Abstract

This is a report of a study of the nonlinear optical properties of samples based on multiple Al2O3/ZnO bilayers fabricated by atomic layer deposition (ALD) in silica. The multi-layer configuration for samples consists of alternated layers of constant thickness of Al2O3x) and ZnOy) nanolaminates with a total thickness of ∼ 500 nm. The physical properties of the samples were characterized by means of TEM, spectrophotometry and variable angle spectroscopic ellipsometry. The absorptive and refractive contributions to the nonlinearity of the samples were studied by means of z-scan technique using a 100 fs at 800 nm. The nonlinear parameters, β and n2, are studied using different values of the layers thickness, Δx and Δy, in the nanolaminated stack. The possible applications in optical signal processing system are discussed by means of the figures of merit W and T.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improved photoelectrical properties of n-ZnO/p-Si heterojunction by inserting an optimized thin Al2O3 buffer layer

Hong-Liang Lu, Yu-Zhu Gu, Yuan Zhang, Xin-Yan Liu, Peng-Fei Wang, Qing-Qing Sun, Shi-Jin Ding, and David Wei Zhang
Opt. Express 22(18) 22184-22189 (2014)

Optical properties of Al2O3 thin films grown by atomic layer deposition

Pradeep Kumar, Monika K. Wiedmann, Charles H. Winter, and Ivan Avrutsky
Appl. Opt. 48(28) 5407-5412 (2009)

Effects of ZnO seed layer annealing temperature on the properties of n-ZnO NWs/Al2O3/p-Si heterojunction

Yu-Zhu Gu, Hong-Liang Lu, Yuan Zhang, Peng-Fei Wang, Shi-Jin Ding, and David Wei Zhang
Opt. Express 23(19) 24456-24463 (2015)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters,” (Springer, 1995).
    [Crossref]
  2. B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23, 3176–3185 (2015).
    [Crossref] [PubMed]
  3. R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
    [Crossref]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  5. C. Torres-Torres, J. Bornacelli, B. Can-Uc, H. G. Silva-Pereyra, L. Rodríguez-Fernández, M. Avalos-Borja, G. J. Labrada-Delgado, J. C. Cheang-Wong, R. Rangel-Rojo, and A. Oliver, “Coexistence of two-photon absorption and saturable absorption in ion-implanted platinum nanoparticles in silica plates,” J. Opt. Soc. Am. B 35, 1295–1300 (2018).
    [Crossref]
  6. B. E. Olsson, L. Rau, and D. J. Blumenthal, “Wdm to otdm multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photonics Technol. Lett. 13, 1005–1007 (2001).
    [Crossref]
  7. L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
    [Crossref]
  8. J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
    [Crossref]
  9. A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
    [Crossref]
  10. N. D. Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl Phys B 73, 383–390 (2001).
    [Crossref]
  11. C. Torres-Torres, B. A. Can-Uc, R. Rangel-Rojo, L. Castaneda, R. Torres-Martínez, C. I. García-Gil, and A. V. Khomenko, “Optical kerr phase shift in a nanostructured nickel-doped zinc oxide thin solid film,” Opt. Express 21, 21357–21364 (2013).
    [Crossref] [PubMed]
  12. K. Hyungjun, L. Han-Bo-Ram, and W. J. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517, 2563–2580 (2009).
    [Crossref]
  13. S. M. George, “Atomic layer deposition: An overview,” Chem. Rev. 110, 111–131 (2010).
    [Crossref]
  14. D. F. Schmidt, “Nanolaminates–bioinspired and beyond,” Mater. Lett. 108, 328–335 (2013).
    [Crossref]
  15. R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
    [Crossref]
  16. G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1994).
    [Crossref]
  17. R. W. Boyd and J. E. Sipe, “Nonlinear optical susceptibilities of layered composite materials,” J. Opt. Soc. Am. B 11, 297–303 (1994).
    [Crossref]
  18. J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
    [Crossref]
  19. M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [Crossref]
  20. M. G. Kuzyk and C. W. Dirk, Characterization techniques and tabulations for organic nonlinear materials (CRC Press, 1998.
  21. P. Poornesh, G. Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, “Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiphene (methylmethacrylate) composites,” Appl. Phys. B 97, 117–124 (2009).
    [Crossref]
  22. B. Can-Uc, R. Rangel-Rojo, A. Pena-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).
    [Crossref] [PubMed]
  23. J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in zno thin films,” J. Appl. Phys. 97, 033526 (2005).
    [Crossref]
  24. M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
    [Crossref]
  25. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13, 7976–7981 (2005).
    [Crossref] [PubMed]
  26. B. Can-Uc, R. Rangel-Rojo, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3, 2012–2021 (2013).
    [Crossref]
  27. G. I. Stegeman, “All-optical devices: materials requirements,” Proc. SPIE 1852, 75–89 (1993).
    [Crossref]

