot, “New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3,” Inorg. Chem. 51(12), 6876–6889 (2012).
[Crossref] [PubMed]

Delin, A.

A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. Wills, “Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure,” Phys. Rev. B Condens. Matter Mater. Phys. 58(8), 4345–4351 (1998).
[Crossref]

Divakar, R.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

Dong, H.

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

Dong, Y.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

X. Wu, Y. Dong, S. Qin, M. Abbas, and Z. Wu, “First-principles study of the pressure-induced phase transition in CaTiO3,” Solid State Commun. 136(7), 416–420 (2005).
[Crossref]

Duan, W.

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

Enache-Pommer, E.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

Enman, L. J.

M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, “Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles,” Chem. Mater. 27(22), 7549–7558 (2015).
[Crossref]

M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, and S. W. Boettcher, “Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media,” J. Phys. Chem. Lett. 6(18), 3737–3742 (2015).
[Crossref] [PubMed]

Eriksson, O.

P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in Bi Fe O 3,” Phys. Rev. B Condens. Matter Mater. Phys. 74(22), 224412 (2006).
[Crossref]

A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. Wills, “Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure,” Phys. Rev. B Condens. Matter Mater. Phys. 58(8), 4345–4351 (1998).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Fan, M.

M. Fan, M. Thompson, M. L. Andrade, and A. G. Brolo, “Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing,” Anal. Chem. 82(15), 6350–6352 (2010).
[Crossref] [PubMed]

Fast, L.

A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. Wills, “Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure,” Phys. Rev. B Condens. Matter Mater. Phys. 58(8), 4345–4351 (1998).
[Crossref]

Fjellvåg, H.

P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in Bi Fe O 3,” Phys. Rev. B Condens. Matter Mater. Phys. 74(22), 224412 (2006).
[Crossref]

Franchini, C.

Y. Xu, X. Hao, C. Franchini, and F. Gao, “Structural, electronic, and ferroelectric properties of compressed CdPbO3 polymorphs,” Inorg. Chem. 52(2), 1032–1039 (2013).
[Crossref] [PubMed]

Fujita, K.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Fukuzumi, M.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Furthmüller, J.

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Gabor, C. A.

M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, and S. W. Boettcher, “Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media,” J. Phys. Chem. Lett. 6(18), 3737–3742 (2015).
[Crossref] [PubMed]

Gajdardziska-Josifovska, M.

V. V. Yakovlev, V. Lazarov, J. Reynolds, and M. Gajdardziska-Josifovska, “Laser-induced phase transformations in semiconductor quantum dots,” Appl. Phys. Lett. 76(15), 2050–2052 (2000).
[Crossref]

Gao, F.

Y. Xu, X. Hao, C. Franchini, and F. Gao, “Structural, electronic, and ferroelectric properties of compressed CdPbO3 polymorphs,” Inorg. Chem. 52(2), 1032–1039 (2013).
[Crossref] [PubMed]

Gao, S.

J. Yan, Z. Yuan, and S. Gao, “End and central plasmon resonances in linear atomic chains,” Phys. Rev. Lett. 98(21), 216602 (2007).
[Crossref] [PubMed]

Garg, A.

S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, “Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films,” Phys. Rev. Lett. 111(8), 087601 (2013).
[Crossref] [PubMed]

Glazer, A.

A. Glazer, “The classification of tilted octahedra in perovskites,” Acta Crystallogr. A 28(11), 3384–3392 (1972).
[Crossref]

Gœdecker, S.

C. Hartwigsen, S. Gœdecker, and J. Hutter, “Relativistic separable dual-space Gaussian pseudopotentials from H to Rn,” Phys. Rev. B Condens. Matter Mater. Phys. 58(7), 3641–3662 (1998).
[Crossref]

Goodenough, J. B.

J. B. Goodenough and J. Zhou, “Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru),” Sci. Technol. Adv. Mater. 16(3), 036003 (2015).
[Crossref] [PubMed]

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Gu, B.

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

Guo, I.

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

Guo, R.-Y.

A. S. Bhalla, R.-Y. Guo, and R. Roy, “The perovskite structure - a review of its role in ceramic science and technology,” Mater. Res. Innov. 4(1), 3–26 (2000).
[Crossref]

Gupta, R.

S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, “Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films,” Phys. Rev. Lett. 111(8), 087601 (2013).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Han, J.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Han, Y.

Y. Han, S. Wang, Y. Liu, D. Ma, D. He, and Y. Zhao, “Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure,” High Press. Res. 38(2), 136–144 (2018).
[Crossref]

Hao, X.

Y. Xu, X. Hao, C. Franchini, and F. Gao, “Structural, electronic, and ferroelectric properties of compressed CdPbO3 polymorphs,” Inorg. Chem. 52(2), 1032–1039 (2013).
[Crossref] [PubMed]

Hartwigsen, C.

