Abstract

As an effective means to surpass the Shockley-Queisser efficiency limit, tandem solar cells have been successfully designed and used for years. However, there are still economical and design set-backs hampering the terrestrial implementation of tandem solar cells. Introducing high efficiency, thin Si-based tandem cells that are flexible in design (shape and curvature) will be the next major step towards integrating highly efficient solar cells into fashionable designs of today’s buildings and technologies. In this work we present an optically coupled tandem cell that consists of a GaAs nanowire array on a 2μm-thick Si film as the top and bottom cells, respectively. By performing FDTD simulations, we show that coupling the incident light to guided modes of the 1D wires not only boosts the absorption in the wires, but also efficiently transfers the below bandgap photons to the Si bottom cell. Due to diffraction by the nanowire array the momentum of the transmitted light is matched to that of guided modes of the 2D Si thin film. Consequently, infrared light is up to four times more efficiently trapped in the Si bottom cell compared to when the film is not covered by the nanowires.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency thin-film crystalline Si/Ge tandem solar cell

G. Sun, F. Chang, and R. A. Soref
Opt. Express 18(4) 3746-3753 (2010)

Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells

Bennett W. Schneider, Niraj N. Lal, Simeon Baker-Finch, and Thomas P. White
Opt. Express 22(S6) A1422-A1430 (2014)

Performance-limiting factors for GaAs-based single nanowire photovoltaics

Xufeng Wang, Mohammad Ryyan Khan, Mark Lundstrom, and Peter Bermel
Opt. Express 22(S2) A344-A358 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 74(12), 121302 (2006).
    [Crossref]
  2. E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
    [Crossref] [PubMed]
  3. T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
    [Crossref]
  4. H. Kim, A. C. Farrell, P. Senanayake, W. J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
    [Crossref] [PubMed]
  5. P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, “Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111),” Nano Lett. 10(11), 4475–4482 (2010).
    [Crossref] [PubMed]
  6. M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
    [Crossref] [PubMed]
  7. L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
    [Crossref]
  8. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A . Fontcuberta i Morral, “Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy,” Phys. Rev. B Condens. Matter Mater. Phys. 77(15), 155326 (2008).
    [Crossref]
  9. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [Crossref] [PubMed]
  10. N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
    [Crossref] [PubMed]
  11. M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
    [Crossref] [PubMed]
  12. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
    [Crossref]
  13. K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22(S3), A930–A940 (2014).
    [Crossref] [PubMed]
  14. G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
    [Crossref] [PubMed]
  15. R. Frederiksen, G. Tutuncuoglu, F. Matteini, K. L. Martinez, A. Fontcuberta I Morral, and E. Alarcon-Llado, “Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy,” ACS Photonics 4(9), 2235–2241 (2017).
    [Crossref] [PubMed]
  16. N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
    [Crossref]
  17. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [Crossref] [PubMed]
  18. D. van Dam, N. J. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. A. M. Bakkers, J. Gómez Rivas, and J. E. M. Haverkort, “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers,” ACS Nano 10(12), 11414–11419 (2016).
    [Crossref] [PubMed]
  19. I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
    [Crossref]
  20. M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
    [Crossref] [PubMed]
  21. G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
    [Crossref] [PubMed]
  22. T. Fukui, M. Yoshimura, E. Nakai, and K. Tomioka, “Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy,” Ambio 41(S2), 119–124 (2012).
    [Crossref] [PubMed]
  23. G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4(1), 1497 (2013).
    [Crossref] [PubMed]
  24. C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 1–5 (2012).
    [Crossref]
  25. A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
    [Crossref] [PubMed]
  26. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
    [Crossref] [PubMed]
  27. I. Kim, D. S. Jeong, W. S. Lee, W. M. Kim, T.-S. Lee, D.-K. Lee, J.-H. Song, J.-K. Kim, and K.-S. Lee, “Silicon nanodisk array design for effective light trapping in ultrathin c-Si,” Opt. Express 22(S6), A1431–A1439 (2014).
    [Crossref] [PubMed]
  28. C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21(S5), A872–A882 (2013).
    [Crossref] [PubMed]
  29. L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
    [Crossref] [PubMed]
  30. Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell,” Nanoscale Res. Lett. 10(1), 968 (2015).
    [Crossref] [PubMed]
  31. R. R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
    [Crossref]
  32. A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
    [Crossref]
  33. Y. Chen, O. Höhn, N. Tucher, M. E. Pistol, and N. Anttu, “Optical analysis of a III-V-nanowire-array-on-Si dual junction solar cell,” Opt. Express 25(16), A665–A679 (2017).
    [Crossref] [PubMed]
  34. N. Huang, C. Lin, M. L. Povinelli, N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys 112(6), 064321 (2013).
  35. M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
    [Crossref] [PubMed]
  36. B. Wood, P. Kuyanov, M. Aagesen, and R. R. LaPierre, “GaAsP nanowire-on-Si tandem solar cell,” J. Photonics Energy 7(04), 042502 (2017).
    [Crossref]
  37. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  38. N. Anttu, “Physics and design for 20% and 25% efficiency nanowire array solar cells,” Nanotechnology 30(7), 074002 (2019).
    [Crossref] [PubMed]
  39. S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
    [Crossref] [PubMed]
  40. N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
    [Crossref] [PubMed]
  41. C. E. Chia and R. R. LaPierre, “Electrostatic model of radial pn junction nanowires,” J. Appl. Phys. 114(7), 074317 (2013).
    [Crossref]
  42. N. Anttu and H. Q. Xu, “Coupling of Light into Nanowire Arrays and sub Sequent Absorption,” J. Nanosci. Nanotechnol. 10(11), 7183–7187 (2010).
    [Crossref] [PubMed]
  43. N. Anttu, “Shockley-queisser detailed balance efficiency limit for nanowire solar cells,” ACS Photonics 2(3), 446–453 (2015).
    [Crossref]
  44. D. van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, and J. Gómez Rivas, “Directional and Polarized Emission from Nanowire Arrays,” Nano Lett. 15(7), 4557–4563 (2015).
    [Crossref] [PubMed]
  45. S. A. Mann, R. R. Grote, R. M. Osgood, A. Alù, and E. C. Garnett, “Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit,” ACS Nano 10(9), 8620–8631 (2016).
    [Crossref] [PubMed]
  46. S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5(1), 15339 (2015).
    [Crossref] [PubMed]
  47. V. Dagytė and N. Anttu, “Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays,” Nanotechnology 30(2), 025710 (2019).
    [Crossref] [PubMed]
  48. N. Anttu, “Absorption of light in a single vertical nanowire and a nanowire array,” Nanotechnology 30(10), 104004 (2019).
    [Crossref] [PubMed]
  49. K. T. Fountaine, W. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
    [Crossref]
  50. C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
    [Crossref] [PubMed]
  51. A. Mellor, I. Tobias, A. Martí, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
    [Crossref]
  52. G. Yin, M. W. Knight, M. Van Lare, M. Sola-Garcia, A. Polman, and M. Schmid, “Optoelectronic Enhancement of Ultrathin CuIn 1 – x Ga x Se 2 Solar Cells by Nanophotonic Contacts,” Adv. Opt. Mater. 5(5), 1600637 (2017).
    [Crossref]
  53. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 93–96 (2009).
    [Crossref]
  54. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982).
    [Crossref]
  55. T. Markvart, “Beyond the Yablonovitch limit: Trapping light by frequency shift,” Appl. Phys. Lett. 98(7), 7–9 (2011).
    [Crossref]
  56. A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
    [Crossref]
  57. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
    [Crossref]
  58. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
    [Crossref] [PubMed]
  59. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
    [Crossref] [PubMed]
  60. M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting Efficiency of Crystalline Silicon Solar Cells Due to Coulomb-Enhanced Auger Recombination,” Prog. Photovolt. Res. Appl. 11(2), 97–104 (2003).
    [Crossref]
  61. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(1), 2665 (2013).
    [Crossref] [PubMed]
  62. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
    [Crossref] [PubMed]
  63. C. Carlson and S. Hughes, “Disordered nanophotonic surfaces for enhanced light collection in semiconductor solar cells,” J. Opt. Soc. Am. B 35(5), 1093–1104 (2018).
    [Crossref]

