Abstract

In this paper, improved operation of a high-contrast, high-brightness ultraviolet laser system is described. The laser system is based on a conventional short-pulse dye/excimer design, modified to contain 3 KrF excimer short-pulse amplifiers and the recently developed nonlinear Fourier-filtering stage for contrast improvement. The final amplifier accepts a beam size of ~4x4 cm2, producing 100 mJ energy of short-pulses using a two-beam interferometric multiplexing setup. Temporal measurements of the output showed positively chirped pulses of ~700 fs duration, beside a focusability of ~2 times the diffraction limit. Amplified spontaneous emission—as the only source of the temporal background—results in a focused intensity contrast of >1012 in the entire temporal window. These unique parameters give access to laser-matter interaction experiments above 1019 W/cm2 intensity at 248 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm

Hartmut Liebetrau, Marco Hornung, Andreas Seidel, Marco Hellwing, Alexander Kessler, Sebastian Keppler, Frank Schorcht, Joachim Hein, and Malte C. Kaluza
Opt. Express 22(20) 24776-24786 (2014)

Double chirped-pulse-amplification laser: a way to clean pulses temporally

M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner
Opt. Lett. 30(8) 923-925 (2005)

Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser

Tae Jun Yu, Seong Ku Lee, Jae Hee Sung, Jin Woo Yoon, Tae Moon Jeong, and Jongmin Lee
Opt. Express 20(10) 10807-10815 (2012)

References

  • View by:
  • |
  • |
  • |

  1. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008).
    [Crossref] [PubMed]
  2. Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, and Z. Wei, “High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier,” Opt. Lett. 36(16), 3194–3196 (2011).
    [Crossref] [PubMed]
  3. M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).
  4. F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
    [Crossref]
  5. T. M. Jeong and J. Lee, “Femtosecond petawatt laser,” Ann. Phys. 526(3–4), 157–172 (2014).
    [Crossref]
  6. Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, and Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21(24), 29231–29239 (2013).
    [Crossref] [PubMed]
  7. T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
    [Crossref] [PubMed]
  8. A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
    [Crossref] [PubMed]
  9. J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
    [Crossref]
  10. K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
    [Crossref] [PubMed]
  11. I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).
  12. H. C. Kapteyn, M. M. Murnane, A. Szoke, and R. W. Falcone, “Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering,” Opt. Lett. 16(7), 490–492 (1991).
    [Crossref] [PubMed]
  13. C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
    [Crossref]
  14. A. Marcinkevičius, R. Tommasini, G. D. Tsakiris, K. J. Witte, E. Gaižauskas, and U. Teubner, “Frequency doubling of multi-terawatt femtosecond pulses,” Appl. Phys. B 79(5), 547–554 (2004).
    [Crossref]
  15. D. Hillier, C. Danson, S. Duffield, D. Egan, S. Elsmere, M. Girling, E. Harvey, N. Hopps, M. Norman, S. Parker, P. Treadwell, D. Winter, and T. Bett, “Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline,” Appl. Opt. 52(18), 4258–4263 (2013).
    [Crossref] [PubMed]
  16. A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
    [Crossref] [PubMed]
  17. Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
    [Crossref]
  18. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30(8), 923–925 (2005).
    [Crossref] [PubMed]
  19. P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74(S1), s189–s192 (2002).
    [Crossref]
  20. W. L. Kruer, “The physics of laser plasma interactions,” Westview Press, (2003).
  21. S. Szatmári and F. P. Schäfer, “Simplified laser system for the generation of 60 fs pulses at 248 nm,” Opt. Commun. 68(3), 196–202 (1988).
    [Crossref]
  22. S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
    [Crossref]
  23. J. Békési, S. Szatmári, P. Simon, and G. Marowsky, “Table-top KrF amplifier delivering 270 fs output pulses with over 9 W average power at 300 Hz,” Appl. Phys. B 75(4), 521–524 (2002).
  24. S. Szatmári, Z. Bakonyi, and P. Simon, “Active spatial filtering of laser beams,” Opt. Commun. 134(1–6), 199–204 (1997).
    [Crossref]
  25. S. Szatmári, G. Marowsky and P. Simon, “Femtosecond excimer lasers and their applications,” Landolt–Börnstein New Series (Springer, 2007), pp. 215–253.
  26. G. Almàsi, S. Szatmári, and P. Simon, “Optimized operation of short-pulse KrF amplifiers by off-axis amplification,” Opt. Commun. 88(2-3), 231–239 (1992).
    [Crossref]
  27. S. Szatmári and P. Simon, “Interferometric multiplexing scheme for excimer amplifiers,” Opt. Commun. 98(1-3), 181–192 (1993).
    [Crossref]
  28. J. Békési, G. Marowsky, S. Szatmári, and P. Simon, “A 100 mJ table-top short pulse amplifier for 248 nm using interferometric multiplexing,” Z. Phys. Chem. 215(12), 1543 (2001).
    [Crossref]
  29. A. B. Borisov, J. C. McCorkindale, S. Poopalasingam, J. W. Longworth, P. Simon, S. Szatmári, and C. K. Rhodes, “Rewriting the rules governing high intensity interactions of light with matter,” Rep. Prog. Phys. 79(4), 046401 (2016).
    [Crossref] [PubMed]
  30. F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
    [Crossref]
  31. S. Szatmári, G. Almási, M. Feuerhake, and P. Simon, “Production of intensities of 10^19 W/cm^2 by a table-top KrF laser,” Appl. Phys. B 63(5), 463–466 (1996).
    [Crossref]
  32. B. Gilicze, A. Barna, Z. Kovács, S. Szatmári, and I. B. Földes, “Plasma mirrors for short pulse KrF lasers,” Rev. Sci. Instrum. 87(8), 083101 (2016).
    [Crossref] [PubMed]
  33. S. Szatmári, R. Dajka, A. Barna, B. Gilicze, and I. B. Földes, “Improvement of the temporal and spatial contrast for high-brightness laser beams,” Laser Phys. Lett. 13(7), 075301 (2016).
    [Crossref]
  34. B. Gilicze, R. Dajka, I. B. Földes, and S. Szatmári, “Improvement of the temporal and spatial contrast of the nonlinear Fourier-filter,” Opt. Express 25(17), 20791–20797 (2017).
    [Crossref] [PubMed]

