Abstract

A novel wireless optical power transfer (WOPT) system using diverging angular dispersion and spatially distributed laser cavity resonance is proposed. In the transmitter, a diffraction grating spatially disperses the broadband light from a semiconductor optical amplifier. Receiving units spread across a wide field of view are embedded with retroreflecting beam splitters that reflect the incident beam back to the transmitter, thereby completing multiple resonant cavities. Retroreflectors enable a user-friendly alignment and tap power from the resonating cavity, supplying optical power. We demonstrate an automatic safety mechanism that instantly ceases the cavity resonance should any vulnerable organ break the transmitter–receiver line of sight. The results indicate that a single-channel WOPT system can provide a resonating average power of 17.2 mW (receiving power of 1.7 mW to the photodetector) over a distance of 1 m with a channel linewidth of 0.035 nm. For a proof-of-principle experiment, seven receiver units were successfully demonstrated to supply optical power. With careful retroreflector design and field-of-view optimization, the potential of our scheme can be further exploited toward commercial deployment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optical wireless wavelength multiplexing and demultiplexing using resonant cavity

Teanchai Chantakit, Surasak Chiangga, Iraj S. Amiri, and Preecha Yupapin
Appl. Opt. 57(27) 7997-8004 (2018)

Mobile Multigigabit Indoor Optical Wireless Systems Employing Multibeam Power Adaptation and Imaging Diversity Receivers

Fuad E. Alsaadi and Jaafar M.H. Elmirghani
J. Opt. Commun. Netw. 3(1) 27-39 (2011)

Performance of an optical wireless communication system as a function of wavelength

Haim Manor and Shlomi Arnon
Appl. Opt. 42(21) 4285-4294 (2003)