C. Hartwigsen, S. Gœdecker, and J. Hutter, “Relativistic separable dual-space Gaussian pseudopotentials from H to Rn,” Phys. Rev. B Condens. Matter Mater. Phys. 58(7), 3641–3662 (1998).
[Crossref]

Hatch, D. M.

H. T. Stokes and D. M. Hatch, “FINDSYM: program for identifying the space-group symmetry of a crystal,” J. Appl. Cryst. 38(1), 237–238 (2005).
[Crossref]

Häusermann, D.

H.-Z. Liu, J. Chen, J. Hu, C. Martin, D. Weidner, D. Häusermann, and H.-K. Mao, “Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure,” Geophys. Res. Lett. 32(4), L04304 (2005).
[Crossref]

Hayakawa, S.

Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru, and M. Koizumi, “High-pressure Synthesis of Perovskite-Type Pb (Zn1/3Nb2/3) O3,” J. Am. Ceram. Soc. 52(9), 516–517 (1969).
[Crossref]

Hayashi, N.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

He, D.

Y. Han, S. Wang, Y. Liu, D. Ma, D. He, and Y. Zhao, “Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure,” High Press. Res. 38(2), 136–144 (2018).
[Crossref]

He, J.

Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
[Crossref]

Hernandez, O.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Hiraki, K.

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

Hirose, K.

M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, “Post-perovskite phase transition in MgSiO3,” Science 304(5672), 855–858 (2004).
[Crossref] [PubMed]

Hu, J.

H.-Z. Liu, J. Chen, J. Hu, C. Martin, D. Weidner, D. Häusermann, and H.-K. Mao, “Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure,” Geophys. Res. Lett. 32(4), L04304 (2005).
[Crossref]

Hu, W.

Hu, X.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Hu, Z.

Huang, H.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Hutter, J.

C. Hartwigsen, S. Gœdecker, and J. Hutter, “Relativistic separable dual-space Gaussian pseudopotentials from H to Rn,” Phys. Rev. B Condens. Matter Mater. Phys. 58(7), 3641–3662 (1998).
[Crossref]

Inaguma, Y.

D. Mori, K. Tanaka, H. Saitoh, T. Kikegawa, and Y. Inaguma, “Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3,” Inorg. Chem. 54(23), 11405–11410 (2015).
[Crossref] [PubMed]

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

Y. Inaguma, M. Yoshida, and T. Katsumata, “A polar oxide ZnSnO3 with a LiNbO3-type structure,” J. Am. Chem. Soc. 130(21), 6704–6705 (2008).
[Crossref] [PubMed]

Ito, E.

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Jaffe, A.

A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W.-L. Mao, and H. I. Karunadasa, “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2(4), 201–209 (2016).
[Crossref] [PubMed]

Jiang, T.

Jin, C.-Q.

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Johansson, B.

A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. Wills, “Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure,” Phys. Rev. B Condens. Matter Mater. Phys. 58(8), 4345–4351 (1998).
[Crossref]

Jones, G. O.

G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na(0.5)Bi(0.5)TiO(3),” Acta Crystallogr. B 58(Pt 2), 168–178 (2002).
[PubMed]

Joubert, D.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B Condens. Matter Mater. Phys. 59(3), 1758–1775 (1999).
[Crossref]

Kanamaru, F.

Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru, and M. Koizumi, “High-pressure Synthesis of Perovskite-Type Pb (Zn1/3Nb2/3) O3,” J. Am. Ceram. Soc. 52(9), 516–517 (1969).
[Crossref]

Kanungo, S.

K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
[Crossref]

Karunadasa, H. I.

A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W.-L. Mao, and H. I. Karunadasa, “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2(4), 201–209 (2016).
[Crossref] [PubMed]

Katsumata, T.

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

Y. Inaguma, M. Yoshida, and T. Katsumata, “A polar oxide ZnSnO3 with a LiNbO3-type structure,” J. Am. Chem. Soc. 130(21), 6704–6705 (2008).
[Crossref] [PubMed]

Katsura, T.

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Kawabata, H.

O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc. 70(5), 97–98 (1987).
[Crossref]

Kawamoto, T.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Kawamura, K.

M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, “Post-perovskite phase transition in MgSiO3,” Science 304(5672), 855–858 (2004).
[Crossref] [PubMed]

Kazansky, A. K.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Kellon, J. E.

M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, and S. W. Boettcher, “Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media,” J. Phys. Chem. Lett. 6(18), 3737–3742 (2015).
[Crossref] [PubMed]

Kikegawa, T.

D. Mori, K. Tanaka, H. Saitoh, T. Kikegawa, and Y. Inaguma, “Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3,” Inorg. Chem. 54(23), 11405–11410 (2015).
[Crossref] [PubMed]

Kjekshus, A.

P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in Bi Fe O 3,” Phys. Rev. B Condens. Matter Mater. Phys. 74(22), 224412 (2006).
[Crossref]

Knee, C. S.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Kohn, W.

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Koizumi, M.

Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru, and M. Koizumi, “High-pressure Synthesis of Perovskite-Type Pb (Zn1/3Nb2/3) O3,” J. Am. Ceram. Soc. 52(9), 516–517 (1969).
[Crossref]

Kooi, B. J.