2017 (1)

2016 (3)

B. Gilicze, A. Barna, Z. Kovács, S. Szatmári, and I. B. Földes, “Plasma mirrors for short pulse KrF lasers,” Rev. Sci. Instrum. 87(8), 083101 (2016).
[Crossref] [PubMed]

S. Szatmári, R. Dajka, A. Barna, B. Gilicze, and I. B. Földes, “Improvement of the temporal and spatial contrast for high-brightness laser beams,” Laser Phys. Lett. 13(7), 075301 (2016).
[Crossref]

A. B. Borisov, J. C. McCorkindale, S. Poopalasingam, J. W. Longworth, P. Simon, S. Szatmári, and C. K. Rhodes, “Rewriting the rules governing high intensity interactions of light with matter,” Rep. Prog. Phys. 79(4), 046401 (2016).
[Crossref] [PubMed]

2014 (4)

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

T. M. Jeong and J. Lee, “Femtosecond petawatt laser,” Ann. Phys. 526(3–4), 157–172 (2014).
[Crossref]

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

2013 (4)

D. Hillier, C. Danson, S. Duffield, D. Egan, S. Elsmere, M. Girling, E. Harvey, N. Hopps, M. Norman, S. Parker, P. Treadwell, D. Winter, and T. Bett, “Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline,” Appl. Opt. 52(18), 4258–4263 (2013).
[Crossref] [PubMed]

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, and Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21(24), 29231–29239 (2013).
[Crossref] [PubMed]

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

2012 (1)

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

2011 (1)

2010 (1)

A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (2)

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

2005 (1)

2004 (1)

A. Marcinkevičius, R. Tommasini, G. D. Tsakiris, K. J. Witte, E. Gaižauskas, and U. Teubner, “Frequency doubling of multi-terawatt femtosecond pulses,” Appl. Phys. B 79(5), 547–554 (2004).
[Crossref]

2002 (2)

P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74(S1), s189–s192 (2002).
[Crossref]

J. Békési, S. Szatmári, P. Simon, and G. Marowsky, “Table-top KrF amplifier delivering 270 fs output pulses with over 9 W average power at 300 Hz,” Appl. Phys. B 75(4), 521–524 (2002).

2001 (2)

J. Békési, G. Marowsky, S. Szatmári, and P. Simon, “A 100 mJ table-top short pulse amplifier for 248 nm using interferometric multiplexing,” Z. Phys. Chem. 215(12), 1543 (2001).
[Crossref]

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

2000 (1)

I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).