References

  • View by:
  • |
  • |
  • |

  1. C. T. Rim and C. Mi, Wireless Power Transfer for Electric Vehicles and Mobile Devices (John Wiley & Sons, 2017).
  2. J. I. Agbinya, Wireless Power Transfer (River Publishers, 2015).
  3. A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE 102(11), 1692–1711 (2014).
    [Crossref]
  4. J. Garnica, R. A. Chinga, and J. Lin, “Wireless Power Transmission: From Far Field to Near Field,” Proc. IEEE 101(6), 1321–1331 (2013).
    [Crossref]
  5. X. Wei, Z. Wang, and H. Dai, “A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Energies 7(7), 4316–4341 (2014).
    [Crossref]
  6. Z. Pantic and S. M. Lukic, “Framework and Topology for Active Tuning of Parallel Compensated Receivers in Power Transfer Systems,” IEEE Trans. Power Electron. 27(11), 4503–4513 (2012).
    [Crossref]
  7. A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
    [Crossref]
  8. X. Li, C. Tsui, and W. Ki, “A 13.56 MHz Wireless Power Transfer System With Reconfigurable Resonant Regulating Rectifier and Wireless Power Control for Implantable Medical Devices,” IEEE J. Solid-State Circuits 50(4), 978–989 (2015).
    [Crossref]
  9. B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Trans. Power Electron. 24(7), 1819–1825 (2009).
    [Crossref]
  10. A. Kurs, R. Moffatt, and M. Soljačić, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett. 96(4), 044102 (2010).
    [Crossref]
  11. X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “Wireless charger networking for mobile devices: fundamentals, standards, and applications,” IEEE Wirel. Commun. 22(2), 126–135 (2015).
    [Crossref]
  12. L. Summerer and O. Purcell, “Concepts for wireless energy transmission via laser,” Europeans Space Agency (ESA)-Advanced Concepts Team (2009).
  13. X. Lu, P. Wang, D. Niyato, and E. Hossain, “Dynamic spectrum access in cognitive radio networks with RF energy harvesting,” IEEE Wirel. Commun. 21(3), 102–110 (2014).
    [Crossref]
  14. S. Ladan, N. Ghassemi, A. Ghiotto, and K. Wu, “Highly Efficient Compact Rectenna for Wireless Energy Harvesting Application,” IEEE Microw. Mag. 14(1), 117–122 (2013).
    [Crossref]
  15. K. Huang and V. K. N. Lau, “Enabling Wireless Power Transfer in Cellular Networks: Architecture, Modeling and Deployment,” IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014).
    [Crossref]
  16. I. S. C. Committee, “IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz,” IEEE C95. 1–1991 (1992).
  17. “Wireless recharging for devices gets FCC approval,” USA Today (2017).
  18. A. Sahai and D. Graham, “Optical wireless power transmission at long wavelengths,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 164–170.
    [Crossref]
  19. J. Fakidis, S. Videv, S. Kucera, H. Claussen, and H. Haas, “Indoor Optical Wireless Power Transfer to Small Cells at Nighttime,” J. Lightwave Technol. JLT 34, 3236–3258 (2016).
  20. M. Fakharzadeh, S. K. Chaudhuri, and S. Safavi-Naeini, “Optical beamforming with tunable ring resonators,” in 2008 IEEE Antennas and Propagation Society International Symposium (2008), pp. 1–4.
  21. S.-M. Kim and S.-M. Kim, “Wireless optical energy transmission using optical beamforming,” OE 52, 043205 (2013).
    [Crossref]
  22. Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, “Distributed Laser Charging: A Wireless Power Transfer Approach,” IEEE Internet of Things Journal 5(5), 3853–3864 (2018).
    [Crossref]
  23. O. Alpert and R. Paschotta, “Wireless laser system for power transmission utilizing a gain medium between retroreflectors,” United States patent US8525097B2 (September 3, 2013).
  24. A. W. Setiawan Putra, M. Tanizawa, and T. Maruyama, “Optical Wireless Power Transmission Using Si Photovoltaic Through Air, Water, and Skin,” IEEE Photonics Technol. Lett. 31(2), 157–160 (2019).
    [Crossref]
  25. A. Dasgupta, M.-M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
    [Crossref] [PubMed]
  26. Y. Katsuta and T. Miyamoto, “Design and experimental characterization of optical wireless power transmission using GaAs solar cell and series-connected high-power vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 57(8S2), 08PD01 (2018).
    [Crossref]
  27. S.-M. Kim and D.-H. Rhee, “Experimental demonstration of optical wireless power transfer with a DC-to-DC transfer efficiency of 12.1%,” OE 57, 086108 (2018).
    [Crossref]
  28. C. A. Schäfer, “Continuous adaptive beam pointing and tracking for laser power transmission,” Opt. Express 18(13), 13451–13467 (2010).
    [Crossref] [PubMed]
  29. International Standard IEC 60825–1 © IEC: 1993 + A1:1997 + A2:2001: Safety of Laser Products – Part 1: Equipment Classification and Requirements (International Electrotechnical Commissions, 2014).
  30. C. W. Oh, Z. Cao, E. Tangdiongga, and T. Koonen, “Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks,” Opt. Express 24(17), 19211–19227 (2016).
    [Crossref] [PubMed]
  31. R. Della-Pergola, O. Alpert, O. Nahmias, and V. Vaisleib, “Spatially distributed laser resonator,” United States patent US9905988B2 (February 27, 2018).
  32. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).
  33. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett., OL 28, 1981–1983 (2003).
    [Crossref]
  34. S. Ottonelli, F. D. Lucia, M. Vietro, M. Dabbicco, and G. Scamarcio, “Comparison of plane mirror vs retroreflector peformance for laser-self-mixing displacement sensors,” J. Eur. Opt. Soc. Rapid Publ. 4, 09036 (2009).
    [Crossref]
  35. J. P. Cruz and A. Plakhov, “Comparative Study on Efficiency of Mirror Retroreflectors,” in Optimization in the Natural Sciences, A. Plakhov, T. Tchemisova, and A. Freitas, eds., Communications in Computer and Information Science (Springer International Publishing, 2015), pp. 20–32.
  36. R. Ahmed, A. K. Yetisen, S. H. Yun, and H. Butt, “Color-selective holographic retroreflector array for sensing applications,” Light Sci. Appl. 6(2), e16214 (2017).
    [Crossref] [PubMed]
  37. R. J. Grasso, J. E. Odhner, H. Stewart, and R. V. McDaniel, “Laser radar range and detection performance for MEMS corner cube retroreflector arrays,” in Advanced Free-Space Optical Communications Techniques and Technologies (International Society for Optics and Photonics, 2004), Vol. 5614, pp. 43–52.
  38. D.-S. Choi, J. Jeong, E.-J. Shin, and S.-Y. Kim, “Focus-tunable double convex lens based on non-ionic electroactive gel,” Opt. Express 25(17), 20133–20141 (2017).
    [Crossref] [PubMed]
  39. W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 19(19), 1418–1420 (2007).
    [Crossref]
  40. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett. 11(3), 322–324 (1999).
    [Crossref]
  41. M. P. Fok and C. Shu, “Power equalization scheme for multi-wavelength source generation from a SOA fiber laser using an amplifier assist ring,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 788–789.
    [Crossref]
  42. V. Baby, L. R. Chen, S. Doucet, and S. LaRochelle, “Continuous-Wave Operation of Semiconductor Optical Amplifier-Based Multiwavelength Tunable Fiber Lasers With 25-GHz Spacing,” IEEE J. Sel. Top. Quantum Electron. 13(3), 764–769 (2007).
    [Crossref]
  43. J. Pengyu and J. Wei, “The power equalization of multi-wavelength fiber laser based on SOA,” in 2013 22nd Wireless and Optical Communication Conference (2013), pp. 595–598.
    [Crossref]
  44. J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
    [Crossref]

