Abstract

Optically injected semiconductor lasers generate limit-cycle dynamics of period-one and period-two oscillations at microwave frequencies. At specific operating points, the periodic oscillations can be rendered insensitive to small-signal fluctuation in the operating conditions of the master and slave lasers. Periodic oscillations with low-sensitivity to fluctuation in the slave laser bias current, injection strength, or detuning frequency can be enhanced through tailoring the intrinsic laser parameters. Here, through numerical calculations, the effects of each intrinsic parameter on the various low-sensitivity operating points are demonstrated through detailed maps as functions of the operating parameters. For enhanced low sensitivity to bias-current and injection-strength fluctuations, a laser with a small linewidth enhancement factor is favored. Conversely, a large linewidth enhancement factor enhances low sensitivity to detuning-frequency fluctuations. Lasers with a more negative value of the gain saturation factor confine the regions of low sensitivity to fluctuations in the bias current and detuning frequency to the extrema of the periodic oscillation frequency. The laser relaxation rates that enhance the periodic-oscillation dynamic regions of an optically injected semiconductor laser, in turn, increases the regions of the various types of low-sensitivity operating points.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic behavior of an injection-locked quantum-dash Fabry-Perot laser at zero-detuning

M. Pochet, N. A. Naderi, N. Terry, V. Kovanis, and L. F. Lester
Opt. Express 17(23) 20623-20630 (2009)

Stability of period-one (P1) oscillations generated by semiconductor lasers subject to optical injection or optical feedback

Lyu-Chih Lin, Ssu-Hsin Liu, and Fan-Yi Lin
Opt. Express 25(21) 25523-25532 (2017)

Phase noise characteristics of microwave signals generated by semiconductor laser dynamics