1997 (2)

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

S. Szatmári, Z. Bakonyi, and P. Simon, “Active spatial filtering of laser beams,” Opt. Commun. 134(1–6), 199–204 (1997).
[Crossref]

1996 (1)

S. Szatmári, G. Almási, M. Feuerhake, and P. Simon, “Production of intensities of 10^19 W/cm^2 by a table-top KrF laser,” Appl. Phys. B 63(5), 463–466 (1996).
[Crossref]

1993 (1)

S. Szatmári and P. Simon, “Interferometric multiplexing scheme for excimer amplifiers,” Opt. Commun. 98(1-3), 181–192 (1993).
[Crossref]

1992 (1)

G. Almàsi, S. Szatmári, and P. Simon, “Optimized operation of short-pulse KrF amplifiers by off-axis amplification,” Opt. Commun. 88(2-3), 231–239 (1992).
[Crossref]

1991 (1)

1988 (1)

S. Szatmári and F. P. Schäfer, “Simplified laser system for the generation of 60 fs pulses at 248 nm,” Opt. Commun. 68(3), 196–202 (1988).
[Crossref]

Alekseev, S. V.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Almási, G.

S. Szatmári, G. Almási, M. Feuerhake, and P. Simon, “Production of intensities of 10^19 W/cm^2 by a table-top KrF laser,” Appl. Phys. B 63(5), 463–466 (1996).
[Crossref]

Almàsi, G.

G. Almàsi, S. Szatmári, and P. Simon, “Optimized operation of short-pulse KrF amplifiers by off-axis amplification,” Opt. Commun. 88(2-3), 231–239 (1992).
[Crossref]

Aristov, A. I.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Audebert, P.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Bagnoud, V.

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Bakonyi, Z.

S. Szatmári, Z. Bakonyi, and P. Simon, “Active spatial filtering of laser beams,” Opt. Commun. 134(1–6), 199–204 (1997).
[Crossref]

Bakos, J. S.

I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).

Bang, W.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Barna, A.

B. Gilicze, A. Barna, Z. Kovács, S. Szatmári, and I. B. Földes, “Plasma mirrors for short pulse KrF lasers,” Rev. Sci. Instrum. 87(8), 083101 (2016).
[Crossref] [PubMed]

S. Szatmári, R. Dajka, A. Barna, B. Gilicze, and I. B. Földes, “Improvement of the temporal and spatial contrast for high-brightness laser beams,” Laser Phys. Lett. 13(7), 075301 (2016).
[Crossref]

Batani, D.

A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
[Crossref] [PubMed]

Bekesi, J.

P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74(S1), s189–s192 (2002).
[Crossref]

Békési, J.

J. Békési, S. Szatmári, P. Simon, and G. Marowsky, “Table-top KrF amplifier delivering 270 fs output pulses with over 9 W average power at 300 Hz,” Appl. Phys. B 75(4), 521–524 (2002).

J. Békési, G. Marowsky, S. Szatmári, and P. Simon, “A 100 mJ table-top short pulse amplifier for 248 nm using interferometric multiplexing,” Z. Phys. Chem. 215(12), 1543 (2001).
[Crossref]

Bernstein, A.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Bett, T.

Boley, C. D.

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

Booth, N.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Borger, T.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Borisov, A. B.

A. B. Borisov, J. C. McCorkindale, S. Poopalasingam, J. W. Longworth, P. Simon, S. Szatmári, and C. K. Rhodes, “Rewriting the rules governing high intensity interactions of light with matter,” Rep. Prog. Phys. 79(4), 046401 (2016).
[Crossref] [PubMed]

Bougeard, M.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Boyer, K.

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

Carrié, M.

A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
[Crossref] [PubMed]

Carroll, D. C.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Ceccotti, T.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

Cheriaux, G.

Chu, Y.

Chvykov, V.

Cowan, T. E.

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

Crane, J.

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

D’Oliveira, P.

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Dajka, R.

B. Gilicze, R. Dajka, I. B. Földes, and S. Szatmári, “Improvement of the temporal and spatial contrast of the nonlinear Fourier-filter,” Opt. Express 25(17), 20791–20797 (2017).
[Crossref] [PubMed]

S. Szatmári, R. Dajka, A. Barna, B. Gilicze, and I. B. Földes, “Improvement of the temporal and spatial contrast for high-brightness laser beams,” Laser Phys. Lett. 13(7), 075301 (2016).
[Crossref]

Dance, R. J.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Danson, C.

Ditmire, T.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

Dölle, C.

P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74(S1), s189–s192 (2002).
[Crossref]

Donovan, M.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Druon, F.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Duffield, S.

Dyer, G.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Egan, D.

Elsmere, S.

Falcone, R. W.

Feuerhake, M.