2019 (3)

N. Anttu, “Physics and design for 20% and 25% efficiency nanowire array solar cells,” Nanotechnology 30(7), 074002 (2019).
[Crossref] [PubMed]

V. Dagytė and N. Anttu, “Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays,” Nanotechnology 30(2), 025710 (2019).
[Crossref] [PubMed]

N. Anttu, “Absorption of light in a single vertical nanowire and a nanowire array,” Nanotechnology 30(10), 104004 (2019).
[Crossref] [PubMed]

2018 (1)

2017 (4)

B. Wood, P. Kuyanov, M. Aagesen, and R. R. LaPierre, “GaAsP nanowire-on-Si tandem solar cell,” J. Photonics Energy 7(04), 042502 (2017).
[Crossref]

G. Yin, M. W. Knight, M. Van Lare, M. Sola-Garcia, A. Polman, and M. Schmid, “Optoelectronic Enhancement of Ultrathin CuIn 1 – x Ga x Se 2 Solar Cells by Nanophotonic Contacts,” Adv. Opt. Mater. 5(5), 1600637 (2017).
[Crossref]

R. Frederiksen, G. Tutuncuoglu, F. Matteini, K. L. Martinez, A. Fontcuberta I Morral, and E. Alarcon-Llado, “Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy,” ACS Photonics 4(9), 2235–2241 (2017).
[Crossref] [PubMed]

Y. Chen, O. Höhn, N. Tucher, M. E. Pistol, and N. Anttu, “Optical analysis of a III-V-nanowire-array-on-Si dual junction solar cell,” Opt. Express 25(16), A665–A679 (2017).
[Crossref] [PubMed]

2016 (6)

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

D. van Dam, N. J. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. A. M. Bakkers, J. Gómez Rivas, and J. E. M. Haverkort, “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

H. Kim, A. C. Farrell, P. Senanayake, W. J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

S. A. Mann, R. R. Grote, R. M. Osgood, A. Alù, and E. C. Garnett, “Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit,” ACS Nano 10(9), 8620–8631 (2016).
[Crossref] [PubMed]

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

2015 (5)

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

N. Anttu, “Shockley-queisser detailed balance efficiency limit for nanowire solar cells,” ACS Photonics 2(3), 446–453 (2015).
[Crossref]

D. van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, and J. Gómez Rivas, “Directional and Polarized Emission from Nanowire Arrays,” Nano Lett. 15(7), 4557–4563 (2015).
[Crossref] [PubMed]

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5(1), 15339 (2015).
[Crossref] [PubMed]

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell,” Nanoscale Res. Lett. 10(1), 968 (2015).
[Crossref] [PubMed]

2014 (9)

I. Kim, D. S. Jeong, W. S. Lee, W. M. Kim, T.-S. Lee, D.-K. Lee, J.-H. Song, J.-K. Kim, and K.-S. Lee, “Silicon nanodisk array design for effective light trapping in ultrathin c-Si,” Opt. Express 22(S6), A1431–A1439 (2014).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22(S3), A930–A940 (2014).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

K. T. Fountaine, W. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
[Crossref]

2013 (8)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(1), 2665 (2013).
[Crossref] [PubMed]

C. E. Chia and R. R. LaPierre, “Electrostatic model of radial pn junction nanowires,” J. Appl. Phys. 114(7), 074317 (2013).
[Crossref]

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4(1), 1497 (2013).
[Crossref] [PubMed]

C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21(S5), A872–A882 (2013).
[Crossref] [PubMed]

N. Huang, C. Lin, M. L. Povinelli, N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys 112(6), 064321 (2013).

2012 (7)

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 1–5 (2012).
[Crossref]

T. Fukui, M. Yoshimura, E. Nakai, and K. Tomioka, “Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy,” Ambio 41(S2), 119–124 (2012).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
[Crossref] [PubMed]

2011 (7)