Jun-Ping Zhuang and Sze-Chun Chan
Opt. Express 23(3) 2777-2797 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
    [Crossref]
  2. G. H. M. V. Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” J. Opt. B Quantum Semiclassical Opt. 7(2), 87–143 (1995).
    [Crossref]
  3. J. Ohtsubo, Semiconductor lasers: stability, instability and chaos (Springer, 2012), Vol. 111.
  4. S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
    [Crossref]
  5. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
    [Crossref] [PubMed]
  6. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
    [Crossref] [PubMed]
  7. M. AlMulla and J. M. Liu, “Frequency-stabilized limit-cycle dynamics of an optically injected semiconductor laser,” Appl. Phys. Lett. 105(1), 011122 (2014).
    [Crossref]
  8. M. AlMulla and J.-M. Liu, “Stable Periodic Dynamics of Reduced Sensitivity to Perturbations in Optically Injected Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 601–608 (2015).
    [Crossref]
  9. T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Tunable Oscillations in Optically Injected Semiconductor Lasers With Reduced Sensitivity to Perturbations,” J. Lightwave Technol. 32(20), 3749–3758 (2014).
    [Crossref]
  10. X. Q. Qi and J. M. Liu, “Photonic Microwave Applications of the Dynamics of Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
    [Crossref]
  11. S.-C. Chan, R. Diaz, and J.-M. Liu, “Novel photonic applications of nonlinear semiconductor laser dynamics,” Opt. Quantum Electron. 40(2-4), 83–95 (2008).
    [Crossref]
  12. C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-Optical Modulation Format Conversion Using Nonlinear Dynamics of Semiconductor Lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
    [Crossref]
  13. Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38(17), 3355–3358 (2013).
    [Crossref] [PubMed]
  14. R. Diaz, S.-C. Chan, and J.-M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31(24), 3600–3602 (2006).
    [Crossref] [PubMed]
  15. S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183(1-4), 195-205 (2000).
    [Crossref]
  16. S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89(6), 061120 (2006).
    [Crossref]
  17. M. AlMulla and J. M. Liu, “Effects of the Gain Saturation Factor on the Nonlinear Dynamics of Optically Injected Semiconductor Lasers,” IEEE J. Quantum Electron. 50(3), 158–165 (2014).
    [Crossref]
  18. N. A. Khan, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Temperature Dependent Dynamics in a 1550-nm VCSEL Subject to Polarized Optical Injection,” IEEE J. Quantum Electron. 48(5), 712–719 (2012).
    [Crossref]
  19. N. A. Naderi, M. Pochet, F. e. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
    [Crossref]
  20. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express 18(9), 9423–9428 (2010).
    [Crossref] [PubMed]
  21. A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
    [Crossref] [PubMed]
  22. Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical Injection Effects in Nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).
  23. C. Wang, R. Raghunathan, K. Schires, S.-C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
    [Crossref] [PubMed]
  24. J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
    [Crossref]
  25. S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-/spl-mu/m Semiconductor Lasers Subject to Strong Injection Locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
    [Crossref]
  26. M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28(6), 1470–1478 (1992).
    [Crossref]
  27. P. Pérez, A. Valle, I. Noriega, and L. Pesquera, “Measurement of the Intrinsic Parameters of Single-Mode VCSELs,” J. Lightwave Technol. 32(8), 1601–1607 (2014).
    [Crossref]
  28. T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215(1-3), 135–151 (2003).
    [Crossref]
  29. M. AlMulla, X. Q. Qi, and J. M. Liu, “Dynamics Maps and Scenario Transitions for a Semiconductor Laser Subject to Dual-Beam Optical Injection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501108 (2013).
    [Crossref]
  30. Y. H. Lin, J. Liu, and F. Y. Lin, "Dynamical Characteristics of a Dual-Beam Optically Injected Semiconductor Laser," IEEE J. Sel. Top. Quantum Electron. 19(4), 1500606 (2012).
  31. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 9(5), 765–784 (1997).
    [Crossref]
  32. J. M. Liu, Photonic Devices (Cambridge University, 2005).
  33. T. B. Simpson, F. Doft, E. Strzelecka, J. J. Liu, W. Chang, and G. J. Simonis, “Gain saturation and the linewidth enhancement factor in semiconductor lasers,” IEEE Photonics Technol. Lett. 13(8), 776–778 (2001).
    [Crossref]
  34. G. P. Agrawal, “Effect of gain and index nonlinearities on single-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron. 26(11), 1901–1909 (1990).
    [Crossref]
  35. T. B. Simpson, J. M. Liu, M. AlMulla, N.G. Usechak, and V. Kovanis, “Linewidth Sharpening via Polarization-Rotated Feedback in Optically-Injected Semiconductor Laser Oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
    [Crossref]
  36. M. AlMulla, “Optical double-locked semiconductor lasers,” Results in Physics 9, 63–70 (2018).
    [Crossref]
  37. J. S. Suelzer, T. B. Simpson, P. Devgan, and N. G. Usechak, “Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback,” Opt. Lett. 42(16), 3181–3184 (2017).
    [Crossref] [PubMed]
  38. K.-H. Lo, S.-K. Hwang, and S. Donati, “Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics,” Opt. Express 25(25), 31595–31611 (2017).
    [Crossref] [PubMed]
  39. L.-C. Lin, S.-H. Liu, and F.-Y. Lin, “Stability of period-one (P1) oscillations generated by semiconductor lasers subject to optical injection or optical feedback,” Opt. Express 25(21), 25523–25532 (2017).
    [Crossref] [PubMed]
  40. J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23(3), 2777–2797 (2015).
    [Crossref] [PubMed]
  41. Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
    [Crossref] [PubMed]

2018 (1)

M. AlMulla, “Optical double-locked semiconductor lasers,” Results in Physics 9, 63–70 (2018).
[Crossref]

2017 (3)

2016 (2)

2015 (3)

2014 (5)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Tunable Oscillations in Optically Injected Semiconductor Lasers With Reduced Sensitivity to Perturbations,” J. Lightwave Technol. 32(20), 3749–3758 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

M. AlMulla and J. M. Liu, “Frequency-stabilized limit-cycle dynamics of an optically injected semiconductor laser,” Appl. Phys. Lett. 105(1), 011122 (2014).
[Crossref]

M. AlMulla and J. M. Liu, “Effects of the Gain Saturation Factor on the Nonlinear Dynamics of Optically Injected Semiconductor Lasers,” IEEE J. Quantum Electron. 50(3), 158–165 (2014).
[Crossref]

P. Pérez, A. Valle, I. Noriega, and L. Pesquera, “Measurement of the Intrinsic Parameters of Single-Mode VCSELs,” J. Lightwave Technol. 32(8), 1601–1607 (2014).
[Crossref]

2013 (4)

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
[Crossref] [PubMed]

M. AlMulla, X. Q. Qi, and J. M. Liu, “Dynamics Maps and Scenario Transitions for a Semiconductor Laser Subject to Dual-Beam Optical Injection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501108 (2013).
[Crossref]

Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38(17), 3355–3358 (2013).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N.G. Usechak, and V. Kovanis, “Linewidth Sharpening via Polarization-Rotated Feedback in Optically-Injected Semiconductor Laser Oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

2012 (3)

N. A. Khan, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Temperature Dependent Dynamics in a 1550-nm VCSEL Subject to Polarized Optical Injection,” IEEE J. Quantum Electron. 48(5), 712–719 (2012).
[Crossref]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-Optical Modulation Format Conversion Using Nonlinear Dynamics of Semiconductor Lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

Y. H. Lin, J. Liu, and F. Y. Lin, "Dynamical Characteristics of a Dual-Beam Optically Injected Semiconductor Laser," IEEE J. Sel. Top. Quantum Electron. 19(4), 1500606 (2012).

2011 (1)

X. Q. Qi and J. M. Liu, “Photonic Microwave Applications of the Dynamics of Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

2010 (1)

2009 (1)

N. A. Naderi, M. Pochet, F. e. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

2008 (1)

S.-C. Chan, R. Diaz, and J.-M. Liu, “Novel photonic applications of nonlinear semiconductor laser dynamics,” Opt. Quantum Electron. 40(2-4), 83–95 (2008).
[Crossref]

2007 (1)

2006 (2)

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89(6), 061120 (2006).
[Crossref]

R. Diaz, S.-C. Chan, and J.-M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31(24), 3600–3602 (2006).
[Crossref] [PubMed]

2005 (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[Crossref]

2004 (2)

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-/spl-mu/m Semiconductor Lasers Subject to Strong Injection Locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
[Crossref]

2003 (1)

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215(1-3), 135–151 (2003).
[Crossref]

2001 (1)

T. B. Simpson, F. Doft, E. Strzelecka, J. J. Liu, W. Chang, and G. J. Simonis, “Gain saturation and the linewidth enhancement factor in semiconductor lasers,” IEEE Photonics Technol. Lett. 13(8), 776–778 (2001).
[Crossref]

2000 (1)

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183(1-4), 195-205 (2000).
[Crossref]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[Crossref]

1995 (1)

G. H. M. V. Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” J. Opt. B Quantum Semiclassical Opt. 7(2), 87–143 (1995).
[Crossref]

1994 (1)

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

1992 (1)

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28(6), 1470–1478 (1992).
[Crossref]

1990 (1)

G. P. Agrawal, “Effect of gain and index nonlinearities on single-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron. 26(11), 1901–1909 (1990).
[Crossref]

Abdul Sattar, Z.

Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical Injection Effects in Nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).

Adams, M. J.

Agrawal, G. P.

G. P. Agrawal, “Effect of gain and index nonlinearities on single-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron. 26(11), 1901–1909 (1990).
[Crossref]

Ali Kamel, N.

Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical Injection Effects in Nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).

AlMulla, M.

M. AlMulla, “Optical double-locked semiconductor lasers,” Results in Physics 9, 63–70 (2018).
[Crossref]

M. AlMulla and J.-M. Liu, “Stable Periodic Dynamics of Reduced Sensitivity to Perturbations in Optically Injected Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 601–608 (2015).
[Crossref]

M. AlMulla and J. M. Liu, “Frequency-stabilized limit-cycle dynamics of an optically injected semiconductor laser,” Appl. Phys. Lett. 105(1), 011122 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

M. AlMulla and J. M. Liu, “Effects of the Gain Saturation Factor on the Nonlinear Dynamics of Optically Injected Semiconductor Lasers,” IEEE J. Quantum Electron. 50(3), 158–165 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Tunable Oscillations in Optically Injected Semiconductor Lasers With Reduced Sensitivity to Perturbations,” J. Lightwave Technol. 32(20), 3749–3758 (2014).
[Crossref]

M. AlMulla, X. Q. Qi, and J. M. Liu, “Dynamics Maps and Scenario Transitions for a Semiconductor Laser Subject to Dual-Beam Optical Injection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501108 (2013).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N.G. Usechak, and V. Kovanis, “Linewidth Sharpening via Polarization-Rotated Feedback in Optically-Injected Semiconductor Laser Oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Chan, S. C.

Chan, S.-C.

Chang, W.

T. B. Simpson, F. Doft, E. Strzelecka, J. J. Liu, W. Chang, and G. J. Simonis, “Gain saturation and the linewidth enhancement factor in semiconductor lasers,” IEEE Photonics Technol. Lett. 13(8), 776–778 (2001).
[Crossref]

Chu, C. H.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-Optical Modulation Format Conversion Using Nonlinear Dynamics of Semiconductor Lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

Devgan, P.