S. Szatmári, G. Almási, M. Feuerhake, and P. Simon, “Production of intensities of 10^19 W/cm^2 by a table-top KrF laser,” Appl. Phys. B 63(5), 463–466 (1996).
[Crossref]

Fils, J.

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Flacco, A.

A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
[Crossref] [PubMed]

Földes, I. B.

B. Gilicze, R. Dajka, I. B. Földes, and S. Szatmári, “Improvement of the temporal and spatial contrast of the nonlinear Fourier-filter,” Opt. Express 25(17), 20791–20797 (2017).
[Crossref] [PubMed]

S. Szatmári, R. Dajka, A. Barna, B. Gilicze, and I. B. Földes, “Improvement of the temporal and spatial contrast for high-brightness laser beams,” Laser Phys. Lett. 13(7), 075301 (2016).
[Crossref]

B. Gilicze, A. Barna, Z. Kovács, S. Szatmári, and I. B. Földes, “Plasma mirrors for short pulse KrF lasers,” Rev. Sci. Instrum. 87(8), 083101 (2016).
[Crossref] [PubMed]

I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).

Forget, N.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Gaižauskas, E.

A. Marcinkevičius, R. Tommasini, G. D. Tsakiris, K. J. Witte, E. Gaižauskas, and U. Teubner, “Frequency doubling of multi-terawatt femtosecond pulses,” Appl. Phys. B 79(5), 547–554 (2004).
[Crossref]

Gál, K.

I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).

Gaul, E.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Geindre, J. P.

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

Geindre, J.-P.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Georges, P.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Gilicze, B.

B. Gilicze, R. Dajka, I. B. Földes, and S. Szatmári, “Improvement of the temporal and spatial contrast of the nonlinear Fourier-filter,” Opt. Express 25(17), 20791–20797 (2017).
[Crossref] [PubMed]

S. Szatmári, R. Dajka, A. Barna, B. Gilicze, and I. B. Földes, “Improvement of the temporal and spatial contrast for high-brightness laser beams,” Laser Phys. Lett. 13(7), 075301 (2016).
[Crossref]

B. Gilicze, A. Barna, Z. Kovács, S. Szatmári, and I. B. Földes, “Plasma mirrors for short pulse KrF lasers,” Rev. Sci. Instrum. 87(8), 083101 (2016).
[Crossref] [PubMed]

Girling, M.

Gottschall, T.

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Gray, R. J.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Green, J. S.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Grudtsyn, Ya. V.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Guo, X.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

Harvey, E.

Hays, G.

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

Hein, J.

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Hillier, D.

Hopps, N.

Houard, A.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Ivanov, N. G.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Jeong, T. M.

T. M. Jeong and J. Lee, “Femtosecond petawatt laser,” Ann. Phys. 526(3–4), 157–172 (2014).
[Crossref]

João, C. P.

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Juhász, Z.

I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).

Jullien, A.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Kalashnikov, M. P.

Kalinchenko, G.

Kapteyn, H. C.

Kedves, M. A.

I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).

Klein-Wiele, J.-H.

P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74(S1), s189–s192 (2002).
[Crossref]

Kocsis, G.

I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).

Komashko, A. M.

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

Körner, J.

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Kovács, Z.

B. Gilicze, A. Barna, Z. Kovács, S. Szatmári, and I. B. Földes, “Plasma mirrors for short pulse KrF lasers,” Rev. Sci. Instrum. 87(8), 083101 (2016).
[Crossref] [PubMed]

Koval’chuk, B. M.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Krushelnick, K.

Lee, J.

T. M. Jeong and J. Lee, “Femtosecond petawatt laser,” Ann. Phys. 526(3–4), 157–172 (2014).
[Crossref]

Lefebvre, E.

A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
[Crossref] [PubMed]

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

Leng, Y.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, and Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21(24), 29231–29239 (2013).
[Crossref] [PubMed]

Levy, A.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Lévy, A.

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

Li, R.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, and Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21(24), 29231–29239 (2013).
[Crossref] [PubMed]

Li, Y.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

Liang, X.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, and Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21(24), 29231–29239 (2013).
[Crossref] [PubMed]

Limpert, J.

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Liu, C.

Liu, Y.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, and Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21(24), 29231–29239 (2013).
[Crossref] [PubMed]

Longworth, J. W.

A. B. Borisov, J. C. McCorkindale, S. Poopalasingam, J. W. Longworth, P. Simon, S. Szatmári, and C. K. Rhodes, “Rewriting the rules governing high intensity interactions of light with matter,” Rep. Prog. Phys. 79(4), 046401 (2016).
[Crossref] [PubMed]

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

Lopez-Martens, R.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Losev, V. F.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Lu, X.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, and Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21(24), 29231–29239 (2013).
[Crossref] [PubMed]

Ma, L.