A. Mellor, I. Tobias, A. Martí, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

T. Markvart, “Beyond the Yablonovitch limit: Trapping light by frequency shift,” Appl. Phys. Lett. 98(7), 7–9 (2011).
[Crossref]

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

R. R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

2010 (4)

P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, “Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111),” Nano Lett. 10(11), 4475–4482 (2010).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Coupling of Light into Nanowire Arrays and sub Sequent Absorption,” J. Nanosci. Nanotechnol. 10(11), 7183–7187 (2010).
[Crossref] [PubMed]

2009 (1)

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 93–96 (2009).
[Crossref]

2008 (1)

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A . Fontcuberta i Morral, “Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy,” Phys. Rev. B Condens. Matter Mater. Phys. 77(15), 155326 (2008).
[Crossref]

2007 (2)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[Crossref]

2006 (1)

F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 74(12), 121302 (2006).
[Crossref]

2004 (1)

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

2003 (1)

M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting Efficiency of Crystalline Silicon Solar Cells Due to Coulomb-Enhanced Auger Recombination,” Prog. Photovolt. Res. Appl. 11(2), 97–104 (2003).
[Crossref]

1982 (1)

. Fontcuberta i Morral, A

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A . Fontcuberta i Morral, “Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy,” Phys. Rev. B Condens. Matter Mater. Phys. 77(15), 155326 (2008).
[Crossref]

Aagesen, M.

B. Wood, P. Kuyanov, M. Aagesen, and R. R. LaPierre, “GaAsP nanowire-on-Si tandem solar cell,” J. Photonics Energy 7(04), 042502 (2017).
[Crossref]

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Aberg, I.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Abstreiter, G.

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A . Fontcuberta i Morral, “Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy,” Phys. Rev. B Condens. Matter Mater. Phys. 77(15), 155326 (2008).
[Crossref]

Abujetas, D. R.

D. van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, and J. Gómez Rivas, “Directional and Polarized Emission from Nanowire Arrays,” Nano Lett. 15(7), 4557–4563 (2015).
[Crossref] [PubMed]

Alarcon-Llado, E.

R. Frederiksen, G. Tutuncuoglu, F. Matteini, K. L. Martinez, A. Fontcuberta I Morral, and E. Alarcon-Llado, “Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy,” ACS Photonics 4(9), 2235–2241 (2017).
[Crossref] [PubMed]

Alarcon-Lladó, E.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Alù, A.

S. A. Mann, R. R. Grote, R. M. Osgood, A. Alù, and E. C. Garnett, “Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit,” ACS Nano 10(9), 8620–8631 (2016).
[Crossref] [PubMed]

Anttu, N.

N. Anttu, “Physics and design for 20% and 25% efficiency nanowire array solar cells,” Nanotechnology 30(7), 074002 (2019).
[Crossref] [PubMed]

V. Dagytė and N. Anttu, “Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays,” Nanotechnology 30(2), 025710 (2019).
[Crossref] [PubMed]

N. Anttu, “Absorption of light in a single vertical nanowire and a nanowire array,” Nanotechnology 30(10), 104004 (2019).
[Crossref] [PubMed]

Y. Chen, O. Höhn, N. Tucher, M. E. Pistol, and N. Anttu, “Optical analysis of a III-V-nanowire-array-on-Si dual junction solar cell,” Opt. Express 25(16), A665–A679 (2017).
[Crossref] [PubMed]

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

N. Anttu, “Shockley-queisser detailed balance efficiency limit for nanowire solar cells,” ACS Photonics 2(3), 446–453 (2015).
[Crossref]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Coupling of Light into Nanowire Arrays and sub Sequent Absorption,” J. Nanosci. Nanotechnol. 10(11), 7183–7187 (2010).
[Crossref] [PubMed]

Arab, S.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

Arbiol, J.

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

Asoli, D.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Atwater, H. A.

K. T. Fountaine, W. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22(S3), A930–A940 (2014).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Bakkers, E. P. A. M.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

D. van Dam, N. J. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. A. M. Bakkers, J. Gómez Rivas, and J. E. M. Haverkort, “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

D. van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, and J. Gómez Rivas, “Directional and Polarized Emission from Nanowire Arrays,” Nano Lett. 15(7), 4557–4563 (2015).
[Crossref] [PubMed]

Barten, T.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Beck, F. J.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 93–96 (2009).
[Crossref]

Benali, A.

A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Bhattacharya, J.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Biswas, R.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Bjork, M. T.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

Borg, M.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Breslin, C.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Bruley, J.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Bu, S.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Bucci, D.

A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Campbell, P.

M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting Efficiency of Crystalline Silicon Solar Cells Due to Coulomb-Enhanced Auger Recombination,” Prog. Photovolt. Res. Appl. 11(2), 97–104 (2003).
[Crossref]

Cao, Y.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Cariou, R.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

Carlson, C.

Catchpole, K. R.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 93–96 (2009).
[Crossref]

Cattoni, A.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

Cavalli, A.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Chakravarty, N.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Chang-Hasnain, C.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[Crossref]

Chase, C.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[Crossref]

Chauvin, N.

A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Chen, G.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Chen, W.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(1), 2665 (2013).
[Crossref] [PubMed]

Chi, C.-Y.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Chia, C. E.

C. E. Chia and R. R. LaPierre, “Electrostatic model of radial pn junction nanowires,” J. Appl. Phys. 114(7), 074317 (2013).
[Crossref]

Chuang, L. C.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[Crossref]

Collin, S.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

Colombo, C.

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A . Fontcuberta i Morral, “Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy,” Phys. Rev. B Condens. Matter Mater. Phys. 77(15), 155326 (2008).
[Crossref]

Conesa-Boj, S.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Cong, S.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Crankshaw, S.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[Crossref]

Cronin, S. B.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

Cuevas, A.

M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting Efficiency of Crystalline Silicon Solar Cells Due to Coulomb-Enhanced Auger Recombination,” Prog. Photovolt. Res. Appl. 11(2), 97–104 (2003).
[Crossref]

Cui, Y.

D. van Dam, N. J. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. A. M. Bakkers, J. Gómez Rivas, and J. E. M. Haverkort, “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Dagyte, V.