2019 (1)

A. W. Setiawan Putra, M. Tanizawa, and T. Maruyama, “Optical Wireless Power Transmission Using Si Photovoltaic Through Air, Water, and Skin,” IEEE Photonics Technol. Lett. 31(2), 157–160 (2019).
[Crossref]

2018 (3)

A. Dasgupta, M.-M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref] [PubMed]

Y. Katsuta and T. Miyamoto, “Design and experimental characterization of optical wireless power transmission using GaAs solar cell and series-connected high-power vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 57(8S2), 08PD01 (2018).
[Crossref]

Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, “Distributed Laser Charging: A Wireless Power Transfer Approach,” IEEE Internet of Things Journal 5(5), 3853–3864 (2018).
[Crossref]

2017 (2)

R. Ahmed, A. K. Yetisen, S. H. Yun, and H. Butt, “Color-selective holographic retroreflector array for sensing applications,” Light Sci. Appl. 6(2), e16214 (2017).
[Crossref] [PubMed]

D.-S. Choi, J. Jeong, E.-J. Shin, and S.-Y. Kim, “Focus-tunable double convex lens based on non-ionic electroactive gel,” Opt. Express 25(17), 20133–20141 (2017).
[Crossref] [PubMed]

2016 (2)

C. W. Oh, Z. Cao, E. Tangdiongga, and T. Koonen, “Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks,” Opt. Express 24(17), 19211–19227 (2016).
[Crossref] [PubMed]

J. Fakidis, S. Videv, S. Kucera, H. Claussen, and H. Haas, “Indoor Optical Wireless Power Transfer to Small Cells at Nighttime,” J. Lightwave Technol. JLT 34, 3236–3258 (2016).

2015 (2)

X. Li, C. Tsui, and W. Ki, “A 13.56 MHz Wireless Power Transfer System With Reconfigurable Resonant Regulating Rectifier and Wireless Power Control for Implantable Medical Devices,” IEEE J. Solid-State Circuits 50(4), 978–989 (2015).
[Crossref]

X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “Wireless charger networking for mobile devices: fundamentals, standards, and applications,” IEEE Wirel. Commun. 22(2), 126–135 (2015).
[Crossref]

2014 (4)

X. Lu, P. Wang, D. Niyato, and E. Hossain, “Dynamic spectrum access in cognitive radio networks with RF energy harvesting,” IEEE Wirel. Commun. 21(3), 102–110 (2014).
[Crossref]

A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE 102(11), 1692–1711 (2014).
[Crossref]

X. Wei, Z. Wang, and H. Dai, “A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Energies 7(7), 4316–4341 (2014).
[Crossref]

K. Huang and V. K. N. Lau, “Enabling Wireless Power Transfer in Cellular Networks: Architecture, Modeling and Deployment,” IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014).
[Crossref]

2013 (3)

J. Garnica, R. A. Chinga, and J. Lin, “Wireless Power Transmission: From Far Field to Near Field,” Proc. IEEE 101(6), 1321–1331 (2013).
[Crossref]

S. Ladan, N. Ghassemi, A. Ghiotto, and K. Wu, “Highly Efficient Compact Rectenna for Wireless Energy Harvesting Application,” IEEE Microw. Mag. 14(1), 117–122 (2013).
[Crossref]

J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
[Crossref]

2012 (1)

Z. Pantic and S. M. Lukic, “Framework and Topology for Active Tuning of Parallel Compensated Receivers in Power Transfer Systems,” IEEE Trans. Power Electron. 27(11), 4503–4513 (2012).
[Crossref]

2010 (2)