2018 (1)

2017 (2)

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
[Crossref]

2016 (1)

2015 (2)

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23, 3176–3185 (2015).
[Crossref] [PubMed]

2013 (4)

C. Torres-Torres, B. A. Can-Uc, R. Rangel-Rojo, L. Castaneda, R. Torres-Martínez, C. I. García-Gil, and A. V. Khomenko, “Optical kerr phase shift in a nanostructured nickel-doped zinc oxide thin solid film,” Opt. Express 21, 21357–21364 (2013).
[Crossref] [PubMed]

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

D. F. Schmidt, “Nanolaminates–bioinspired and beyond,” Mater. Lett. 108, 328–335 (2013).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3, 2012–2021 (2013).
[Crossref]

2010 (1)

S. M. George, “Atomic layer deposition: An overview,” Chem. Rev. 110, 111–131 (2010).
[Crossref]

2009 (3)

P. Poornesh, G. Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, “Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiphene (methylmethacrylate) composites,” Appl. Phys. B 97, 117–124 (2009).
[Crossref]

K. Hyungjun, L. Han-Bo-Ram, and W. J. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517, 2563–2580 (2009).
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

2006 (1)

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

2005 (2)

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in zno thin films,” J. Appl. Phys. 97, 033526 (2005).
[Crossref]

A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express 13, 7976–7981 (2005).
[Crossref] [PubMed]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

2001 (2)

B. E. Olsson, L. Rau, and D. J. Blumenthal, “Wdm to otdm multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photonics Technol. Lett. 13, 1005–1007 (2001).
[Crossref]

N. D. Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl Phys B 73, 383–390 (2001).
[Crossref]

1999 (1)

M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[Crossref]

1994 (2)

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1994).
[Crossref]

R. W. Boyd and J. E. Sipe, “Nonlinear optical susceptibilities of layered composite materials,” J. Opt. Soc. Am. B 11, 297–303 (1994).
[Crossref]

1993 (1)

G. I. Stegeman, “All-optical devices: materials requirements,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

1990 (1)

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Adhikari, A. V.

P. Poornesh, G. Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, “Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiphene (methylmethacrylate) composites,” Appl. Phys. B 97, 117–124 (2009).
[Crossref]

Alasaarela, T.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Avalos-Borja, M.

Balevicius, Z.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Baleviciute, I.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Baltar, H. T. M. C. M.

Bechelanye, M.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Blumenthal, D. J.

B. E. Olsson, L. Rau, and D. J. Blumenthal, “Wdm to otdm multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photonics Technol. Lett. 13, 1005–1007 (2001).
[Crossref]

Bookey, H. T.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Borbón-Nunez, H. A.

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
[Crossref]

Bornacelli, J.

Boyd, R. W.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1994).
[Crossref]

R. W. Boyd and J. E. Sipe, “Nonlinear optical susceptibilities of layered composite materials,” J. Opt. Soc. Am. B 11, 297–303 (1994).
[Crossref]

Can-Uc, B.

Can-Uc, B. A.

Castaneda, L.

Castillón, F. F.

J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
[Crossref]

Chaaya, A. A.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Cheang-Wong, J. C.

C. Torres-Torres, J. Bornacelli, B. Can-Uc, H. G. Silva-Pereyra, L. Rodríguez-Fernández, M. Avalos-Borja, G. J. Labrada-Delgado, J. C. Cheang-Wong, R. Rangel-Rojo, and A. Oliver, “Coexistence of two-photon absorption and saturable absorption in ion-implanted platinum nanoparticles in silica plates,” J. Opt. Soc. Am. B 35, 1295–1300 (2018).
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Chen, Y.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Chen, Y. J.

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in zno thin films,” J. Appl. Phys. 97, 033526 (2005).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Crespo-Sosa, A.

B. Can-Uc, R. Rangel-Rojo, A. Pena-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).
[Crossref] [PubMed]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

de Araújo, C. B.

Dirk, C. W.

M. G. Kuzyk and C. W. Dirk, Characterization techniques and tabulations for organic nonlinear materials (CRC Press, 1998.

Erts, D.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Falconieri, M.

M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[Crossref]

Farías, M. H.

J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
[Crossref]

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

Fatti, N. D.

N. D. Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl Phys B 73, 383–390 (2001).
[Crossref]

Fischer, G. L.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1994).
[Crossref]

Garcia-Betancourt, M. L.

García-Gil, C. I.