V. Dagytė and N. Anttu, “Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays,” Nanotechnology 30(2), 025710 (2019).
[Crossref] [PubMed]

Dahlgren, A.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

Dalal, V. L.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Dalmau-Mallorquí, A.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Dapkus, P. D.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Das Kanungo, P.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Demichel, O.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Dennis Slafer, W.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(1), 2665 (2013).
[Crossref] [PubMed]

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 1–5 (2012).
[Crossref]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Drouard, E.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Dupuis, C.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

El Daif, O.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 1–5 (2012).
[Crossref]

Fan, S.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Farrell, A. C.

H. Kim, A. C. Farrell, P. Senanayake, W. J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Fave, A.

A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Foldyna, M.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

Fontcuberta I Morral, A.

R. Frederiksen, G. Tutuncuoglu, F. Matteini, K. L. Martinez, A. Fontcuberta I Morral, and E. Alarcon-Llado, “Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy,” ACS Photonics 4(9), 2235–2241 (2017).
[Crossref] [PubMed]

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

Fountaine, K. T.

K. T. Fountaine, W. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22(S3), A930–A940 (2014).
[Crossref] [PubMed]

Frederiksen, R.

R. Frederiksen, G. Tutuncuoglu, F. Matteini, K. L. Martinez, A. Fontcuberta I Morral, and E. Alarcon-Llado, “Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy,” ACS Photonics 4(9), 2235–2241 (2017).
[Crossref] [PubMed]

Frimmer, M.

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A . Fontcuberta i Morral, “Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy,” Phys. Rev. B Condens. Matter Mater. Phys. 77(15), 155326 (2008).
[Crossref]

Fukui, T.

T. Fukui, M. Yoshimura, E. Nakai, and K. Tomioka, “Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy,” Ambio 41(S2), 119–124 (2012).
[Crossref] [PubMed]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Garnett, E. C.

S. A. Mann, R. R. Grote, R. M. Osgood, A. Alù, and E. C. Garnett, “Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit,” ACS Nano 10(9), 8620–8631 (2016).
[Crossref] [PubMed]

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Gaucher, A.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

Gignac, L.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Gilboy, J. P.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

Glas, F.

F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 74(12), 121302 (2006).
[Crossref]

Gómez Rivas, J.

D. van Dam, N. J. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. A. M. Bakkers, J. Gómez Rivas, and J. E. M. Haverkort, “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

D. van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, and J. Gómez Rivas, “Directional and Polarized Emission from Nanowire Arrays,” Nano Lett. 15(7), 4557–4563 (2015).
[Crossref] [PubMed]

Gordon, I.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 1–5 (2012).
[Crossref]

Grote, R. R.

S. A. Mann, R. R. Grote, R. M. Osgood, A. Alù, and E. C. Garnett, “Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit,” ACS Nano 10(9), 8620–8631 (2016).
[Crossref] [PubMed]

Grzela, G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Gustafsson, A.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Han, S. E.

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

Haverkort, J. E. M.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

D. van Dam, N. J. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. A. M. Bakkers, J. Gómez Rivas, and J. E. M. Haverkort, “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

D. van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, and J. Gómez Rivas, “Directional and Polarized Emission from Nanowire Arrays,” Nano Lett. 15(7), 4557–4563 (2015).
[Crossref] [PubMed]

He, S.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell,” Nanoscale Res. Lett. 10(1), 968 (2015).
[Crossref] [PubMed]

Heiss, M.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

Höhn, O.

Holm, J. V.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Huang, J. H.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Huang, N.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

N. Huang, C. Lin, M. L. Povinelli, N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys 112(6), 064321 (2013).

N. Huang, C. Lin, M. L. Povinelli, N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys 112(6), 064321 (2013).

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
[Crossref] [PubMed]

Huffaker, D. L.

H. Kim, A. C. Farrell, P. Senanayake, W. J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4(1), 1497 (2013).
[Crossref] [PubMed]

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Hughes, S.

Hung, C.-H.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4(1), 1497 (2013).
[Crossref] [PubMed]

Jagadish, C.

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5(1), 15339 (2015).
[Crossref] [PubMed]

Jeong, D. S.

Johnson, E.

P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, “Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111),” Nano Lett. 10(11), 4475–4482 (2010).
[Crossref] [PubMed]

Jørgensen, H. I.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Kaminski-cachopo, A.

A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Katzenmeyer, A. M.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Kendall, C. G.

Kerr, M. J.

M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting Efficiency of Crystalline Silicon Solar Cells Due to Coulomb-Enhanced Auger Recombination,” Prog. Photovolt. Res. Appl. 11(2), 97–104 (2003).
[Crossref]

Kim, H.

H. Kim, A. C. Farrell, P. Senanayake, W. J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Kim, I.

Kim, J.-K.

Kim, W. M.

Knight, M. W.

G. Yin, M. W. Knight, M. Van Lare, M. Sola-Garcia, A. Polman, and M. Schmid, “Optoelectronic Enhancement of Ultrathin CuIn 1 – x Ga x Se 2 Solar Cells by Nanophotonic Contacts,” Adv. Opt. Mater. 5(5), 1600637 (2017).
[Crossref]

Kobayashi, N. P.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[Crossref]

Krauss, T. F.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(1), 2665 (2013).
[Crossref] [PubMed]

Krogstrup, P.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, “Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111),” Nano Lett. 10(11), 4475–4482 (2010).
[Crossref] [PubMed]

Kuyanov, P.

B. Wood, P. Kuyanov, M. Aagesen, and R. R. LaPierre, “GaAsP nanowire-on-Si tandem solar cell,” J. Photonics Energy 7(04), 042502 (2017).
[Crossref]

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

Lalouat, L.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

LaPierre, R. R.

B. Wood, P. Kuyanov, M. Aagesen, and R. R. LaPierre, “GaAsP nanowire-on-Si tandem solar cell,” J. Photonics Energy 7(04), 042502 (2017).
[Crossref]

C. E. Chia and R. R. LaPierre, “Electrostatic model of radial pn junction nanowires,” J. Appl. Phys. 114(7), 074317 (2013).
[Crossref]

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

R. R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Larsson, M. W.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Lee, D.-K.