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Megaelectronvolt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass,” Appl. Phys. Lett. 83(20), 4137–4139 (2003).
[Crossref]

Kortshagen, U. R.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

Krantz, N.

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

Kresse, G.

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B Condens. Matter Mater. Phys. 59(3), 1758–1775 (1999).
[Crossref]

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Kurakevych, O. O.

V. L. Solozhenko, O. O. Kurakevych, D. Andrault, Y. Le Godec, and M. Mezouar, “Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5,” Phys. Rev. Lett. 102(1), 015506 (2009).
[Crossref] [PubMed]

Lafargue-Dit-Hauret, W.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Lazarov, V.

V. V. Yakovlev, V. Lazarov, J. Reynolds, and M. Gajdardziska-Josifovska, “Laser-induced phase transformations in semiconductor quantum dots,” Appl. Phys. Lett. 76(15), 2050–2052 (2000).
[Crossref]

Lazoryak, B. I.

A. A. Belik, S. Y. Stefanovich, B. I. Lazoryak, and E. Takayama-Muromachi, “BiInO3: A polar oxide with GdFeO3-type perovskite structure,” Chem. Mater. 18(7), 1964–1968 (2006).
[Crossref]

Le Godec, Y.

V. L. Solozhenko, O. O. Kurakevych, D. Andrault, Y. Le Godec, and M. Mezouar, “Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5,” Phys. Rev. Lett. 102(1), 015506 (2009).
[Crossref] [PubMed]

Leschkies, K. S.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

Li, C.

Li, F.

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

Li, Q.

Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
[Crossref]

Lightfoot, P.

M. D. Peel, S. P. Thompson, A. Daoud-Aladine, S. E. Ashbrook, and P. Lightfoot, “New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3,” Inorg. Chem. 51(12), 6876–6889 (2012).
[Crossref] [PubMed]

Lin, Y.

A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W.-L. Mao, and H. I. Karunadasa, “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2(4), 201–209 (2016).
[Crossref] [PubMed]

Litzov, M.

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

Liu, H.-Z.

H.-Z. Liu, J. Chen, J. Hu, C. Martin, D. Weidner, D. Häusermann, and H.-K. Mao, “Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure,” Geophys. Res. Lett. 32(4), L04304 (2005).
[Crossref]

Liu, Q. Q.

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Liu, X.

Liu, Y.

Y. Han, S. Wang, Y. Liu, D. Ma, D. He, and Y. Zhao, “Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure,” High Press. Res. 38(2), 136–144 (2018).
[Crossref]

Lv, J.

L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2(4), 17005 (2017).
[Crossref]

Ma, D.

Y. Han, S. Wang, Y. Liu, D. Ma, D. He, and Y. Zhao, “Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure,” High Press. Res. 38(2), 136–144 (2018).
[Crossref]

Ma, Y.

L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2(4), 17005 (2017).
[Crossref]

F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119(10), 107001 (2017).
[Crossref] [PubMed]

Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
[Crossref]

Maier, S. A.

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Megaelectronvolt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass,” Appl. Phys. Lett. 83(20), 4137–4139 (2003).
[Crossref]

Manuel, P.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Mao, H.-K.

H.-Z. Liu, J. Chen, J. Hu, C. Martin, D. Weidner, D. Häusermann, and H.-K. Mao, “Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure,” Geophys. Res. Lett. 32(4), L04304 (2005).
[Crossref]

Mao, W.-L.

A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W.-L. Mao, and H. I. Karunadasa, “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2(4), 201–209 (2016).
[Crossref] [PubMed]

Marinica, D. C.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Marques, M. A.

M. A. Marques, A. Castro, G. F. Bertsch, and A. Rubio, “octopus: a first-principles tool for excited electron–ion dynamics,” Comput. Phys. Commun. 151(1), 60–78 (2003).
[Crossref]

Martin, C.

H.-Z. Liu, J. Chen, J. Hu, C. Martin, D. Weidner, D. Häusermann, and H.-K. Mao, “Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure,” Geophys. Res. Lett. 32(4), L04304 (2005).
[Crossref]

Matsuo, Y.

Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru, and M. Koizumi, “High-pressure Synthesis of Perovskite-Type Pb (Zn1/3Nb2/3) O3,” J. Am. Ceram. Soc. 52(9), 516–517 (1969).
[Crossref]

Matt,

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Mezouar, M.

V. L. Solozhenko, O. O. Kurakevych, D. Andrault, Y. Le Godec, and M. Mezouar, “Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5,” Phys. Rev. Lett. 102(1), 015506 (2009).
[Crossref] [PubMed]

Mori, D.

D. Mori, K. Tanaka, H. Saitoh, T. Kikegawa, and Y. Inaguma, “Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3,” Inorg. Chem. 54(23), 11405–11410 (2015).
[Crossref] [PubMed]

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

Morimi, M.