Diaz, R.

S.-C. Chan, R. Diaz, and J.-M. Liu, “Novel photonic applications of nonlinear semiconductor laser dynamics,” Opt. Quantum Electron. 40(2-4), 83–95 (2008).
[Crossref]

R. Diaz, S.-C. Chan, and J.-M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31(24), 3600–3602 (2006).
[Crossref] [PubMed]

Doft, F.

T. B. Simpson, F. Doft, E. Strzelecka, J. J. Liu, W. Chang, and G. J. Simonis, “Gain saturation and the linewidth enhancement factor in semiconductor lasers,” IEEE Photonics Technol. Lett. 13(8), 776–778 (2001).
[Crossref]

Donati, S.

Grillot, F.

Grillot, F. e.

N. A. Naderi, M. Pochet, F. e. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

Hamel, W. A.

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28(6), 1470–1478 (1992).
[Crossref]

Henning, I. D.

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
[Crossref] [PubMed]

N. A. Khan, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Temperature Dependent Dynamics in a 1550-nm VCSEL Subject to Polarized Optical Injection,” IEEE J. Quantum Electron. 48(5), 712–719 (2012).
[Crossref]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[Crossref]

Hung, Y. H.

Hurtado, A.

Hwang, S. K.

Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers,” Opt. Lett. 38(17), 3355–3358 (2013).
[Crossref] [PubMed]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-Optical Modulation Format Conversion Using Nonlinear Dynamics of Semiconductor Lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89(6), 061120 (2006).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-/spl-mu/m Semiconductor Lasers Subject to Strong Injection Locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
[Crossref]

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183(1-4), 195-205 (2000).
[Crossref]

Hwang, S.-K.

Khan, N. A.

N. A. Khan, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Temperature Dependent Dynamics in a 1550-nm VCSEL Subject to Polarized Optical Injection,” IEEE J. Quantum Electron. 48(5), 712–719 (2012).
[Crossref]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Tunable Oscillations in Optically Injected Semiconductor Lasers With Reduced Sensitivity to Perturbations,” J. Lightwave Technol. 32(20), 3749–3758 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N.G. Usechak, and V. Kovanis, “Linewidth Sharpening via Polarization-Rotated Feedback in Optically-Injected Semiconductor Laser Oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

N. A. Naderi, M. Pochet, F. e. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

Krauskopf, B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[Crossref]

Lenstra, D.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[Crossref]

G. H. M. V. Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” J. Opt. B Quantum Semiclassical Opt. 7(2), 87–143 (1995).
[Crossref]

Lester, L. F.

Liang, D. H.

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89(6), 061120 (2006).
[Crossref]

Lin, F. Y.

Y. H. Lin, J. Liu, and F. Y. Lin, "Dynamical Characteristics of a Dual-Beam Optically Injected Semiconductor Laser," IEEE J. Sel. Top. Quantum Electron. 19(4), 1500606 (2012).

Lin, F.-Y.

Lin, L.-C.

Lin, S. L.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-Optical Modulation Format Conversion Using Nonlinear Dynamics of Semiconductor Lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

Lin, Y. H.

Y. H. Lin, J. Liu, and F. Y. Lin, "Dynamical Characteristics of a Dual-Beam Optically Injected Semiconductor Laser," IEEE J. Sel. Top. Quantum Electron. 19(4), 1500606 (2012).

Liu, J.

Y. H. Lin, J. Liu, and F. Y. Lin, "Dynamical Characteristics of a Dual-Beam Optically Injected Semiconductor Laser," IEEE J. Sel. Top. Quantum Electron. 19(4), 1500606 (2012).

Liu, J. J.

T. B. Simpson, F. Doft, E. Strzelecka, J. J. Liu, W. Chang, and G. J. Simonis, “Gain saturation and the linewidth enhancement factor in semiconductor lasers,” IEEE Photonics Technol. Lett. 13(8), 776–778 (2001).
[Crossref]

Liu, J. M.