Lee, K.-S.

Lee, T.-S.

Lee, W. J.

H. Kim, A. C. Farrell, P. Senanayake, W. J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Lee, W. S.

Léonard, F.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(1), 2665 (2013).
[Crossref] [PubMed]

Li, X.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell,” Nanoscale Res. Lett. 10(1), 968 (2015).
[Crossref] [PubMed]

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Lin, C.

N. Huang, C. Lin, M. L. Povinelli, N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys 112(6), 064321 (2013).

N. Huang, C. Lin, M. L. Povinelli, N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys 112(6), 064321 (2013).

C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21(S5), A872–A882 (2013).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
[Crossref] [PubMed]

Lin, Y.-T.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Liu, V.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(1), 2665 (2013).
[Crossref] [PubMed]

Luque, A.

A. Mellor, I. Tobias, A. Martí, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

Madsen, M. H.

P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, “Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111),” Nano Lett. 10(11), 4475–4482 (2010).
[Crossref] [PubMed]

Magen, C.

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Mann, S. A.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

S. A. Mann, R. R. Grote, R. M. Osgood, A. Alù, and E. C. Garnett, “Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit,” ACS Nano 10(9), 8620–8631 (2016).
[Crossref] [PubMed]

Mariani, G.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4(1), 1497 (2013).
[Crossref] [PubMed]

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Markvart, T.

T. Markvart, “Beyond the Yablonovitch limit: Trapping light by frequency shift,” Appl. Phys. Lett. 98(7), 7–9 (2011).
[Crossref]

Mårtensson, T.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Martí, A.

A. Mellor, I. Tobias, A. Martí, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

Martinez, K. L.

R. Frederiksen, G. Tutuncuoglu, F. Matteini, K. L. Martinez, A. Fontcuberta I Morral, and E. Alarcon-Llado, “Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy,” ACS Photonics 4(9), 2235–2241 (2017).
[Crossref] [PubMed]

Martínez, L. J.

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(1), 2665 (2013).
[Crossref] [PubMed]

Matteini, F.

R. Frederiksen, G. Tutuncuoglu, F. Matteini, K. L. Martinez, A. Fontcuberta I Morral, and E. Alarcon-Llado, “Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy,” ACS Photonics 4(9), 2235–2241 (2017).
[Crossref] [PubMed]

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Mellor, A.

A. Mellor, I. Tobias, A. Martí, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

Mendes, M. J.

A. Mellor, I. Tobias, A. Martí, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

Michallon, J.

A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Michelet, L.

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

Moewe, M.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[Crossref]

Mokkapati, S.

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5(1), 15339 (2015).
[Crossref] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 93–96 (2009).
[Crossref]

Morante, J. R.

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

Morral, I.

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

Moselund, K. E.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Nakai, E.

T. Fukui, M. Yoshimura, E. Nakai, and K. Tomioka, “Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy,” Ambio 41(S2), 119–124 (2012).
[Crossref] [PubMed]

Naseem, U.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

Noda, S.

A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
[Crossref]

Nygard, J.

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

Nygård, J.

P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, “Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111),” Nano Lett. 10(11), 4475–4482 (2010).
[Crossref] [PubMed]

Oener, S. Z.

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Osgood, R. M.

S. A. Mann, R. R. Grote, R. M. Osgood, A. Alù, and E. C. Garnett, “Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit,” ACS Nano 10(9), 8620–8631 (2016).
[Crossref] [PubMed]

Oskooi, A.

A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
[Crossref]

Paniagua-Domínguez, R.

D. van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, and J. Gómez Rivas, “Directional and Polarized Emission from Nanowire Arrays,” Nano Lett. 15(7), 4557–4563 (2015).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Pattnaik, S.

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Peng, Z.

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

Pistol, M. E.

Polman, A.

G. Yin, M. W. Knight, M. Van Lare, M. Sola-Garcia, A. Polman, and M. Schmid, “Optoelectronic Enhancement of Ultrathin CuIn 1 – x Ga x Se 2 Solar Cells by Nanophotonic Contacts,” Adv. Opt. Mater. 5(5), 1600637 (2017).
[Crossref]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 93–96 (2009).
[Crossref]

Poortmans, J.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 1–5 (2012).
[Crossref]

Popovitz-Biro, R.

P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, “Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111),” Nano Lett. 10(11), 4475–4482 (2010).
[Crossref] [PubMed]

Povinelli, M. L.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

N. Huang, C. Lin, M. L. Povinelli, N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys 112(6), 064321 (2013).

N. Huang, C. Lin, M. L. Povinelli, N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys 112(6), 064321 (2013).

C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21(S5), A872–A882 (2013).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
[Crossref] [PubMed]

Raman, A.

Regreny, P.

A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

Riel, H.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Rivas, J. G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Roca I Cabarrocas, P.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

Rüffer, D.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Russo-Averchi, E.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

Samuelson, L.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Sánchez-Gil, J. A.

D. van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, and J. Gómez Rivas, “Directional and Polarized Emission from Nanowire Arrays,” Nano Lett. 15(7), 4557–4563 (2015).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

Saxena, D.

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5(1), 15339 (2015).
[Crossref] [PubMed]

Schmid, H.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Schmid, M.

G. Yin, M. W. Knight, M. Van Lare, M. Sola-Garcia, A. Polman, and M. Schmid, “Optoelectronic Enhancement of Ultrathin CuIn 1 – x Ga x Se 2 Solar Cells by Nanophotonic Contacts,” Adv. Opt. Mater. 5(5), 1600637 (2017).
[Crossref]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Scofield, A. C.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4(1), 1497 (2013).
[Crossref] [PubMed]

Seassal, C.

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

Seifert, W.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Senanayake, P.

H. Kim, A. C. Farrell, P. Senanayake, W. J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

Seyedi, M. A.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Shapiro, J.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Shtrikman, H.

P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, “Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111),” Nano Lett. 10(11), 4475–4482 (2010).
[Crossref] [PubMed]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Signorello, G.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Sola-Garcia, M.