O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc. 70(5), 97–98 (1987).
[Crossref]

Mukherjee, S.

S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, “Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films,” Phys. Rev. Lett. 111(8), 087601 (2013).
[Crossref] [PubMed]

Murakami, M.

M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, “Post-perovskite phase transition in MgSiO3,” Science 304(5672), 855–858 (2004).
[Crossref] [PubMed]

Needs, R. J.

F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119(10), 107001 (2017).
[Crossref] [PubMed]

Nishimura, K.

K. Nishimura, I. Yamada, K. Oka, Y. Shimakawa, and M. Azuma, “High-pressure synthesis of BaVO3: A new cubic perovskite,” J. Phys. Chem. Solids 75(6), 710–712 (2014).
[Crossref]

Nordlander, P.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Norris, D. J.

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

Oganov, A. R.

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

Ohba, T.

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

Ohishi, Y.

M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, “Post-perovskite phase transition in MgSiO3,” Science 304(5672), 855–858 (2004).
[Crossref] [PubMed]

Oh-ishi, K.

K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
[Crossref]

Oka, K.

K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
[Crossref]

K. Nishimura, I. Yamada, K. Oka, Y. Shimakawa, and M. Azuma, “High-pressure synthesis of BaVO3: A new cubic perovskite,” J. Phys. Chem. Solids 75(6), 710–712 (2014).
[Crossref]

Peel, M. D.

M. D. Peel, S. P. Thompson, A. Daoud-Aladine, S. E. Ashbrook, and P. Lightfoot, “New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3,” Inorg. Chem. 51(12), 6876–6889 (2012).
[Crossref] [PubMed]

Peng, F.

F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119(10), 107001 (2017).
[Crossref] [PubMed]

Penninkhof, J. J.

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Megaelectronvolt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass,” Appl. Phys. Lett. 83(20), 4137–4139 (2003).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Pickard, C. J.

F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119(10), 107001 (2017).
[Crossref] [PubMed]

Pledger, E.

M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, and S. W. Boettcher, “Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media,” J. Phys. Chem. Lett. 6(18), 3737–3742 (2015).
[Crossref] [PubMed]

Polman, A.

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Megaelectronvolt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass,” Appl. Phys. Lett. 83(20), 4137–4139 (2003).
[Crossref]

Posternak, M.

R. Resta, M. Posternak, and A. Baldereschi, “Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3,” Phys. Rev. Lett. 70(7), 1010–1013 (1993).
[Crossref] [PubMed]

Prasad, R.

S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, “Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films,” Phys. Rev. Lett. 111(8), 087601 (2013).
[Crossref] [PubMed]

Qin, S.

X. Wu, Y. Dong, S. Qin, M. Abbas, and Z. Wu, “First-principles study of the pressure-induced phase transition in CaTiO3,” Solid State Commun. 136(7), 416–420 (2005).
[Crossref]

Ravindran, P.

P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in Bi Fe O 3,” Phys. Rev. B Condens. Matter Mater. Phys. 74(22), 224412 (2006).
[Crossref]

Resta, R.

R. Resta, M. Posternak, and A. Baldereschi, “Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3,” Phys. Rev. Lett. 70(7), 1010–1013 (1993).
[Crossref] [PubMed]

Reynolds, J.

V. V. Yakovlev, V. Lazarov, J. Reynolds, and M. Gajdardziska-Josifovska, “Laser-induced phase transformations in semiconductor quantum dots,” Appl. Phys. Lett. 76(15), 2050–2052 (2000).
[Crossref]

Richter, G. J.

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

Rocquefelte, X.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Roy, A.

S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, “Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films,” Phys. Rev. Lett. 111(8), 087601 (2013).
[Crossref] [PubMed]

Roy, R.

A. S. Bhalla, R.-Y. Guo, and R. Roy, “The perovskite structure - a review of its role in ceramic science and technology,” Mater. Res. Innov. 4(1), 3–26 (2000).
[Crossref]

Rubio, A.

M. A. Marques, A. Castro, G. F. Bertsch, and A. Rubio, “octopus: a first-principles tool for excited electron–ion dynamics,” Comput. Phys. Commun. 151(1), 60–78 (2003).
[Crossref]

Saha-Dasgupta, T.

K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
[Crossref]

Saitoh, H.

D. Mori, K. Tanaka, H. Saitoh, T. Kikegawa, and Y. Inaguma, “Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3,” Inorg. Chem. 54(23), 11405–11410 (2015).
[Crossref] [PubMed]

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

Sasaki, H.

Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru, and M. Koizumi, “High-pressure Synthesis of Perovskite-Type Pb (Zn1/3Nb2/3) O3,” J. Am. Ceram. Soc. 52(9), 516–517 (1969).
[Crossref]

Sata, N.

M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, “Post-perovskite phase transition in MgSiO3,” Science 304(5672), 855–858 (2004).
[Crossref] [PubMed]

Sham, L. J.

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Shatskiy, A.

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Shimakawa, Y.