A. Kurs, R. Moffatt, and M. Soljačić, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett. 96(4), 044102 (2010).
[Crossref]

C. A. Schäfer, “Continuous adaptive beam pointing and tracking for laser power transmission,” Opt. Express 18(13), 13451–13467 (2010).
[Crossref] [PubMed]

2009 (2)

B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Trans. Power Electron. 24(7), 1819–1825 (2009).
[Crossref]

S. Ottonelli, F. D. Lucia, M. Vietro, M. Dabbicco, and G. Scamarcio, “Comparison of plane mirror vs retroreflector peformance for laser-self-mixing displacement sensors,” J. Eur. Opt. Soc. Rapid Publ. 4, 09036 (2009).
[Crossref]

2008 (1)

A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
[Crossref]

2007 (2)

V. Baby, L. R. Chen, S. Doucet, and S. LaRochelle, “Continuous-Wave Operation of Semiconductor Optical Amplifier-Based Multiwavelength Tunable Fiber Lasers With 25-GHz Spacing,” IEEE J. Sel. Top. Quantum Electron. 13(3), 764–769 (2007).
[Crossref]

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 19(19), 1418–1420 (2007).
[Crossref]

1999 (1)

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett. 11(3), 322–324 (1999).
[Crossref]

Ahmed, R.

R. Ahmed, A. K. Yetisen, S. H. Yun, and H. Butt, “Color-selective holographic retroreflector array for sensing applications,” Light Sci. Appl. 6(2), e16214 (2017).
[Crossref] [PubMed]

Baby, V.

V. Baby, L. R. Chen, S. Doucet, and S. LaRochelle, “Continuous-Wave Operation of Semiconductor Optical Amplifier-Based Multiwavelength Tunable Fiber Lasers With 25-GHz Spacing,” IEEE J. Sel. Top. Quantum Electron. 13(3), 764–769 (2007).
[Crossref]

Boiko, D.

J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
[Crossref]

Bouhelier, A.

A. Dasgupta, M.-M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref] [PubMed]

Breguet, J.-M.

J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
[Crossref]

Buret, M.

A. Dasgupta, M.-M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref] [PubMed]

Butt, H.

R. Ahmed, A. K. Yetisen, S. H. Yun, and H. Butt, “Color-selective holographic retroreflector array for sensing applications,” Light Sci. Appl. 6(2), e16214 (2017).
[Crossref] [PubMed]

Cannon, B. L.

B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Trans. Power Electron. 24(7), 1819–1825 (2009).
[Crossref]

Cao, Z.

Cazier, N.

A. Dasgupta, M.-M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref] [PubMed]

Chaudhuri, S. K.

M. Fakharzadeh, S. K. Chaudhuri, and S. Safavi-Naeini, “Optical beamforming with tunable ring resonators,” in 2008 IEEE Antennas and Propagation Society International Symposium (2008), pp. 1–4.

Chen, L. R.

V. Baby, L. R. Chen, S. Doucet, and S. LaRochelle, “Continuous-Wave Operation of Semiconductor Optical Amplifier-Based Multiwavelength Tunable Fiber Lasers With 25-GHz Spacing,” IEEE J. Sel. Top. Quantum Electron. 13(3), 764–769 (2007).
[Crossref]

Chinga, R. A.

J. Garnica, R. A. Chinga, and J. Lin, “Wireless Power Transmission: From Far Field to Near Field,” Proc. IEEE 101(6), 1321–1331 (2013).
[Crossref]

Choi, D.-S.

Claussen, H.

J. Fakidis, S. Videv, S. Kucera, H. Claussen, and H. Haas, “Indoor Optical Wireless Power Transfer to Small Cells at Nighttime,” J. Lightwave Technol. JLT 34, 3236–3258 (2016).

Colas-des-Francs, G.

A. Dasgupta, M.-M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref] [PubMed]

Costanzo, A.

A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE 102(11), 1692–1711 (2014).
[Crossref]

Dabbicco, M.

S. Ottonelli, F. D. Lucia, M. Vietro, M. Dabbicco, and G. Scamarcio, “Comparison of plane mirror vs retroreflector peformance for laser-self-mixing displacement sensors,” J. Eur. Opt. Soc. Rapid Publ. 4, 09036 (2009).
[Crossref]

Dai, H.

X. Wei, Z. Wang, and H. Dai, “A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Energies 7(7), 4316–4341 (2014).
[Crossref]

Dasgupta, A.