Gehr, R. J.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1994).
[Crossref]

George, S. M.

S. M. George, “Atomic layer deposition: An overview,” Chem. Rev. 110, 111–131 (2010).
[Crossref]

Gertnere, Z.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Gnoli, A.

Hagan, D. J.

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Han-Bo-Ram, L.

K. Hyungjun, L. Han-Bo-Ram, and W. J. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517, 2563–2580 (2009).
[Crossref]

Hegde, P. K.

P. Poornesh, G. Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, “Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiphene (methylmethacrylate) composites,” Appl. Phys. B 97, 117–124 (2009).
[Crossref]

Honkanen, S.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Hsieh, W. F.

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in zno thin films,” J. Appl. Phys. 97, 033526 (2005).
[Crossref]

Hyungjun, K.

K. Hyungjun, L. Han-Bo-Ram, and W. J. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517, 2563–2580 (2009).
[Crossref]

Jenekhe, S. A.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1994).
[Crossref]

Jussila, H.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Kar, A. K.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Karvonen, L.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Khomenko, A. V.

Kieu, K.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters,” (Springer, 1995).
[Crossref]

Kujala, S.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Kuzyk, M. G.

M. G. Kuzyk and C. W. Dirk, Characterization techniques and tabulations for organic nonlinear materials (CRC Press, 1998.

Labrada-Delgado, G. J.

Lin, H. Y.

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in zno thin films,” J. Appl. Phys. 97, 033526 (2005).
[Crossref]

Lin, J. H.

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in zno thin films,” J. Appl. Phys. 97, 033526 (2005).
[Crossref]

Lizarraga-Medina, E. G.

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

López, J.

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
[Crossref]

López-Suares, A.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Machorro, R.

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
[Crossref]

Maeng, W. J.

K. Hyungjun, L. Han-Bo-Ram, and W. J. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517, 2563–2580 (2009).
[Crossref]

Manjunatha, K. B.

P. Poornesh, G. Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, “Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiphene (methylmethacrylate) composites,” Appl. Phys. B 97, 117–124 (2009).
[Crossref]

Manjunatha, M. G.

P. Poornesh, G. Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, “Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiphene (methylmethacrylate) composites,” Appl. Phys. B 97, 117–124 (2009).
[Crossref]

Marquez, H.

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

Márquez, H.

McCarthy, J.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Miele, P.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Mikoliunaite, L.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Murillo, E.

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

Nedev, N.

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
[Crossref]

Noguez, C.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Norwood, R. A.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Oliver, A.

C. Torres-Torres, J. Bornacelli, B. Can-Uc, H. G. Silva-Pereyra, L. Rodríguez-Fernández, M. Avalos-Borja, G. J. Labrada-Delgado, J. C. Cheang-Wong, R. Rangel-Rojo, and A. Oliver, “Coexistence of two-photon absorption and saturable absorption in ion-implanted platinum nanoparticles in silica plates,” J. Opt. Soc. Am. B 35, 1295–1300 (2018).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Pena-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).
[Crossref] [PubMed]

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23, 3176–3185 (2015).
[Crossref] [PubMed]

B. Can-Uc, R. Rangel-Rojo, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3, 2012–2021 (2013).
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Olsson, B. E.

B. E. Olsson, L. Rau, and D. J. Blumenthal, “Wdm to otdm multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photonics Technol. Lett. 13, 1005–1007 (2001).
[Crossref]

Osaheni, J. A.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1994).
[Crossref]

Pena-Ramírez, A.

Peyghambarian, N.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Poornesh, P.

P. Poornesh, G. Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, “Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiphene (methylmethacrylate) composites,” Appl. Phys. B 97, 117–124 (2009).
[Crossref]

Ramanavicius, A.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Rangel-Rojo, R.

C. Torres-Torres, J. Bornacelli, B. Can-Uc, H. G. Silva-Pereyra, L. Rodríguez-Fernández, M. Avalos-Borja, G. J. Labrada-Delgado, J. C. Cheang-Wong, R. Rangel-Rojo, and A. Oliver, “Coexistence of two-photon absorption and saturable absorption in ion-implanted platinum nanoparticles in silica plates,” J. Opt. Soc. Am. B 35, 1295–1300 (2018).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Pena-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24, 9955–9965 (2016).
[Crossref] [PubMed]

B. Can-Uc, R. Rangel-Rojo, H. Márquez, L. Rodríguez-Fernández, and A. Oliver, “Nanoparticle containing channel waveguides produced by a multi-energy masked ion-implantation process,” Opt. Express 23, 3176–3185 (2015).
[Crossref] [PubMed]

B. Can-Uc, R. Rangel-Rojo, L. Rodríguez-Fernández, and A. Oliver, “Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica,” Opt. Mater. Express 3, 2012–2021 (2013).
[Crossref]

C. Torres-Torres, B. A. Can-Uc, R. Rangel-Rojo, L. Castaneda, R. Torres-Martínez, C. I. García-Gil, and A. V. Khomenko, “Optical kerr phase shift in a nanostructured nickel-doped zinc oxide thin solid film,” Opt. Express 21, 21357–21364 (2013).
[Crossref] [PubMed]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Rau, L.