K. Nishimura, I. Yamada, K. Oka, Y. Shimakawa, and M. Azuma, “High-pressure synthesis of BaVO3: A new cubic perovskite,” J. Phys. Chem. Solids 75(6), 710–712 (2014).
[Crossref]

Shimazu, T.

K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
[Crossref]

Shimizu, K.

O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc. 70(5), 97–98 (1987).
[Crossref]

Solozhenko, V. L.

V. L. Solozhenko, O. O. Kurakevych, D. Andrault, Y. Le Godec, and M. Mezouar, “Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5,” Phys. Rev. Lett. 102(1), 015506 (2009).
[Crossref] [PubMed]

Stefanovich, S. Y.

A. A. Belik, S. Y. Stefanovich, B. I. Lazoryak, and E. Takayama-Muromachi, “BiInO3: A polar oxide with GdFeO3-type perovskite structure,” Chem. Mater. 18(7), 1964–1968 (2006).
[Crossref]

Steidl, M.

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

Stokes, H. T.

H. T. Stokes and D. M. Hatch, “FINDSYM: program for identifying the space-group symmetry of a crystal,” J. Appl. Cryst. 38(1), 237–238 (2005).
[Crossref]

Stubhan, J.

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

Studer, A. J.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Sun, K.

Sun, Y.

F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119(10), 107001 (2017).
[Crossref] [PubMed]

Sweatlock, L. A.

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Megaelectronvolt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass,” Appl. Phys. Lett. 83(20), 4137–4139 (2003).
[Crossref]

Takahashi, T.

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

Takayama-Muromachi, E.

A. A. Belik, S. Y. Stefanovich, B. I. Lazoryak, and E. Takayama-Muromachi, “BiInO3: A polar oxide with GdFeO3-type perovskite structure,” Chem. Mater. 18(7), 1964–1968 (2006).
[Crossref]

Tanaka, K.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

D. Mori, K. Tanaka, H. Saitoh, T. Kikegawa, and Y. Inaguma, “Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3,” Inorg. Chem. 54(23), 11405–11410 (2015).
[Crossref] [PubMed]

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

Tang, X.

Thomas, P. A.

G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na(0.5)Bi(0.5)TiO(3),” Acta Crystallogr. B 58(Pt 2), 168–178 (2002).
[PubMed]

Thompson, M.

M. Fan, M. Thompson, M. L. Andrade, and A. G. Brolo, “Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing,” Anal. Chem. 82(15), 6350–6352 (2010).
[Crossref] [PubMed]

Thompson, S. P.

M. D. Peel, S. P. Thompson, A. Daoud-Aladine, S. E. Ashbrook, and P. Lightfoot, “New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3,” Inorg. Chem. 51(12), 6876–6889 (2012).
[Crossref] [PubMed]

Tian, Y.

Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
[Crossref]

Tsuchiya, T.

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

Uwatoko, Y.

K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
[Crossref]

Vidya, R.

P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in Bi Fe O 3,” Phys. Rev. B Condens. Matter Mater. Phys. 74(22), 224412 (2006).
[Crossref]

Voss, J.

A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W.-L. Mao, and H. I. Karunadasa, “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2(4), 201–209 (2016).
[Crossref] [PubMed]

Vredenberg, A. M.

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Megaelectronvolt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass,” Appl. Phys. Lett. 83(20), 4137–4139 (2003).
[Crossref]

Wang, H.

Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
[Crossref]

Wang, S.

Y. Han, S. Wang, Y. Liu, D. Ma, D. He, and Y. Zhao, “Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure,” High Press. Res. 38(2), 136–144 (2018).
[Crossref]

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

Wang, Y.

L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2(4), 17005 (2017).
[Crossref]

Wei, K.

Weidner, D.

H.-Z. Liu, J. Chen, J. Hu, C. Martin, D. Weidner, D. Häusermann, and H.-K. Mao, “Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure,” Geophys. Res. Lett. 32(4), L04304 (2005).
[Crossref]

Wills, J.

A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. Wills, “Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure,” Phys. Rev. B Condens. Matter Mater. Phys. 58(8), 4345–4351 (1998).
[Crossref]

Wu, Q.

F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119(10), 107001 (2017).
[Crossref] [PubMed]

Wu, X.

X. Wu, Y. Dong, S. Qin, M. Abbas, and Z. Wu, “First-principles study of the pressure-induced phase transition in CaTiO3,” Solid State Commun. 136(7), 416–420 (2005).
[Crossref]

Wu, X.-G.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Wu, Z.

X. Wu, Y. Dong, S. Qin, M. Abbas, and Z. Wu, “First-principles study of the pressure-induced phase transition in CaTiO3,” Solid State Commun. 136(7), 416–420 (2005).
[Crossref]

Xia, Y.

Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
[Crossref]

Xu, B.

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

Xu, C.

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

Xu, Y.

Y. Xu, X. Hao, C. Franchini, and F. Gao, “Structural, electronic, and ferroelectric properties of compressed CdPbO3 polymorphs,” Inorg. Chem. 52(2), 1032–1039 (2013).
[Crossref] [PubMed]

Xu, Z.