G. Yin, M. W. Knight, M. Van Lare, M. Sola-Garcia, A. Polman, and M. Schmid, “Optoelectronic Enhancement of Ultrathin CuIn 1 – x Ga x Se 2 Solar Cells by Nanophotonic Contacts,” Adv. Opt. Mater. 5(5), 1600637 (2017).
[Crossref]

Song, J.-H.

Spirkoska, D.

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A . Fontcuberta i Morral, “Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy,” Phys. Rev. B Condens. Matter Mater. Phys. 77(15), 155326 (2008).
[Crossref]

Sundvall, C.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

Svensson, C. P. T.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Svensson, K. E.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

Tajik, N.

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

Tan, H. H.

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5(1), 15339 (2015).
[Crossref] [PubMed]

Tanaka, Y.

A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
[Crossref]

Tobias, I.

A. Mellor, I. Tobias, A. Martí, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

Tomioka, K.

T. Fukui, M. Yoshimura, E. Nakai, and K. Tomioka, “Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy,” Ambio 41(S2), 119–124 (2012).
[Crossref] [PubMed]

Trompoukis, C.

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 1–5 (2012).
[Crossref]

Tucher, N.

Tutuncuoglu, G.

R. Frederiksen, G. Tutuncuoglu, F. Matteini, K. L. Martinez, A. Fontcuberta I Morral, and E. Alarcon-Llado, “Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy,” ACS Photonics 4(9), 2235–2241 (2017).
[Crossref] [PubMed]

Tütüncüoglu, G.

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

Uccelli, E.

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

van Dam, D.

D. van Dam, N. J. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. A. M. Bakkers, J. Gómez Rivas, and J. E. M. Haverkort, “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

D. van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, and J. Gómez Rivas, “Directional and Polarized Emission from Nanowire Arrays,” Nano Lett. 15(7), 4557–4563 (2015).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

van Hoof, N. J. J.

D. van Dam, N. J. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. A. M. Bakkers, J. Gómez Rivas, and J. E. M. Haverkort, “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Van Lare, M.

G. Yin, M. W. Knight, M. Van Lare, M. Sola-Garcia, A. Polman, and M. Schmid, “Optoelectronic Enhancement of Ultrathin CuIn 1 – x Ga x Se 2 Solar Cells by Nanophotonic Contacts,” Adv. Opt. Mater. 5(5), 1600637 (2017).
[Crossref]

van Veldhoven, P. J.

D. van Dam, N. J. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. A. M. Bakkers, J. Gómez Rivas, and J. E. M. Haverkort, “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

Vescovi, G.

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

Wacaser, B. A.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Wallenberg, L. R.

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wang, K. X.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell,” Nanoscale Res. Lett. 10(1), 968 (2015).
[Crossref] [PubMed]

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Wen, L.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Werner, P.

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

Whitney, W.

K. T. Fountaine, W. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wong, P. S.

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Wood, B.

B. Wood, P. Kuyanov, M. Aagesen, and R. R. LaPierre, “GaAsP nanowire-on-Si tandem solar cell,” J. Photonics Energy 7(04), 042502 (2017).
[Crossref]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Efficient light management in vertical nanowire arrays for photovoltaics,” Opt. Express 21(S3Suppl 3), A558–A575 (2013).
[Crossref] [PubMed]

N. Anttu and H. Q. Xu, “Coupling of Light into Nanowire Arrays and sub Sequent Absorption,” J. Nanosci. Nanotechnol. 10(11), 7183–7187 (2010).
[Crossref] [PubMed]

Yablonovitch, E.

Yao, M.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Yin, G.

G. Yin, M. W. Knight, M. Van Lare, M. Sola-Garcia, A. Polman, and M. Schmid, “Optoelectronic Enhancement of Ultrathin CuIn 1 – x Ga x Se 2 Solar Cells by Nanophotonic Contacts,” Adv. Opt. Mater. 5(5), 1600637 (2017).
[Crossref]

Yoshimura, M.

T. Fukui, M. Yoshimura, E. Nakai, and K. Tomioka, “Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy,” Ambio 41(S2), 119–124 (2012).
[Crossref] [PubMed]

Yu, Z.

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010).
[Crossref] [PubMed]

Zeng, X.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Zhang, D.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell,” Nanoscale Res. Lett. 10(1), 968 (2015).
[Crossref] [PubMed]

Zhang, Y.

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell,” Nanoscale Res. Lett. 10(1), 968 (2015).
[Crossref] [PubMed]

Zhao, Z.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Zhou, C.

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(1), 2665 (2013).
[Crossref] [PubMed]

ACS Nano (2)

D. van Dam, N. J. J. van Hoof, Y. Cui, P. J. van Veldhoven, E. P. A. M. Bakkers, J. Gómez Rivas, and J. E. M. Haverkort, “High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers,” ACS Nano 10(12), 11414–11419 (2016).
[Crossref] [PubMed]

S. A. Mann, R. R. Grote, R. M. Osgood, A. Alù, and E. C. Garnett, “Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit,” ACS Nano 10(9), 8620–8631 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

N. Anttu, “Shockley-queisser detailed balance efficiency limit for nanowire solar cells,” ACS Photonics 2(3), 446–453 (2015).
[Crossref]

R. Frederiksen, G. Tutuncuoglu, F. Matteini, K. L. Martinez, A. Fontcuberta I Morral, and E. Alarcon-Llado, “Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy,” ACS Photonics 4(9), 2235–2241 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

G. Yin, M. W. Knight, M. Van Lare, M. Sola-Garcia, A. Polman, and M. Schmid, “Optoelectronic Enhancement of Ultrathin CuIn 1 – x Ga x Se 2 Solar Cells by Nanophotonic Contacts,” Adv. Opt. Mater. 5(5), 1600637 (2017).
[Crossref]

Ambio (1)

T. Fukui, M. Yoshimura, E. Nakai, and K. Tomioka, “Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy,” Ambio 41(S2), 119–124 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, and J. Poortmans, “Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography,” Appl. Phys. Lett. 101(10), 1–5 (2012).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 93–96 (2009).
[Crossref]