A. Dasgupta, M.-M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref] [PubMed]

Dionigi, M.

A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE 102(11), 1692–1711 (2014).
[Crossref]

Doucet, S.

V. Baby, L. R. Chen, S. Doucet, and S. LaRochelle, “Continuous-Wave Operation of Semiconductor Optical Amplifier-Based Multiwavelength Tunable Fiber Lasers With 25-GHz Spacing,” IEEE J. Sel. Top. Quantum Electron. 13(3), 764–769 (2007).
[Crossref]

Fakharzadeh, M.

M. Fakharzadeh, S. K. Chaudhuri, and S. Safavi-Naeini, “Optical beamforming with tunable ring resonators,” in 2008 IEEE Antennas and Propagation Society International Symposium (2008), pp. 1–4.

Fakidis, J.

J. Fakidis, S. Videv, S. Kucera, H. Claussen, and H. Haas, “Indoor Optical Wireless Power Transfer to Small Cells at Nighttime,” J. Lightwave Technol. JLT 34, 3236–3258 (2016).

Fang, W.

Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, “Distributed Laser Charging: A Wireless Power Transfer Approach,” IEEE Internet of Things Journal 5(5), 3853–3864 (2018).
[Crossref]

Fok, M. P.

M. P. Fok and C. Shu, “Power equalization scheme for multi-wavelength source generation from a SOA fiber laser using an amplifier assist ring,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 788–789.
[Crossref]

Garnica, J.

J. Garnica, R. A. Chinga, and J. Lin, “Wireless Power Transmission: From Far Field to Near Field,” Proc. IEEE 101(6), 1321–1331 (2013).
[Crossref]

Ghassemi, N.

S. Ladan, N. Ghassemi, A. Ghiotto, and K. Wu, “Highly Efficient Compact Rectenna for Wireless Energy Harvesting Application,” IEEE Microw. Mag. 14(1), 117–122 (2013).
[Crossref]

Ghiotto, A.

S. Ladan, N. Ghassemi, A. Ghiotto, and K. Wu, “Highly Efficient Compact Rectenna for Wireless Energy Harvesting Application,” IEEE Microw. Mag. 14(1), 117–122 (2013).
[Crossref]

Glettig, W.

J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
[Crossref]

Goldstein, S. C.

B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Trans. Power Electron. 24(7), 1819–1825 (2009).
[Crossref]

Graham, D.

A. Sahai and D. Graham, “Optical wireless power transmission at long wavelengths,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 164–170.
[Crossref]

Gumy, M.

J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
[Crossref]

Haas, H.

J. Fakidis, S. Videv, S. Kucera, H. Claussen, and H. Haas, “Indoor Optical Wireless Power Transfer to Small Cells at Nighttime,” J. Lightwave Technol. JLT 34, 3236–3258 (2016).

Han, Z.

X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “Wireless charger networking for mobile devices: fundamentals, standards, and applications,” IEEE Wirel. Commun. 22(2), 126–135 (2015).
[Crossref]

Henein, S.

J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
[Crossref]

Hoburg, J. F.

B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Trans. Power Electron. 24(7), 1819–1825 (2009).
[Crossref]

Hossain, E.

X. Lu, P. Wang, D. Niyato, and E. Hossain, “Dynamic spectrum access in cognitive radio networks with RF energy harvesting,” IEEE Wirel. Commun. 21(3), 102–110 (2014).
[Crossref]

Huang, K.

K. Huang and V. K. N. Lau, “Enabling Wireless Power Transfer in Cellular Networks: Architecture, Modeling and Deployment,” IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014).
[Crossref]

Jeong, J.

Joannopoulos, J. D.

A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
[Crossref]

Karalis, A.

A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
[Crossref]

Katsuta, Y.

Y. Katsuta and T. Miyamoto, “Design and experimental characterization of optical wireless power transmission using GaAs solar cell and series-connected high-power vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 57(8S2), 08PD01 (2018).
[Crossref]

Ki, W.

X. Li, C. Tsui, and W. Ki, “A 13.56 MHz Wireless Power Transfer System With Reconfigurable Resonant Regulating Rectifier and Wireless Power Control for Implantable Medical Devices,” IEEE J. Solid-State Circuits 50(4), 978–989 (2015).
[Crossref]

Kikuchi, K.

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett. 11(3), 322–324 (1999).
[Crossref]

Kim, D. I.