B. E. Olsson, L. Rau, and D. J. Blumenthal, “Wdm to otdm multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photonics Technol. Lett. 13, 1005–1007 (2001).
[Crossref]

Razzari, L.

Reyes-Esqueda, J. A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Righini, M.

Rodriguez-Fernandez, L.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Rodríguez-Fernández, L.

Rodríguez-Iglesias, V.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Román-Velasquez, C. E.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Rönn, J.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Ruoho, M.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Said, T. T.

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Säynätjoki, A.

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Schmidt, D. F.

D. F. Schmidt, “Nanolaminates–bioinspired and beyond,” Mater. Lett. 108, 328–335 (2013).
[Crossref]

Seman, J. A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Sheik-Bahae, M.

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Silva-Pereyra, H. G.

C. Torres-Torres, J. Bornacelli, B. Can-Uc, H. G. Silva-Pereyra, L. Rodríguez-Fernández, M. Avalos-Borja, G. J. Labrada-Delgado, J. C. Cheang-Wong, R. Rangel-Rojo, and A. Oliver, “Coexistence of two-photon absorption and saturable absorption in ion-implanted platinum nanoparticles in silica plates,” J. Opt. Soc. Am. B 35, 1295–1300 (2018).
[Crossref]

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Sipe, J. E.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1994).
[Crossref]

R. W. Boyd and J. E. Sipe, “Nonlinear optical susceptibilities of layered composite materials,” J. Opt. Soc. Am. B 11, 297–303 (1994).
[Crossref]

Smyntyna, V.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Solorio, E.

J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
[Crossref]

Sosa, A. C.

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Soto, G.

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

Stegeman, G. I.

G. I. Stegeman, “All-optical devices: materials requirements,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

Tiznado, H.

J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
[Crossref]

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

Torres-Martínez, R.

Torres-Torres, C.

Umesh, G.

P. Poornesh, G. Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, “Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiphene (methylmethacrylate) composites,” Appl. Phys. B 97, 117–124 (2009).
[Crossref]

Vallee, F.

N. D. Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl Phys B 73, 383–390 (2001).
[Crossref]

Van-Stryland, E. W.

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Vatamana, V.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Viter, R.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters,” (Springer, 1995).
[Crossref]

Wei, T.

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

Weller-Brophy, L. A.

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1994).
[Crossref]

Zalesska, A.

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Appl Phys B (1)

N. D. Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl Phys B 73, 383–390 (2001).
[Crossref]

Appl. Phys. B (1)

P. Poornesh, G. Umesh, P. K. Hegde, M. G. Manjunatha, K. B. Manjunatha, and A. V. Adhikari, “Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiphene (methylmethacrylate) composites,” Appl. Phys. B 97, 117–124 (2009).
[Crossref]

Appl. Phys. Lett. (1)

L. Karvonen, A. Säynätjoki, Y. Chen, H. Jussila, J. Rönn, M. Ruoho, T. Alasaarela, S. Kujala, R. A. Norwood, N. Peyghambarian, K. Kieu, and S. Honkanen, “Enhancement of the third-order optical nonlinearity in zno/al2o3 nanolaminates fabricated by atomic layer deposition,” Appl. Phys. Lett. 103, 031903 (2013).
[Crossref]

Chem. Rev. (1)

S. M. George, “Atomic layer deposition: An overview,” Chem. Rev. 110, 111–131 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, T. T. Said, T. Wei, D. J. Hagan, and E. W. Van-Stryland, “Sensitive measurement of optical nonlinearities using a simple beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. E. Olsson, L. Rau, and D. J. Blumenthal, “Wdm to otdm multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photonics Technol. Lett. 13, 1005–1007 (2001).
[Crossref]

J. Alloys Compd. (1)

J. López, E. Solorio, H. A. Borbón-Nunez, F. F. Castillón, R. Machorro, N. Nedev, M. H. Farías, and H. Tiznado, “Refractive index and bandgap variation in al2o3-zno ultrathin multilayers prepared by atomic layer deposition,” J. Alloys Compd. 691, 308–315 (2017).
[Crossref]