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-Hasnain, and S. Crankshaw, “Critical diameter for III-V nanowires grown on lattice-mismatched substrates,” Appl. Phys. Lett. 90(4), 043115 (2007).
[Crossref]

T. Markvart, “Beyond the Yablonovitch limit: Trapping light by frequency shift,” Appl. Phys. Lett. 98(7), 7–9 (2011).
[Crossref]

A. Oskooi, Y. Tanaka, and S. Noda, “Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range,” Appl. Phys. Lett. 104(9), 091121 (2014).
[Crossref]

J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99(13), 131114 (2011).
[Crossref]

Energy Procedia (1)

A. Benali, J. Michallon, P. Regreny, E. Drouard, N. Chauvin, D. Bucci, A. Fave, and A. Kaminski-cachopo, “Optical simulation of multijunction solar cells based on III-V nanowires on silicon,” Energy Procedia 60, 109–115 (2014).
[Crossref]

IEEE J. Photovoltaics (1)

I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J. P. Gilboy, C. Sundvall, A. Dahlgren, K. E. Svensson, N. Anttu, M. T. Bjork, and L. Samuelson, “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics 6(1), 185–190 (2016).
[Crossref]

J. Appl. Phys (1)

N. Huang, C. Lin, M. L. Povinelli, N. Huang, C. Lin, and M. L. Povinelli, “Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon Limiting efficiencies of tandem solar cells consisting of III-V nanowire arrays on silicon,” J. Appl. Phys 112(6), 064321 (2013).

J. Appl. Phys. (3)

R. R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

C. E. Chia and R. R. LaPierre, “Electrostatic model of radial pn junction nanowires,” J. Appl. Phys. 114(7), 074317 (2013).
[Crossref]

K. T. Fountaine, W. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

J. Nanosci. Nanotechnol. (1)

N. Anttu and H. Q. Xu, “Coupling of Light into Nanowire Arrays and sub Sequent Absorption,” J. Nanosci. Nanotechnol. 10(11), 7183–7187 (2010).
[Crossref] [PubMed]

J. Opt. (1)

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Photonics Energy (1)

B. Wood, P. Kuyanov, M. Aagesen, and R. R. LaPierre, “GaAsP nanowire-on-Si tandem solar cell,” J. Photonics Energy 7(04), 042502 (2017).
[Crossref]

Nano Lett. (14)

M. Yao, S. Cong, S. Arab, N. Huang, M. L. Povinelli, S. B. Cronin, P. D. Dapkus, and C. Zhou, “Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition,” Nano Lett. 15(11), 7217–7224 (2015).
[Crossref] [PubMed]

D. van Dam, D. R. Abujetas, R. Paniagua-Domínguez, J. A. Sánchez-Gil, E. P. A. M. Bakkers, J. E. M. Haverkort, and J. Gómez Rivas, “Directional and Polarized Emission from Nanowire Arrays,” Nano Lett. 15(7), 4557–4563 (2015).
[Crossref] [PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs Nanowire Array Solar Cells with Axial p-i-n Junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

G. Mariani, P. S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Roca I Cabarrocas, and S. Collin, “Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping,” Nano Lett. 16(9), 5358–5364 (2016).
[Crossref] [PubMed]

K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption Enhancement in Ultrathin Crystalline Silicon Solar Cells with Antireflection and Light-Trapping Nanocone Gratings,” Nano Lett. 12(3), 1616–1619 (2012).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire Antenna Absorption Probed with Time-Reversed Fourier Microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref] [PubMed]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11(10), 4239–4245 (2011).
[Crossref] [PubMed]

T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, “Epitaxial III-V nanowires on silicon,” Nano Lett. 4(10), 1987–1990 (2004).
[Crossref]

H. Kim, A. C. Farrell, P. Senanayake, W. J. Lee, and D. L. Huffaker, “Monolithically Integrated InGaAs Nanowires on 3D Structured Silicon-on-Insulator as a New Platform for Full Optical Links,” Nano Lett. 16(3), 1833–1839 (2016).
[Crossref] [PubMed]

P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, “Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111),” Nano Lett. 10(11), 4475–4482 (2010).
[Crossref] [PubMed]

M. Borg, H. Schmid, K. E. Moselund, G. Signorello, L. Gignac, J. Bruley, C. Breslin, P. Das Kanungo, P. Werner, and H. Riel, “Vertical III-V nanowire device integration on Si(100),” Nano Lett. 14(4), 1914–1920 (2014).
[Crossref] [PubMed]

S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10(11), 4692–4696 (2010).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Nanoscale (1)

E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, A. Fontcuberta i Morral, and I. Morral, “Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon,” Nanoscale 4(5), 1486–1490 (2012).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

Y. Wang, Y. Zhang, D. Zhang, S. He, and X. Li, “Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell,” Nanoscale Res. Lett. 10(1), 968 (2015).
[Crossref] [PubMed]

Nanotechnology (6)

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorquí, G. Tütüncüoğlu, F. Matteini, D. Rüffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Lladó, and A. Fontcuberta i Morral, “III-V nanowire arrays: growth and light interaction,” Nanotechnology 25(1), 014015 (2014).
[Crossref] [PubMed]

V. Dagytė and N. Anttu, “Modal analysis of resonant and non-resonant optical response in semiconductor nanowire arrays,” Nanotechnology 30(2), 025710 (2019).
[Crossref] [PubMed]

N. Anttu, “Absorption of light in a single vertical nanowire and a nanowire array,” Nanotechnology 30(10), 104004 (2019).
[Crossref] [PubMed]

N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, “Sulfur passivation and contact methods for GaAs nanowire solar cells,” Nanotechnology 22(22), 225402 (2011).
[Crossref] [PubMed]

N. Anttu, “Physics and design for 20% and 25% efficiency nanowire array solar cells,” Nanotechnology 30(7), 074002 (2019).
[Crossref] [PubMed]

Nat. Commun. (2)