MacLellan, D. A.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Maksimchuk, A.

Malka, V.

A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
[Crossref] [PubMed]

Mamaev, S. B.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Marcinkevicius, A.

A. Marcinkevičius, R. Tommasini, G. D. Tsakiris, K. J. Witte, E. Gaižauskas, and U. Teubner, “Frequency doubling of multi-terawatt femtosecond pulses,” Appl. Phys. B 79(5), 547–554 (2004).
[Crossref]

Marjoribanks, R.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Marowsky, G.

P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74(S1), s189–s192 (2002).
[Crossref]

J. Békési, S. Szatmári, P. Simon, and G. Marowsky, “Table-top KrF amplifier delivering 270 fs output pulses with over 9 W average power at 300 Hz,” Appl. Phys. B 75(4), 521–524 (2002).

J. Békési, G. Marowsky, S. Szatmári, and P. Simon, “A 100 mJ table-top short pulse amplifier for 248 nm using interferometric multiplexing,” Z. Phys. Chem. 215(12), 1543 (2001).
[Crossref]

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

Martin, P.

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

Martin, P. H.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Martinez, M.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Matsuoka, T.

McCorkindale, J. C.

A. B. Borisov, J. C. McCorkindale, S. Poopalasingam, J. W. Longworth, P. Simon, S. Szatmári, and C. K. Rhodes, “Rewriting the rules governing high intensity interactions of light with matter,” Rep. Prog. Phys. 79(4), 046401 (2016).
[Crossref] [PubMed]

McKenna, P.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

McPherson, A.

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

Mesyats, G. A.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Mikheev, L. D.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Monot, P.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

Mourou, G.

Murnane, M. M.

Murphy, C. D.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Nees, J.

Nelson, T.

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

Noel, P.

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

Norman, M.

Nuter, R.

A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
[Crossref] [PubMed]

Omenetto, F. G.

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

Panchenko, Yu. N.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Papadopoulos, D.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Parker, S.

Pellegrina, A.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Planchon, T.

Polivin, A. V.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Poopalasingam, S.

A. B. Borisov, J. C. McCorkindale, S. Poopalasingam, J. W. Longworth, P. Simon, S. Szatmári, and C. K. Rhodes, “Rewriting the rules governing high intensity interactions of light with matter,” Rep. Prog. Phys. 79(4), 046401 (2016).
[Crossref] [PubMed]

Popescu, H.

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

Quéré, F.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Quevedo, H.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Ramirez, P.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Ratakhin, N. A.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Réau, F.

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Rhodes, C. K.

A. B. Borisov, J. C. McCorkindale, S. Poopalasingam, J. W. Longworth, P. Simon, S. Szatmári, and C. K. Rhodes, “Rewriting the rules governing high intensity interactions of light with matter,” Rep. Prog. Phys. 79(4), 046401 (2016).
[Crossref] [PubMed]

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

Ricci, A.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Ringuette, M.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Risse, E.

Robinson, A. P. L.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Roth, M.

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Rousseau, J.-P.

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Rousseau, P.

Rubenchik, A. M.

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

Rusby, D.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Sandner, W.

Schäfer, F. P.

S. Szatmári and F. P. Schäfer, “Simplified laser system for the generation of 60 fs pulses at 248 nm,” Opt. Commun. 68(3), 196–202 (1988).
[Crossref]

Schönnagel, H.

Schroeder, W. A.

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

Shen, Z.

Simon, P.

A. B. Borisov, J. C. McCorkindale, S. Poopalasingam, J. W. Longworth, P. Simon, S. Szatmári, and C. K. Rhodes, “Rewriting the rules governing high intensity interactions of light with matter,” Rep. Prog. Phys. 79(4), 046401 (2016).
[Crossref] [PubMed]

J. Békési, S. Szatmári, P. Simon, and G. Marowsky, “Table-top KrF amplifier delivering 270 fs output pulses with over 9 W average power at 300 Hz,” Appl. Phys. B 75(4), 521–524 (2002).