Yakovlev, V. V.

V. V. Yakovlev, V. Lazarov, J. Reynolds, and M. Gajdardziska-Josifovska, “Laser-induced phase transformations in semiconductor quantum dots,” Appl. Phys. Lett. 76(15), 2050–2052 (2000).
[Crossref]

Yamada, I.

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

K. Nishimura, I. Yamada, K. Oka, Y. Shimakawa, and M. Azuma, “High-pressure synthesis of BaVO3: A new cubic perovskite,” J. Phys. Chem. Solids 75(6), 710–712 (2014).
[Crossref]

Yamaguchi, O.

O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc. 70(5), 97–98 (1987).
[Crossref]

Yamauchi, T.

K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
[Crossref]

Yan, J.

J. Yan, Z. Yuan, and S. Gao, “End and central plasmon resonances in linear atomic chains,” Phys. Rev. Lett. 98(21), 216602 (2007).
[Crossref] [PubMed]

Yang, L. X.

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Yang, Y.

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

Yin, H.

H. Yin and H. Zhang, “Plasmons in graphene nanostructures,” J. Appl. Phys. 111(10), 103502 (2012).
[Crossref]

Yoshida, M.

Y. Inaguma, M. Yoshida, and T. Katsumata, “A polar oxide ZnSnO3 with a LiNbO3-type structure,” J. Am. Chem. Soc. 130(21), 6704–6705 (2008).
[Crossref] [PubMed]

Yu, R. C.

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Yu, Y.

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Yuan, Z.

J. Yan, Z. Yuan, and S. Gao, “End and central plasmon resonances in linear atomic chains,” Phys. Rev. Lett. 98(21), 216602 (2007).
[Crossref] [PubMed]

Zang, Z.

Zhang, F.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Zhang, H.

H. Yin and H. Zhang, “Plasmons in graphene nanostructures,” J. Appl. Phys. 111(10), 103502 (2012).
[Crossref]

Zhang, L.

L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2(4), 17005 (2017).
[Crossref]

Zhao, J. G.

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Zhao, Y.

Y. Han, S. Wang, Y. Liu, D. Ma, D. He, and Y. Zhao, “Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure,” High Press. Res. 38(2), 136–144 (2018).
[Crossref]

Zheng, X.

Zhong, H.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Zhou, J.

J. B. Goodenough and J. Zhou, “Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru),” Sci. Technol. Adv. Mater. 16(3), 036003 (2015).
[Crossref] [PubMed]

Zhou, J.-S.

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Zou, B.

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Zou, G.

Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
[Crossref]

Zou, S.

M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, and S. W. Boettcher, “Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media,” J. Phys. Chem. Lett. 6(18), 3737–3742 (2015).
[Crossref] [PubMed]

M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, “Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles,” Chem. Mater. 27(22), 7549–7558 (2015).
[Crossref]

ACS Cent. Sci. (1)

A. Jaffe, Y. Lin, C. M. Beavers, J. Voss, W.-L. Mao, and H. I. Karunadasa, “High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties,” ACS Cent. Sci. 2(4), 201–209 (2016).
[Crossref] [PubMed]

ACS Nano (1)

F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, “Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology,” ACS Nano 9(4), 4533–4542 (2015).
[Crossref] [PubMed]

Acta Crystallogr. A (1)

A. Glazer, “The classification of tilted octahedra in perovskites,” Acta Crystallogr. A 28(11), 3384–3392 (1972).
[Crossref]

Acta Crystallogr. B (1)

G. O. Jones and P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na(0.5)Bi(0.5)TiO(3),” Acta Crystallogr. B 58(Pt 2), 168–178 (2002).
[PubMed]

Anal. Chem. (1)

M. Fan, M. Thompson, M. L. Andrade, and A. G. Brolo, “Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing,” Anal. Chem. 82(15), 6350–6352 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

V. V. Yakovlev, V. Lazarov, J. Reynolds, and M. Gajdardziska-Josifovska, “Laser-induced phase transformations in semiconductor quantum dots,” Appl. Phys. Lett. 76(15), 2050–2052 (2000).
[Crossref]

J. J. Penninkhof, A. Polman, L. A. Sweatlock, S. A. Maier, H. A. Atwater, A. M. Vredenberg, and B. J. Kooi, “Megaelectronvolt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass,” Appl. Phys. Lett. 83(20), 4137–4139 (2003).
[Crossref]

Chem. Mater. (3)

M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, “Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles,” Chem. Mater. 27(22), 7549–7558 (2015).
[Crossref]

A. A. Belik, S. Y. Stefanovich, B. I. Lazoryak, and E. Takayama-Muromachi, “BiInO3: A polar oxide with GdFeO3-type perovskite structure,” Chem. Mater. 18(7), 1964–1968 (2006).
[Crossref]

K. Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Akamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. S. Knee, and K. Tanaka, “LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions,” Chem. Mater. 28(18), 6644–6655 (2016).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Comput. Phys. Commun. (1)

M. A. Marques, A. Castro, G. F. Bertsch, and A. Rubio, “octopus: a first-principles tool for excited electron–ion dynamics,” Comput. Phys. Commun. 151(1), 60–78 (2003).
[Crossref]

Geophys. Res. Lett. (1)

H.-Z. Liu, J. Chen, J. Hu, C. Martin, D. Weidner, D. Häusermann, and H.-K. Mao, “Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure,” Geophys. Res. Lett. 32(4), L04304 (2005).
[Crossref]

High Press. Res. (1)

Y. Han, S. Wang, Y. Liu, D. Ma, D. He, and Y. Zhao, “Synthesis of single-crystal perovskite PbCrO3 through a new reaction route at high pressure,” High Press. Res. 38(2), 136–144 (2018).
[Crossref]

Inorg. Chem. (3)

Y. Xu, X. Hao, C. Franchini, and F. Gao, “Structural, electronic, and ferroelectric properties of compressed CdPbO3 polymorphs,” Inorg. Chem. 52(2), 1032–1039 (2013).
[Crossref] [PubMed]

M. D. Peel, S. P. Thompson, A. Daoud-Aladine, S. E. Ashbrook, and P. Lightfoot, “New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3,” Inorg. Chem. 51(12), 6876–6889 (2012).
[Crossref] [PubMed]

D. Mori, K. Tanaka, H. Saitoh, T. Kikegawa, and Y. Inaguma, “Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3,” Inorg. Chem. 54(23), 11405–11410 (2015).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (2)

O. Yamaguchi, M. Morimi, H. Kawabata, and K. Shimizu, “Formation and transformation of ZnTiO3,” J. Am. Ceram. Soc. 70(5), 97–98 (1987).
[Crossref]

Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru, and M. Koizumi, “High-pressure Synthesis of Perovskite-Type Pb (Zn1/3Nb2/3) O3,” J. Am. Ceram. Soc. 52(9), 516–517 (1969).
[Crossref]

J. Am. Chem. Soc. (2)

Y. Inaguma, M. Yoshida, and T. Katsumata, “A polar oxide ZnSnO3 with a LiNbO3-type structure,” J. Am. Chem. Soc. 130(21), 6704–6705 (2008).
[Crossref] [PubMed]

Y. Inaguma, K. Tanaka, T. Tsuchiya, D. Mori, T. Katsumata, T. Ohba, K. Hiraki, T. Takahashi, and H. Saitoh, “Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures,” J. Am. Chem. Soc. 133(42), 16920–16929 (2011).
[Crossref] [PubMed]

J. Appl. Cryst. (1)

H. T. Stokes and D. M. Hatch, “FINDSYM: program for identifying the space-group symmetry of a crystal,” J. Appl. Cryst. 38(1), 237–238 (2005).
[Crossref]

J. Appl. Phys. (2)

H. Yin and H. Zhang, “Plasmons in graphene nanostructures,” J. Appl. Phys. 111(10), 103502 (2012).
[Crossref]

Q. Li, H. Wang, Y. Tian, Y. Xia, T. Cui, J. He, Y. Ma, and G. Zou, “Superhard and superconducting structures of BC 5,” J. Appl. Phys. 108(2), 023507 (2010).
[Crossref]

J. Phys. Chem. Lett. (1)

M. S. Burke, S. Zou, L. J. Enman, J. E. Kellon, C. A. Gabor, E. Pledger, and S. W. Boettcher, “Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media,” J. Phys. Chem. Lett. 6(18), 3737–3742 (2015).
[Crossref] [PubMed]

J. Phys. Chem. Solids (1)

K. Nishimura, I. Yamada, K. Oka, Y. Shimakawa, and M. Azuma, “High-pressure synthesis of BaVO3: A new cubic perovskite,” J. Phys. Chem. Solids 75(6), 710–712 (2014).
[Crossref]

J. Phys. Soc. Jpn. (1)

K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Oh-ishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, “Experimental and Theoretical Studies of the Metallic Conductivity in Cubic PbVO3 under High Pressure,” J. Phys. Soc. Jpn. 87(2), 024801 (2018).
[Crossref]

Mater. Res. Innov. (1)

A. S. Bhalla, R.-Y. Guo, and R. Roy, “The perovskite structure - a review of its role in ceramic science and technology,” Mater. Res. Innov. 4(1), 3–26 (2000).
[Crossref]

Nano Lett. (2)

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices,” Nano Lett. 7(6), 1793–1798 (2007).
[Crossref] [PubMed]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Nat. Rev. Mater. (1)

L. Zhang, Y. Wang, J. Lv, and Y. Ma, “Materials discovery at high pressures,” Nat. Rev. Mater. 2(4), 17005 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133–A1138 (1965).
[Crossref]

Phys. Rev. B Condens. Matter (1)

G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (5)