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4(1), 1497 (2013).
[Crossref] [PubMed]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, and T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4(1), 2665 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. A. Mann, S. Z. Oener, A. Cavalli, J. E. M. Haverkort, E. P. A. M. Bakkers, and E. C. Garnett, “Quantifying losses and thermodynamic limits in nanophotonic solar cells,” Nat. Nanotechnol. 11(12), 1071–1075 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A . Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics 7(4), 306–310 (2013).
[Crossref]

Opt. Express (7)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A . Fontcuberta i Morral, “Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy,” Phys. Rev. B Condens. Matter Mater. Phys. 77(15), 155326 (2008).
[Crossref]

F. Glas, “Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires,” Phys. Rev. B Condens. Matter Mater. Phys. 74(12), 121302 (2006).
[Crossref]

Prog. Photovolt. Res. Appl. (2)

A. Mellor, I. Tobias, A. Martí, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt. Res. Appl. 19(6), 676–687 (2011).
[Crossref]

M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting Efficiency of Crystalline Silicon Solar Cells Due to Coulomb-Enhanced Auger Recombination,” Prog. Photovolt. Res. Appl. 11(2), 97–104 (2003).
[Crossref]

Sci. Rep. (1)

S. Mokkapati, D. Saxena, H. H. Tan, and C. Jagadish, “Optical design of nanowire absorbers for wavelength selective photodetectors,” Sci. Rep. 5(1), 15339 (2015).
[Crossref] [PubMed]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 a) Schematic representation of the combined 1D-2D waveguiding in the NW-thin film tandem solar cell. The NW geometry ensures the efficient coupling of a plane wave coupling to guided modes of the 1D waveguide NW. The interference between all scattered light generates an interference pattern at the bottom cell. This light will be coupled to 2D waveguide modes of the Si thin film. b) The geometry of our tandem cell, consisting of a square array of 6 μm long GaAs nanowires on a 2 μm Si slab. The 4T tandem cell is covered with 200 nm Ag at the back. Geometries can have different GaAs filling fractions by varying the diameter (d) and pitch distance (p).
Fig. 2
Fig. 2 Absorption (a) and forward scattering (b) cross section of a single GaAs nanowire of 6μm in length and various diameters. The peaks in absorption/forward scattering result from incoming light coupling to waveguiding modes of the NW, represented by different symbols according to the guided mode order. (c) Field intensity distribution in the axial cross-section of a NW of 200 nm in diameter at two different wavelengths, that highlight the coupling into the HE11 and HE12 guided modes. Scale bar is 100 nm. (d) Schematic representation of the simulation, where a plane wave is travelling along the main axis of the NW.
Fig. 3
Fig. 3 a) Short circuit current (Jsc) of GaAs nanowire array (length: 6 μm) as a function of diameter, for pitch distances of 314, 450, 500, 600 and 800nm. b) Short circuit current in the Si film calculated for wavelengths longer than 875 nm, as a function of the GaAs NW array geometry. Arrays with pitch distances of 314, 450, 500, 600 and 800 nm are shown in different colors. The different lines correspond to the expected current densities of the cases as explained in the text.
Fig. 4
Fig. 4 a) Absorption spectra of the Si film without (dashed) and with (solid) the NW array on top in the NIR spectral range, for which GaAs is transparent. The NW array parameters are 800 nm pitch distance and 200 nm in diameter. b) Dispersion curves for TE and TM guided modes of a 2 μm Si slab, in red and blue respectively. The horizontal lines show the grating orders of a 2D periodic array with a 800 nm period. [mn] refer to the diffraction orders. Vertical lines are to highlight some intersections of the guided modes with the diffraction orders. c) Field distribution in a transverse cross-section of the full device for three different wavelengths, marked in the spectrum by arrows. The field profile at the peaks in absorption (green and red) match well with the excitation of the 7th order TE and 4th order TM guided modes in Si, respectively.
Fig. 5
Fig. 5 Light trapping efficiency in the Si film as a function of the NW array filling fraction for arrays with different pitch distances. The efficiency is obtained by normalising the short circuit current in Si by that calculated considering the 4n2π (p/λ)2α absorption limit.
Fig. 6
Fig. 6 Left: Detailed balance conversion efficiency of the 4T GaAs NW-Si film tandem cell as a function of GaAs array filling fraction. The NWs are 6 μm long and the Si is 2 μm thick. An Ag reflector is considered on the rear side. Different colors correspond to different pitch distances of the NW array. Stars show the total efficiency achieved by considering the NWs to be of 12 μm in length. The grey dashed line is the calculated 4T conversion efficiency of a GaAs equivalent film on 2 μm thick Si tandem, where the thickness of the GaAs film is such that it contains the same amount of material as in the array. Right: Summary of top, bottom and total cell efficiencies for our best performing designs along with the thin film and bulk equivalents. The geometry of the best short NWs is d = 160nm, p = 450nm. Realistic designs are labelled in grey. ARC refers to anti-reflective coating based on a 100 nm tick dielectric of n = 1.5.
Fig. 7
Fig. 7 Comparison of the NIR absorption spectra of the Si film when calculated using a fit to the Si optical parameters and broadband sources with respect to the experimental values and monochromatic light.
Fig. 8
Fig. 8 Simulated reflectance in the visible spectral range for the Tandem device as a function of NW array filling fraction.
Fig. 9
Fig. 9 Absorption in Si thin film for NIR range for a nanowire array with a pitch distance of 314 nm, and various diameters. Spectra are vertically shifted by 0.15 for clarity
Fig. 10
Fig. 10 Schematic representation of how is the double pass absorption being calculated for the thin film equivalent tandem designs
Fig. 11
Fig. 11 Calculated NIR-related short circuit current in Si for: GaAs NWs/2um-Si/Ag (black), GaAs NWs in PDMS/SiO2/2um-Si/Ag (purple) and GaAs NWs in PDMS/ITO/SiO2/2um-Si/Ag (orange)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J dark i (V)= 200nm 4000nm ee m i (λ) b e i (λ,μ)dλ,
b e (λ,μ)= F c 2c λ 4 [ 1 ( e hc/ λμ k B T )1 ]
J ph =e 300nm N ph (λ)abs(λ)dλ

Metrics