J. Appl. Phys. (1)

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in zno thin films,” J. Appl. Phys. 97, 033526 (2005).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

M. Falconieri, “Thermo-optical effects in z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Mater. Lett. (1)

D. F. Schmidt, “Nanolaminates–bioinspired and beyond,” Mater. Lett. 108, 328–335 (2013).
[Crossref]

Opt. Commun. (1)

R. Rangel-Rojo, J. McCarthy, H. T. Bookey, A. K. Kar, L. Rodríguez-Fernández, J. C. Cheang-Wong, A. C. Sosa, A. López-Suares, A. Oliver, V. Rodríguez-Iglesias, and H. G. Silva-Pereyra, “Anisotropy in the nonlinear absorption of elongated silver nanoparticles in silica, probed by femtosecond pulses,” Opt. Commun. 282, 1909–1912 (2009).
[Crossref]

Opt. Express (4)

Opt. Mater. (1)

J. López, H. A. Borbón-Nunez, E. G. Lizarraga-Medina, E. Murillo, R. Machorro, N. Nedev, H. Marquez, M. H. Farías, H. Tiznado, and G. Soto, “al2o3 − y2o3 ultrathin multilayer stacks grown by atomic layer deposition as perspective for optical waveguides applications,” Opt. Mater. 72, 788–794 (2017).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (1)

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velasquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of ag nanoparticles by si ion irradiation,” Phys. Rev. B 74, 245425 (2006).
[Crossref]

Phys. Rev. Lett. (1)

G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, “Enhanced nonlinear optical response of composite materials,” Phys. Rev. Lett. 74, 1871–1874 (1994).
[Crossref]

Proc. SPIE (1)

G. I. Stegeman, “All-optical devices: materials requirements,” Proc. SPIE 1852, 75–89 (1993).
[Crossref]

Thin Solid Films (2)

R. Viter, I. Baleviciute, A. A. Chaaya, L. Mikoliunaite, Z. Balevicius, A. Ramanavicius, A. Zalesska, V. Vatamana, V. Smyntyna, Z. Gertnere, D. Erts, P. Miele, and M. Bechelanye, “Optical properties of ultrathin al2o3/zno nanolaminates,” Thin Solid Films 594, 96–100 (2015).
[Crossref]

K. Hyungjun, L. Han-Bo-Ram, and W. J. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films 517, 2563–2580 (2009).
[Crossref]

Other (2)

U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters,” (Springer, 1995).
[Crossref]

M. G. Kuzyk and C. W. Dirk, Characterization techniques and tabulations for organic nonlinear materials (CRC Press, 1998.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) The sequence of ALD cycles for multi-layer fabrication samples, and b) the geometry of the resulting materials.
Fig. 2
Fig. 2 Nanolaminated were observed by TEM using a JEOL JEM2010 microscope at 200 kV. Sample was prepared through focus ion beam (FIB) on a JEOL FIB-4500 SEM.
Fig. 3
Fig. 3 Absorbance spectra of samples MΔxy. The values of Δx and Δy are in nm.
Fig. 4
Fig. 4 Refractive index for a) M1,Δy and b) MΔx,10 samples.
Fig. 5
Fig. 5 Z-scan setup employed in the experiments,BS is a beam splitter, L1 is a lens with focal length of 20 cm, D1 is the detector whose monitors the input laser power, while the D2 is de detector to monitoring the closed aperture z-scan signal, respectively.
Fig. 6
Fig. 6 Open and closed-aperture z-scan results for the samples M1,2 a) open, b) closed; and M1,5 c) open, and d) closed. For these experiments, the irradiances used were I0 = 152 MW /cm2 and I0 = 341 MW /cm2, respectively.
Fig. 7
Fig. 7 Correlation between the linear and nonlinear optical parameters. The Fig (a) show the linear absorption α at 2ω and the nonlinear optical absorption coefficient β. The Fig (b) show the linear optical index n0 at ω and the nonlinear refractive index n2.

Tables (2)

Tables Icon

Table 1 The total thickness, amount of the materials deposited on the substrate, the aspect ratio and the number of interfaces of the multilayer MΔxy samples.

Tables Icon

Table 2 Nonlinear optical parameters n2 and β, and figures of merit W and T, evaluated under the irradiances showed for samples MΔxy.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χ eff ( 3 ) = | eff a | 2 ( eff a ) 2 f a χ a ( 3 ) + | eff b | 2 ( eff b ) 2 f b χ b ( 3 ) .
χ eff ( 3 ) = f a χ a ( 3 ) + f b χ b ( 3 ) .
W = Δ n max λ α 0 ,
T = β λ n 2 ,

Metrics