M. AlMulla and J. M. Liu, “Effects of the Gain Saturation Factor on the Nonlinear Dynamics of Optically Injected Semiconductor Lasers,” IEEE J. Quantum Electron. 50(3), 158–165 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

M. AlMulla and J. M. Liu, “Frequency-stabilized limit-cycle dynamics of an optically injected semiconductor laser,” Appl. Phys. Lett. 105(1), 011122 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Tunable Oscillations in Optically Injected Semiconductor Lasers With Reduced Sensitivity to Perturbations,” J. Lightwave Technol. 32(20), 3749–3758 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N.G. Usechak, and V. Kovanis, “Linewidth Sharpening via Polarization-Rotated Feedback in Optically-Injected Semiconductor Laser Oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

M. AlMulla, X. Q. Qi, and J. M. Liu, “Dynamics Maps and Scenario Transitions for a Semiconductor Laser Subject to Dual-Beam Optical Injection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501108 (2013).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic Microwave Applications of the Dynamics of Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-/spl-mu/m Semiconductor Lasers Subject to Strong Injection Locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183(1-4), 195-205 (2000).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[Crossref]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

Liu, J.-M.

M. AlMulla and J.-M. Liu, “Stable Periodic Dynamics of Reduced Sensitivity to Perturbations in Optically Injected Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 601–608 (2015).
[Crossref]

S.-C. Chan, R. Diaz, and J.-M. Liu, “Novel photonic applications of nonlinear semiconductor laser dynamics,” Opt. Quantum Electron. 40(2-4), 83–95 (2008).
[Crossref]

R. Diaz, S.-C. Chan, and J.-M. Liu, “Lidar detection using a dual-frequency source,” Opt. Lett. 31(24), 3600–3602 (2006).
[Crossref] [PubMed]

Liu, S.-H.

Lo, K.-H.

Mee, J.

Naderi, N. A.

N. A. Naderi, M. Pochet, F. e. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

Nami, M.

Noriega, I.

Pérez, P.

Pesquera, L.

Pochet, M.

N. A. Naderi, M. Pochet, F. e. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

Qi, X. Q.

M. AlMulla, X. Q. Qi, and J. M. Liu, “Dynamics Maps and Scenario Transitions for a Semiconductor Laser Subject to Dual-Beam Optical Injection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501108 (2013).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic Microwave Applications of the Dynamics of Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

Quirce, A.

Raghunathan, R.

Schires, K.

C. Wang, R. Raghunathan, K. Schires, S.-C. Chan, L. F. Lester, and F. Grillot, “Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation,” Opt. Lett. 41(6), 1153–1156 (2016).
[Crossref] [PubMed]

N. A. Khan, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Temperature Dependent Dynamics in a 1550-nm VCSEL Subject to Polarized Optical Injection,” IEEE J. Quantum Electron. 48(5), 712–719 (2012).
[Crossref]

Shore, K. A.

Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical Injection Effects in Nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).

Simonis, G. J.

T. B. Simpson, F. Doft, E. Strzelecka, J. J. Liu, W. Chang, and G. J. Simonis, “Gain saturation and the linewidth enhancement factor in semiconductor lasers,” IEEE Photonics Technol. Lett. 13(8), 776–778 (2001).
[Crossref]

Simpson, T. B.

J. S. Suelzer, T. B. Simpson, P. Devgan, and N. G. Usechak, “Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback,” Opt. Lett. 42(16), 3181–3184 (2017).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Tunable Oscillations in Optically Injected Semiconductor Lasers With Reduced Sensitivity to Perturbations,” J. Lightwave Technol. 32(20), 3749–3758 (2014).
[Crossref]

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

T. B. Simpson, J. M. Liu, M. AlMulla, N.G. Usechak, and V. Kovanis, “Linewidth Sharpening via Polarization-Rotated Feedback in Optically-Injected Semiconductor Laser Oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[Crossref]

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215(1-3), 135–151 (2003).
[Crossref]

T. B. Simpson, F. Doft, E. Strzelecka, J. J. Liu, W. Chang, and G. J. Simonis, “Gain saturation and the linewidth enhancement factor in semiconductor lasers,” IEEE Photonics Technol. Lett. 13(8), 776–778 (2001).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[Crossref]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

Strzelecka, E.

T. B. Simpson, F. Doft, E. Strzelecka, J. J. Liu, W. Chang, and G. J. Simonis, “Gain saturation and the linewidth enhancement factor in semiconductor lasers,” IEEE Photonics Technol. Lett. 13(8), 776–778 (2001).
[Crossref]

Suelzer, J. S.

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[Crossref]

Tartwijk, G. H. M. V.