P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74(S1), s189–s192 (2002).
[Crossref]

J. Békési, G. Marowsky, S. Szatmári, and P. Simon, “A 100 mJ table-top short pulse amplifier for 248 nm using interferometric multiplexing,” Z. Phys. Chem. 215(12), 1543 (2001).
[Crossref]

S. Szatmári, Z. Bakonyi, and P. Simon, “Active spatial filtering of laser beams,” Opt. Commun. 134(1–6), 199–204 (1997).
[Crossref]

S. Szatmári, G. Almási, M. Feuerhake, and P. Simon, “Production of intensities of 10^19 W/cm^2 by a table-top KrF laser,” Appl. Phys. B 63(5), 463–466 (1996).
[Crossref]

S. Szatmári and P. Simon, “Interferometric multiplexing scheme for excimer amplifiers,” Opt. Commun. 98(1-3), 181–192 (1993).
[Crossref]

G. Almàsi, S. Szatmári, and P. Simon, “Optimized operation of short-pulse KrF amplifiers by off-axis amplification,” Opt. Commun. 88(2-3), 231–239 (1992).
[Crossref]

Spinks, M.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Stepanov, S. G.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Stöhlker, T.

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Sylla, F.

A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
[Crossref] [PubMed]

Szatmari, S.

P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74(S1), s189–s192 (2002).
[Crossref]

Szatmári, S.

B. Gilicze, R. Dajka, I. B. Földes, and S. Szatmári, “Improvement of the temporal and spatial contrast of the nonlinear Fourier-filter,” Opt. Express 25(17), 20791–20797 (2017).
[Crossref] [PubMed]

A. B. Borisov, J. C. McCorkindale, S. Poopalasingam, J. W. Longworth, P. Simon, S. Szatmári, and C. K. Rhodes, “Rewriting the rules governing high intensity interactions of light with matter,” Rep. Prog. Phys. 79(4), 046401 (2016).
[Crossref] [PubMed]

B. Gilicze, A. Barna, Z. Kovács, S. Szatmári, and I. B. Földes, “Plasma mirrors for short pulse KrF lasers,” Rev. Sci. Instrum. 87(8), 083101 (2016).
[Crossref] [PubMed]

S. Szatmári, R. Dajka, A. Barna, B. Gilicze, and I. B. Földes, “Improvement of the temporal and spatial contrast for high-brightness laser beams,” Laser Phys. Lett. 13(7), 075301 (2016).
[Crossref]

J. Békési, S. Szatmári, P. Simon, and G. Marowsky, “Table-top KrF amplifier delivering 270 fs output pulses with over 9 W average power at 300 Hz,” Appl. Phys. B 75(4), 521–524 (2002).

J. Békési, G. Marowsky, S. Szatmári, and P. Simon, “A 100 mJ table-top short pulse amplifier for 248 nm using interferometric multiplexing,” Z. Phys. Chem. 215(12), 1543 (2001).
[Crossref]

I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).

S. Szatmári, Z. Bakonyi, and P. Simon, “Active spatial filtering of laser beams,” Opt. Commun. 134(1–6), 199–204 (1997).
[Crossref]

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

S. Szatmári, G. Almási, M. Feuerhake, and P. Simon, “Production of intensities of 10^19 W/cm^2 by a table-top KrF laser,” Appl. Phys. B 63(5), 463–466 (1996).
[Crossref]

S. Szatmári and P. Simon, “Interferometric multiplexing scheme for excimer amplifiers,” Opt. Commun. 98(1-3), 181–192 (1993).
[Crossref]

G. Almàsi, S. Szatmári, and P. Simon, “Optimized operation of short-pulse KrF amplifiers by off-axis amplification,” Opt. Commun. 88(2-3), 231–239 (1992).
[Crossref]

S. Szatmári and F. P. Schäfer, “Simplified laser system for the generation of 60 fs pulses at 248 nm,” Opt. Commun. 68(3), 196–202 (1988).
[Crossref]

Szoke, A.

Teng, H.

Teubner, U.

A. Marcinkevičius, R. Tommasini, G. D. Tsakiris, K. J. Witte, E. Gaižauskas, and U. Teubner, “Frequency doubling of multi-terawatt femtosecond pulses,” Appl. Phys. B 79(5), 547–554 (2004).
[Crossref]

Thaury, C.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Tommasini, R.

A. Marcinkevičius, R. Tommasini, G. D. Tsakiris, K. J. Witte, E. Gaižauskas, and U. Teubner, “Frequency doubling of multi-terawatt femtosecond pulses,” Appl. Phys. B 79(5), 547–554 (2004).
[Crossref]

Treadwell, P.

Tsakiris, G. D.

A. Marcinkevičius, R. Tommasini, G. D. Tsakiris, K. J. Witte, E. Gaižauskas, and U. Teubner, “Frequency doubling of multi-terawatt femtosecond pulses,” Appl. Phys. B 79(5), 547–554 (2004).
[Crossref]

Veltcheva, M.