G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B Condens. Matter Mater. Phys. 59(3), 1758–1775 (1999).
[Crossref]

C. Hartwigsen, S. Gœdecker, and J. Hutter, “Relativistic separable dual-space Gaussian pseudopotentials from H to Rn,” Phys. Rev. B Condens. Matter Mater. Phys. 58(7), 3641–3662 (1998).
[Crossref]

A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. Wills, “Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure,” Phys. Rev. B Condens. Matter Mater. Phys. 58(8), 4345–4351 (1998).
[Crossref]

C. Xu, B. Xu, Y. Yang, H. Dong, A. R. Oganov, S. Wang, W. Duan, B. Gu, and L. Bellaiche, “Prediction of a stable post-post-perovskite structure from first principles,” Phys. Rev. B Condens. Matter Mater. Phys. 91(2), 020101 (2015).
[Crossref]

P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in Bi Fe O 3,” Phys. Rev. B Condens. Matter Mater. Phys. 74(22), 224412 (2006).
[Crossref]

Phys. Rev. Lett. (7)

V. L. Solozhenko, O. O. Kurakevych, D. Andrault, Y. Le Godec, and M. Mezouar, “Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5,” Phys. Rev. Lett. 102(1), 015506 (2009).
[Crossref] [PubMed]

R. Resta, M. Posternak, and A. Baldereschi, “Towards a quantum theory of polarization in ferroelectrics: The case of KNbO3,” Phys. Rev. Lett. 70(7), 1010–1013 (1993).
[Crossref] [PubMed]

F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity,” Phys. Rev. Lett. 119(10), 107001 (2017).
[Crossref] [PubMed]

J. Yan, Z. Yuan, and S. Gao, “End and central plasmon resonances in linear atomic chains,” Phys. Rev. Lett. 98(21), 216602 (2007).
[Crossref] [PubMed]

D. M. Ceperley and B. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45(7), 566–569 (1980).
[Crossref]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

S. Mukherjee, A. Roy, S. Auluck, R. Prasad, R. Gupta, and A. Garg, “Room temperature nanoscale ferroelectricity in magnetoelectric GaFeO3 epitaxial thin films,” Phys. Rev. Lett. 111(8), 087601 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y. Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito, “High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates,” Proc. Natl. Acad. Sci. U.S.A. 105(20), 7115–7119 (2008).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

J. B. Goodenough and J. Zhou, “Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru),” Sci. Technol. Adv. Mater. 16(3), 036003 (2015).
[Crossref] [PubMed]

Science (1)

M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, “Post-perovskite phase transition in MgSiO3,” Science 304(5672), 855–858 (2004).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. Stubhan, N. Krantz, F. Li, I. Guo, M. Litzov, M. Steidl, G. J. Richter, Matt, and C. J. Brabec, “High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,” Sol. Energy Mater. Sol. Cells 107, 248–251 (2012).
[Crossref]

Solid State Commun. (1)

X. Wu, Y. Dong, S. Qin, M. Abbas, and Z. Wu, “First-principles study of the pressure-induced phase transition in CaTiO3,” Solid State Commun. 136(7), 416–420 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Predicted enthalpy for LN (R3c), pv (Pnma) and ppPv (Pnma) phases in PNO bulk.
Fig. 2
Fig. 2 Crystal structures for the LN-PZO, the Pv-PZO, and ppPv-PZO.
Fig. 3
Fig. 3 (a-i) are the top view and the side view of LN-PZO, Pv-PZO and ppPv-PZO QDs, respectively.
Fig. 4
Fig. 4 (a) Optical absorption of PZO QDs, LN-PZO (black), Pv-PZO (red), and ppPv-PZO (blue); (b-d)The fourier induced-charge-density distributions of PZO. The polarization direction is along the X-axis at the energy resonance points 1.74 eV of LN-PZO (b), 5.72 eV of Pv-PZO (c), 5.09 eV of ppPv-PZO (d).
Fig. 5
Fig. 5 (a-c) Optical absorption spectra of PZO QDs excited along the X-axis (red) and Y-axis (black); (d-f)The fourier induced-charge-density distributions of PZO. The polarized direction is along the Y-axis at the energy resonance points 1.28 eV of LN-PZO (d), 1.25 eV of Pv-PZO (e), 1.28 eV of ppPv-PZO (f).
Fig. 6
Fig. 6 (a-c) Optical absorption spectra of PZO quantum dots excited along the X-axis (red) and Y-axis (black); (d-f)The fourier induced-charge-density distributions of PZO. The polarization direction is along the Y-axis at the energy resonance points 1.28 eV of LN-PZO (d), 1.25 eV of Pv-PZO (e), 1.28 eV of ppPv-PZO (f).
Fig. 7
Fig. 7 Polar R3c stucture of PbZnO3 with an a-a-a- title system.

Tables (1)

Tables Icon

Table 1 Structural Lattice Parameters for a LN-type, Pv-type and ppPv-type PZO under given pressure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P α = e V i Z α , i * u α , i

Metrics