G. H. M. V. Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” J. Opt. B Quantum Semiclassical Opt. 7(2), 87–143 (1995).
[Crossref]

Terry, N. B.

N. A. Naderi, M. Pochet, F. e. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

Usechak, N. G.

Usechak, N.G.

T. B. Simpson, J. M. Liu, M. AlMulla, N.G. Usechak, and V. Kovanis, “Linewidth Sharpening via Polarization-Rotated Feedback in Optically-Injected Semiconductor Laser Oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Valle, A.

van Exter, M. P.

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28(6), 1470–1478 (1992).
[Crossref]

Wang, C.

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-/spl-mu/m Semiconductor Lasers Subject to Strong Injection Locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

Wieczorek, S.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[Crossref]

Woerdman, J. P.

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28(6), 1470–1478 (1992).
[Crossref]

Zeijlmans, B. R. P.

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28(6), 1470–1478 (1992).
[Crossref]

Zhuang, J. P.

Appl. Phys. Lett. (2)

M. AlMulla and J. M. Liu, “Frequency-stabilized limit-cycle dynamics of an optically injected semiconductor laser,” Appl. Phys. Lett. 105(1), 011122 (2014).
[Crossref]

S. K. Hwang and D. H. Liang, “Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers,” Appl. Phys. Lett. 89(6), 061120 (2006).
[Crossref]

IEEE J. Quantum Electron. (7)

M. AlMulla and J. M. Liu, “Effects of the Gain Saturation Factor on the Nonlinear Dynamics of Optically Injected Semiconductor Lasers,” IEEE J. Quantum Electron. 50(3), 158–165 (2014).
[Crossref]

N. A. Khan, K. Schires, A. Hurtado, I. D. Henning, and M. J. Adams, “Temperature Dependent Dynamics in a 1550-nm VCSEL Subject to Polarized Optical Injection,” IEEE J. Quantum Electron. 48(5), 712–719 (2012).
[Crossref]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-Optical Modulation Format Conversion Using Nonlinear Dynamics of Semiconductor Lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

G. P. Agrawal, “Effect of gain and index nonlinearities on single-mode dynamics in semiconductor lasers,” IEEE J. Quantum Electron. 26(11), 1901–1909 (1990).
[Crossref]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28(6), 1470–1478 (1992).
[Crossref]

Z. Abdul Sattar, N. Ali Kamel, and K. A. Shore, “Optical Injection Effects in Nanolasers,” IEEE J. Quantum Electron. 52, 1–8 (2016).

IEEE J. Sel. Top. Quantum Electron. (7)

T. B. Simpson, J. M. Liu, M. AlMulla, N.G. Usechak, and V. Kovanis, “Linewidth Sharpening via Polarization-Rotated Feedback in Optically-Injected Semiconductor Laser Oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

N. A. Naderi, M. Pochet, F. e. Grillot, N. B. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

M. AlMulla, X. Q. Qi, and J. M. Liu, “Dynamics Maps and Scenario Transitions for a Semiconductor Laser Subject to Dual-Beam Optical Injection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501108 (2013).
[Crossref]

Y. H. Lin, J. Liu, and F. Y. Lin, "Dynamical Characteristics of a Dual-Beam Optically Injected Semiconductor Laser," IEEE J. Sel. Top. Quantum Electron. 19(4), 1500606 (2012).

M. AlMulla and J.-M. Liu, “Stable Periodic Dynamics of Reduced Sensitivity to Perturbations in Optically Injected Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 601–608 (2015).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic Microwave Applications of the Dynamics of Semiconductor Lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. K. Hwang, J. M. Liu, and J. K. White, “35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-/spl-mu/m Semiconductor Lasers Subject to Strong Injection Locking,” IEEE Photonics Technol. Lett. 16(4), 972–974 (2004).
[Crossref]

T. B. Simpson, F. Doft, E. Strzelecka, J. J. Liu, W. Chang, and G. J. Simonis, “Gain saturation and the linewidth enhancement factor in semiconductor lasers,” IEEE Photonics Technol. Lett. 13(8), 776–778 (2001).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. B Quantum Semiclassical Opt. (2)

G. H. M. V. Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” J. Opt. B Quantum Semiclassical Opt. 7(2), 87–143 (1995).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” J. Opt. B Quantum Semiclassical Opt. 9(5), 765–784 (1997).
[Crossref]

Opt. Commun. (2)