A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
[Crossref] [PubMed]

Veres, G.

I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).

Wagner, F.

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

Wang, C.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

Wang, X.

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Wang, Z.

Wei, Z.

Wellegehausen, B.

P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74(S1), s189–s192 (2002).
[Crossref]

Wharton, K. B.

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

Wilson, L.

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Winter, D.

Witte, K. J.

A. Marcinkevičius, R. Tommasini, G. D. Tsakiris, K. J. Witte, E. Gaižauskas, and U. Teubner, “Frequency doubling of multi-terawatt femtosecond pulses,” Appl. Phys. B 79(5), 547–554 (2004).
[Crossref]

Xu, L.

Xu, Y.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, and Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21(24), 29231–29239 (2013).
[Crossref] [PubMed]

Xu, Z.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

Y. Chu, X. Liang, L. Yu, Y. Xu, L. Xu, L. Ma, X. Lu, Y. Liu, Y. Leng, R. Li, and Z. Xu, “High-contrast 2.0 Petawatt Ti:sapphire laser system,” Opt. Express 21(24), 29231–29239 (2013).
[Crossref] [PubMed]

Yalovoi, V. I.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Yanovsky, V.

Yastremskii, A. G.

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Yu, L.

Zhang, Q.

Zou, X.

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

Zweiback, J.

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

AIP Conf. Proc. (1)

M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, “The Texas petawatt laser and current experiments,” AIP Conf. Proc. 1507, 874–878 (2012).

Ann. Phys. (1)

T. M. Jeong and J. Lee, “Femtosecond petawatt laser,” Ann. Phys. 526(3–4), 157–172 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (6)

A. Marcinkevičius, R. Tommasini, G. D. Tsakiris, K. J. Witte, E. Gaižauskas, and U. Teubner, “Frequency doubling of multi-terawatt femtosecond pulses,” Appl. Phys. B 79(5), 547–554 (2004).
[Crossref]

F. Wagner, C. P. João, J. Fils, T. Gottschall, J. Hein, J. Körner, J. Limpert, M. Roth, T. Stöhlker, and V. Bagnoud, “Temporal contrast control at the PHELIX petawatt laser facility by means of tunable sub-picosecond optical parametric amplification,” Appl. Phys. B 116(2), 429–435 (2014).
[Crossref]

F. G. Omenetto, K. Boyer, J. W. Longworth, A. McPherson, T. Nelson, P. Noel, W. A. Schroeder, C. K. Rhodes, S. Szatmári, and G. Marowsky, “High-brightness terawatt KrF* (248 nm) system,” Appl. Phys. B 64(6), 643–646 (1997).
[Crossref]

S. Szatmári, G. Almási, M. Feuerhake, and P. Simon, “Production of intensities of 10^19 W/cm^2 by a table-top KrF laser,” Appl. Phys. B 63(5), 463–466 (1996).
[Crossref]

P. Simon, J. Bekesi, C. Dölle, J.-H. Klein-Wiele, G. Marowsky, S. Szatmari, and B. Wellegehausen, “Ultraviolet femtosecond pulses: key technology for sub-micron machining and efficient XUV pulse generation,” Appl. Phys. B 74(S1), s189–s192 (2002).
[Crossref]

J. Békési, S. Szatmári, P. Simon, and G. Marowsky, “Table-top KrF amplifier delivering 270 fs output pulses with over 9 W average power at 300 Hz,” Appl. Phys. B 75(4), 521–524 (2002).

Appl. Phys. Lett. (1)

J. S. Green, A. P. L. Robinson, N. Booth, D. C. Carroll, R. J. Dance, R. J. Gray, D. A. MacLellan, P. McKenna, C. D. Murphy, D. Rusby, and L. Wilson, “High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions,” Appl. Phys. Lett. 104(21), 214101 (2014).
[Crossref]

Laser Phys. (1)

I. B. Földes, J. S. Bakos, K. Gál, Z. Juhász, M. A. Kedves, G. Kocsis, S. Szatmári, and G. Veres, “Properties of high harmonics generated by ultrashort UV laser pulses on solid surfaces,” Laser Phys. 10(1), 264–269 (2000).

