Abstract

A new implementation of a Mach-Zehnder interferometer is presented. Aimed at facilitating coherent optical wavelength conversion, the interferometer utilizes a novel double displacement technique that eliminates dispersion induced phase discrepancies between its input and output arms. To demonstrate the design, the interferometer was incorporated into a source of polarization entangled photon pairs. The source produced on average 2-3 million photon pairs per second per mW of pump power, the pairs emitted being maximally entangled in the polarization degree of freedom with a fidelity of 98%_. The new interferometer implementation is simple and robust and promises to become a design benchmark for polarization entangled photon sources.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-color Sagnac source of polarization-entangled photon pairs

Michael Hentschel, Hannes Hübel, Andreas Poppe, and Anton Zeilinger
Opt. Express 17(25) 23153-23159 (2009)

Compact sources of polarization-entangled photons

Marco Fiorentino and Raymond G. Beausoleil
Opt. Express 16(24) 20149-20156 (2008)

Phase-stable source of polarization-entangled photons in a linear double-pass configuration

Fabian Steinlechner, Sven Ramelow, Marc Jofre, Marta Gilaberte, Thomas Jennewein, Juan. P. Torres, Morgan W. Mitchell, and Valerio Pruneri
Opt. Express 21(10) 11943-11951 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. i,” Phys. Rev. 124, 1646–1654 (1961).
    [Crossref]
  2. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
    [Crossref]
  3. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
    [Crossref]
  4. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009).
    [Crossref] [PubMed]
  5. N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
    [Crossref]
  6. R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
    [Crossref]
  7. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
    [Crossref]
  8. A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
    [Crossref]
  9. M. Fiorentino and R. G. Beausoleil, “Compact sources of polarization-entangled photons,” Opt. Express 16, 20149–20156 (2008).
    [Crossref] [PubMed]

2016 (1)

A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

2013 (1)

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

2012 (1)

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

2011 (1)

2009 (1)

2008 (1)

2006 (1)

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

1999 (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

1961 (1)

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. i,” Phys. Rev. 124, 1646–1654 (1961).
[Crossref]

Abolghasem, P.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Beausoleil, R. G.

Branczyk, A. M.

A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

Carmello Scarcella, A. T.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Chen, J.

Cincio, L.

A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

Della Frera, Adriano

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Dosseva, A.

A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Fan, J.

Fedrizzi, A.

Fiorentino, M.

M. Fiorentino and R. G. Beausoleil, “Compact sources of polarization-entangled photons,” Opt. Express 16, 20149–20156 (2008).
[Crossref] [PubMed]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Fukuda, H.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

Helmy, A. S.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Helt, L. G.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Horn, R.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Jeannic, H. L.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

Jennewein, T.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Kang, D.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Kim, T.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Kolenderski, P.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Ling, A.

Louisell, W. H.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. i,” Phys. Rev. 124, 1646–1654 (1961).
[Crossref]

Matsuda, N.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

Migdall, A.

Munro, W. J.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

Pearlman, A. J.

Ralph, T. C.

Shimizu, K.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

Siegman, A. E.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. i,” Phys. Rev. 124, 1646–1654 (1961).
[Crossref]

Sipe, J. E.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Stace, T. M.

Takesue, H.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

Tokura, Y.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

Tsuchizawa, T.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Weihs, G.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

White, A. G.

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Wong, F. N. C.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Yamada, K.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

Yariv, A.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. i,” Phys. Rev. 124, 1646–1654 (1961).
[Crossref]

Zhukovsky, S. V.

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Opt. Express (3)

Phys. Rev. (1)

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. i,” Phys. Rev. 124, 1646–1654 (1961).
[Crossref]

Phys. Rev. A (3)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

Sci. Reports (2)

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Reports 2, 817 (2012).
[Crossref]

R. Horn, P. Kolenderski, D. Kang, P. Abolghasem, A. T. Carmello Scarcella, Adriano Della Frera, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Reports 3, 2314 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 View of the solid state type-0 degenerate double displacement interferometer configuration. A co-ordinate system is in the bottom right corner of the figure depicting four quadrants which reference the beam position. Coherent pump light enters the double displacement separation stage in the south-east quadrant (bottom left of figure). It is shown with Diagonal (D) polarization. After traversing the first displacer, the extra-ordinary component (H) has separated from the ordinary component (V) by some distance W and has moved to the south-west quadrant. After traversing the second displacer, the extra-ordinary component (V) has separated from the ordinary component (H) by a distance 2 W and is in the north-east quadrant. The twin pump beams then undergo non-linear type-0 SPDC in their own non-linear crystal. Following SPDC, extra-ordinary converted light (HH) displaces laterally through a distance W back to the south-east quadrant in the third displacer. And after the fourth displacer, extra-ordinary (VV) light has displaced vertically through a distance W back to the south-east quadrant. This completes the interferometer. Polarization entangled photon pairs emerge from the output (top right of figure).
Fig. 2
Fig. 2 View of the solid state type-0 non-degenerate double displacement interferometer configuration. The optical behaviour is identical to Fig. 1 until the recombination. To recombine non-degenerate photon pairs, a dichroic mirror (DM) first separates the wavelengths of the photons into signal and idler directions. Without loss of generality, the idler beams get reflected while the signal beams continue to propagate on. The signal/idler beams recombine through a double displacement stage designed to laterally displace the signal/idler beams through a distance W. The interferometer is completed in two distinct signal and idler loops where, for each loop, the two separate conversion processes are coherently superposed. Thus, the signal and idler photons emerge from the interferometer in a polarization entangled state.
Fig. 3
Fig. 3 View of the solid state type-2 degenerate double displacement interferometer configuration. The optical behaviour of the interferometer is identical to Fig. 1 until the recombination. To recombine type-2 degenerate photon pairs, two displacers are placed one on top of each other and serve to displace the horizontally polarized signal/idler beams. This is followed by two displacers placed in parallel which serve to displace the vertically polarized signal/idler beams. The result is that the two separate conversion processes are coherently superposed. The signal and idler photons emerge from the interferometer in a polarization entangled state. The type-2 design has the additional benefit of spatially separating the signal and idler outputs.
Fig. 4
Fig. 4 The experimental setup used to validate the Double-Displacement interferometer source via a quantum state tomography experiment: Beginning with the double displacement interferometer (top) pumped by the diode laser from Qphotonics, the output of the source was sent through a single mode fiber (SMF FIBER) and into a fiber coupled 50:50 beam splitter (50/50 BS) that probabilistically separated the output for Alice and Bob. Each output was sent through separate polarization controllers to set the basis. Polarization measurements were made via two fiber coupled free space u-benches each consisting of a quarter wave plate (QWP), half wave plate (HWP) and polarizing beam splitter (PBS). The u-benches allowed Alice and Bob to individually make any one of the six canonical polarization measurements: Horizontal, Vertical, Diagonal, Anti-diagonal, Left and Right circular. Their respective photons were detected by gated single photon detectors. Alice’s gate was internally triggered, while Bob’s was triggered by a detection event from Alice.
Fig. 5
Fig. 5 Raw Tomographic data displaying the real part of the computed density matrix.
Fig. 6
Fig. 6 Raw Tomographic data displaying the imaginary part of the computed density matrix.

Metrics