T. B. Simpson, “Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection,” Opt. Commun. 215(1-3), 135–151 (2003).
[Crossref]

S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183(1-4), 195-205 (2000).
[Crossref]

Opt. Express (7)

J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23(3), 2777–2797 (2015).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express 18(9), 9423–9428 (2010).
[Crossref] [PubMed]

A. Hurtado, J. Mee, M. Nami, I. D. Henning, M. J. Adams, and L. F. Lester, “Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser,” Opt. Express 21(9), 10772–10778 (2013).
[Crossref] [PubMed]

L.-C. Lin, S.-H. Liu, and F.-Y. Lin, “Stability of period-one (P1) oscillations generated by semiconductor lasers subject to optical injection or optical feedback,” Opt. Express 25(21), 25523–25532 (2017).
[Crossref] [PubMed]

K.-H. Lo, S.-K. Hwang, and S. Donati, “Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics,” Opt. Express 25(25), 31595–31611 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

S.-C. Chan, R. Diaz, and J.-M. Liu, “Novel photonic applications of nonlinear semiconductor laser dynamics,” Opt. Quantum Electron. 40(2-4), 83–95 (2008).
[Crossref]

Phys. Rep. (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416(1-2), 1–128 (2005).
[Crossref]

Phys. Rev. Lett. (1)

T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, “Limit-cycle dynamics with reduced sensitivity to perturbations,” Phys. Rev. Lett. 112(2), 023901 (2014).
[Crossref] [PubMed]

Results in Physics (1)

M. AlMulla, “Optical double-locked semiconductor lasers,” Results in Physics 9, 63–70 (2018).
[Crossref]

Other (2)