Laser Phys. Lett. (1)

S. Szatmári, R. Dajka, A. Barna, B. Gilicze, and I. B. Földes, “Improvement of the temporal and spatial contrast for high-brightness laser beams,” Laser Phys. Lett. 13(7), 075301 (2016).
[Crossref]

Nat. Phys. (1)

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. D’Oliveira, P. Audebert, R. Marjoribanks, and P. H. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3(6), 424–429 (2007).
[Crossref]

Opt. Commun. (5)

Y. Xu, Y. Leng, X. Guo, X. Zou, Y. Li, X. Lu, C. Wang, Y. Liu, X. Liang, R. Li, and Z. Xu, “Pulse temporal quality improvement in a petawatt Ti:Sapphire laser based on cross-polarized wave generation,” Opt. Commun. 313, 175–179 (2014).
[Crossref]

S. Szatmári, Z. Bakonyi, and P. Simon, “Active spatial filtering of laser beams,” Opt. Commun. 134(1–6), 199–204 (1997).
[Crossref]

G. Almàsi, S. Szatmári, and P. Simon, “Optimized operation of short-pulse KrF amplifiers by off-axis amplification,” Opt. Commun. 88(2-3), 231–239 (1992).
[Crossref]

S. Szatmári and P. Simon, “Interferometric multiplexing scheme for excimer amplifiers,” Opt. Commun. 98(1-3), 181–192 (1993).
[Crossref]

S. Szatmári and F. P. Schäfer, “Simplified laser system for the generation of 60 fs pulses at 248 nm,” Opt. Commun. 68(3), 196–202 (1988).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

K. B. Wharton, C. D. Boley, A. M. Komashko, A. M. Rubenchik, J. Zweiback, J. Crane, G. Hays, T. E. Cowan, and T. Ditmire, “Effects of nonionizing prepulses in high-intensity laser-solid interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 025401 (2001).
[Crossref] [PubMed]

A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, R. Nuter, E. Lefebvre, D. Batani, and V. Malka, “Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 036405 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J. P. Geindre, E. Lefebvre, and P. Martin, “Proton acceleration with high-intensity ultrahigh-contrast laser pulses,” Phys. Rev. Lett. 99(18), 185002 (2007).
[Crossref] [PubMed]

Quantum Electron. (1)

S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, and A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects,” Quantum Electron. 43(3), 190–200 (2013).
[Crossref]

Rep. Prog. Phys. (1)

A. B. Borisov, J. C. McCorkindale, S. Poopalasingam, J. W. Longworth, P. Simon, S. Szatmári, and C. K. Rhodes, “Rewriting the rules governing high intensity interactions of light with matter,” Rep. Prog. Phys. 79(4), 046401 (2016).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

B. Gilicze, A. Barna, Z. Kovács, S. Szatmári, and I. B. Földes, “Plasma mirrors for short pulse KrF lasers,” Rev. Sci. Instrum. 87(8), 083101 (2016).
[Crossref] [PubMed]

A. Ricci, A. Jullien, J.-P. Rousseau, Y. Liu, A. Houard, P. Ramirez, D. Papadopoulos, A. Pellegrina, P. Georges, F. Druon, N. Forget, and R. Lopez-Martens, “Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation,” Rev. Sci. Instrum. 84(4), 043106 (2013).
[Crossref] [PubMed]

Z. Phys. Chem. (1)

J. Békési, G. Marowsky, S. Szatmári, and P. Simon, “A 100 mJ table-top short pulse amplifier for 248 nm using interferometric multiplexing,” Z. Phys. Chem. 215(12), 1543 (2001).
[Crossref]

Other (2)

S. Szatmári, G. Marowsky and P. Simon, “Femtosecond excimer lasers and their applications,” Landolt–Börnstein New Series (Springer, 2007), pp. 215–253.

W. L. Kruer, “The physics of laser plasma interactions,” Westview Press, (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the nonlinear Fourier-filter [33].
Fig. 2
Fig. 2 Schematic of the high-contrast, high-brightness KrF laser system. (SHG:second harmonic generation, PI: low numerical aperture pre-imaging, BS: beam splitter, for details see text.)
Fig. 3
Fig. 3 Measured (a) and simulated (b) far field spatial distribution of the annular beam.
Fig. 4
Fig. 4 Far field distribution of the amplified beam after the second KrF pre-amplifier. The cross-section along the x and y axis are shown by the red curves. For comparison an ideal diffraction limited beam is also shown by the black curves.
Fig. 5
Fig. 5 Near field distribution of the amplified beam after the final amplifier.
Fig. 6
Fig. 6 Far field distribution of the amplified beam after the final amplifier. The cross-section along the x and y axis are shown by the red curves. For comparison an ideal diffraction limited beam is also shown by the black curves.
Fig. 7
Fig. 7 input (a) and output (b) spectral intensity distribution of the main pulses.
Fig. 8
Fig. 8 Second order autocorrelation curve of the main pulses after the final amplifier.

Metrics