J. Ohtsubo, Semiconductor lasers: stability, instability and chaos (Springer, 2012), Vol. 111.

J. M. Liu, Photonic Devices (Cambridge University, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A schematic of the optical injection setup with external modulation on the master laser (ML) and direct modulation on the slave laser (SL). MOD: amplitude/frequency modulator; RF: radio frequency synthesizer. The modulation indices m, mξ, and mf, and the modulation frequencies f, fξ, and ff, represent modulation to the bias current, injection strength, and detuning frequency, respectively. The inset shows a representative LSf point where the responses of the positive (blue) and negative (red) modulation sidebands show dips around a local minimum of the P1 frequency (black) with respect to the detuning frequency at a fixed ξ = 0.08 and = 1.222. The progression of the negative modulation sideband response as the modulation frequency is increased from 100 MHz to 2 GHz at a fixed modulation index mf = 0.8 is shown in the red curves, shifted by – 30 dB for clarity. The progression of the negative modulation sideband response as the modulation index is increased from 0.4 to 2 at fixed a modulation frequency of ff = 500 MHz is shown in the upper red curves.
Fig. 2
Fig. 2 Mapping of the LS regions for (a) γc = 3 × 1011 s−1 and (b) γc = 8 × 1011 s−1 while the other laser parameters are fixed to their experimentally defined values. The maps are plotted as a function of the injection strength and detuning frequency for fixed = 1.222 in column (i), as a function of the injection strength and bias current for fixed f = 10 GHz in column (ii), and as a function of the detuning frequency and bias current for fixed ξ = 0.15 in column (iii). The black contour curves represent a constant P1 and P2 frequency, in GHz, and separate the stable locking (uncolored region) from chaotic dynamics (black regions). P1 dynamics and P2 dynamics are separated by the period-doubling bifurcation (dense curve). The contour curves in the colored regions show the amount of suppression of the negative modulation sideband when the suppression is −30 dBc or below, for the various LS operating points. The Venn diagram shows the color coding used for individual and multiple LS operating points.
Fig. 3
Fig. 3 Mapping of the LS regions for (a) γn = • 3 × 109 s−1 and (b) γn = • 8 × 109 s−1 while the other laser parameters are fixed to their experimentally defined values. The maps are plotted as a function of the injection strength and detuning frequency for fixed = 1.222 in column (i), as a function of the injection strength and bias current for fixed f = 10 GHz in column (ii), and as a function of the detuning frequency and bias current for fixed ξ = 0.15 in column (iii). The black contour curves represent a constant P1 and P2 frequency, in GHz, and separate the stable locking (uncolored region) from chaotic dynamics (black regions). P1 dynamics and P2 dynamics are separated by the period-doubling bifurcation (dense curve). The contour curves in the colored regions show the amount of suppression of the negative modulation sideband when the suppression is −30 dBc or below, for the various LS operating points. The Venn diagram shows the color coding used for individual and multiple LS operating points.
Fig. 4
Fig. 4 Mapping of the LS regions for (a) γp = • 1 × 1010 s−1 and (b) γp = • 3 × 1010 s−1 while the other laser parameters are fixed to their experimentally defined values. The maps are plotted as a function of the injection strength and detuning frequency for fixed = 1.222 in column (i), as a function of the injection strength and bias current for fixed f = 10 GHz in column (ii), and as a function of the detuning frequency and bias current for fixed ξ = 0.15 in column (iii). The black contour curves represent a constant P1 and P2 frequency, in GHz, and separate the stable locking (uncolored region) from chaotic dynamics (black regions). P1 dynamics and P2 dynamics are separated by the period-doubling bifurcation (dense curve). The contour curves in the colored regions show the amount of suppression of the negative modulation sideband when the suppression is −30 dBc or below, for the various LS operating points. The Venn diagram shows the color coding used for individual and multiple LS operating points.
Fig. 5
Fig. 5 Mapping of the LS regions for (a) b = 1 and (b) b = 4 while the other laser parameters are fixed to their experimentally defined values. The maps are plotted as a function of the injection strength and detuning frequency for fixed = 1.222 in column (i), as a function of the injection strength and bias current for fixed f = 10 GHz in column (ii), and as a function of the detuning frequency and bias current for fixed ξ = 0.15 in column (iii). The black contour curves represent a constant P1 and P2 frequency, in GHz, and separate the stable locking (uncolored region) from chaotic dynamics (black regions). P1 dynamics and P2 dynamics are separated by the period-doubling bifurcation (dense curve). The contour curves in the colored regions show the amount of suppression of the negative modulation sideband when the suppression is −30 dBc or below, for the various LS operating points. The Venn diagram shows the color coding used for individual and multiple LS operating points.
Fig. 6
Fig. 6 Mapping of the LS regions for b = 4 (a) = 0 and (b) = − 4 while the other laser parameters are fixed to their experimentally defined values The maps are plotted as a function of the injection strength and detuning frequency for fixed = 1.222 in column (i), as a function of the injection strength and bias current for fixed f = 10 GHz in column (ii), and as a function of the detuning frequency and bias current for fixed ξ = 0.15 in column (iii). The black contour curves represent a constant P1 and P2 frequency, in GHz, and separate the stable locking (uncolored region) from chaotic dynamics (black regions). P1 dynamics and P2 dynamics are separated by the period-doubling bifurcation (dense curve). The contour curves in the colored regions show the amount of suppression of the negative modulation sideband when the suppression is −30 dBc or below, for the various LS operating points. The Venn diagram shows the color coding used for individual and multiple LS operating points.
Fig. 7
Fig. 7 Negative modulation sideband responses when individual (dashed) and simultaneous (solid) modulation is applied near a local minimum of the P1 frequency (black) with respect to: (a) the injection strength at f = 10 GHz, = 1.222, b = 1, and = 1 while the other intrinsic parameters are fixed to their experimentally defined values; (b) the detuning frequency at ξ = 0.08, = 1.222, and γp = • 1 × 109 s−1 while the other intrinsic parameters are fixed to their experimentally defined values; (c) the bias current at ξ = 0.125, f = 10 GHz, b = 4, and = − 4 while the other intrinsic parameters are fixed to their experimentally defined values.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d a r dt = 1 2 [ γ c γ n γ s J ˜ n ˜ ( a r +b a i ) γ p ( a r 2 + a i 2 1 )( a r + b a i ) ] + ξ[ 1+ m ξ cos(2π f ξ t) ] γ c cos(2πft+ m f sin(2π f f t))
d a i dt = 1 2 [ γ c γ n γ s J ˜ n ˜ ( b a r + a i ) γ p ( a r 2 + a i 2 1 )( b a r + a i ) ] ξ[ 1+ m ξ cos(2π f ξ t) ] γ c sin(2πft+ m f sin(2π f f t))
d n ˜ dt =[ γ s + γ n ( a r 2 + a i 2 ) ] n ˜ γ s J ˜ ( a r 2 + a i 2 1 ) + γ s γ p γ c J ˜ ( a r 2 + a i 2 )( a r 2 + a i 2 1 )+ γ s m J ˜ (1+ J ˜ )cos(2π f J ˜ t)

Metrics