X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “Wireless charger networking for mobile devices: fundamentals, standards, and applications,” IEEE Wirel. Commun. 22(2), 126–135 (2015).
[Crossref]

Kim, S.-Y.

Kjelberg, I.

J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
[Crossref]

Koonen, T.

Kucera, S.

J. Fakidis, S. Videv, S. Kucera, H. Claussen, and H. Haas, “Indoor Optical Wireless Power Transfer to Small Cells at Nighttime,” J. Lightwave Technol. JLT 34, 3236–3258 (2016).

Kurs, A.

A. Kurs, R. Moffatt, and M. Soljačić, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett. 96(4), 044102 (2010).
[Crossref]

Ladan, S.

S. Ladan, N. Ghassemi, A. Ghiotto, and K. Wu, “Highly Efficient Compact Rectenna for Wireless Energy Harvesting Application,” IEEE Microw. Mag. 14(1), 117–122 (2013).
[Crossref]

LaRochelle, S.

V. Baby, L. R. Chen, S. Doucet, and S. LaRochelle, “Continuous-Wave Operation of Semiconductor Optical Amplifier-Based Multiwavelength Tunable Fiber Lasers With 25-GHz Spacing,” IEEE J. Sel. Top. Quantum Electron. 13(3), 764–769 (2007).
[Crossref]

Lau, V. K. N.

K. Huang and V. K. N. Lau, “Enabling Wireless Power Transfer in Cellular Networks: Architecture, Modeling and Deployment,” IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014).
[Crossref]

Lecomte, S.

J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
[Crossref]

Li, X.

X. Li, C. Tsui, and W. Ki, “A 13.56 MHz Wireless Power Transfer System With Reconfigurable Resonant Regulating Rectifier and Wireless Power Control for Implantable Medical Devices,” IEEE J. Solid-State Circuits 50(4), 978–989 (2015).
[Crossref]

Lin, J.

J. Garnica, R. A. Chinga, and J. Lin, “Wireless Power Transmission: From Far Field to Near Field,” Proc. IEEE 101(6), 1321–1331 (2013).
[Crossref]

Liu, L.

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 19(19), 1418–1420 (2007).
[Crossref]

Liu, Q.

Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, “Distributed Laser Charging: A Wireless Power Transfer Approach,” IEEE Internet of Things Journal 5(5), 3853–3864 (2018).
[Crossref]

Lu, X.

X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “Wireless charger networking for mobile devices: fundamentals, standards, and applications,” IEEE Wirel. Commun. 22(2), 126–135 (2015).
[Crossref]

X. Lu, P. Wang, D. Niyato, and E. Hossain, “Dynamic spectrum access in cognitive radio networks with RF energy harvesting,” IEEE Wirel. Commun. 21(3), 102–110 (2014).
[Crossref]

Lucia, F. D.

S. Ottonelli, F. D. Lucia, M. Vietro, M. Dabbicco, and G. Scamarcio, “Comparison of plane mirror vs retroreflector peformance for laser-self-mixing displacement sensors,” J. Eur. Opt. Soc. Rapid Publ. 4, 09036 (2009).
[Crossref]

Lukic, S. M.

Z. Pantic and S. M. Lukic, “Framework and Topology for Active Tuning of Parallel Compensated Receivers in Power Transfer Systems,” IEEE Trans. Power Electron. 27(11), 4503–4513 (2012).
[Crossref]

Maruyama, T.

A. W. Setiawan Putra, M. Tanizawa, and T. Maruyama, “Optical Wireless Power Transmission Using Si Photovoltaic Through Air, Water, and Skin,” IEEE Photonics Technol. Lett. 31(2), 157–160 (2019).
[Crossref]

Masotti, D.

A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE 102(11), 1692–1711 (2014).
[Crossref]

Mennemanteuil, M.-M.

A. Dasgupta, M.-M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref] [PubMed]

Mitev, V.

J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
[Crossref]

Miyamoto, T.

Y. Katsuta and T. Miyamoto, “Design and experimental characterization of optical wireless power transmission using GaAs solar cell and series-connected high-power vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 57(8S2), 08PD01 (2018).
[Crossref]

Moffatt, R.

A. Kurs, R. Moffatt, and M. Soljačić, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett. 96(4), 044102 (2010).
[Crossref]

Mongiardo, M.

A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE 102(11), 1692–1711 (2014).
[Crossref]

Monti, G.

A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE 102(11), 1692–1711 (2014).
[Crossref]

Niyato, D.

X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “Wireless charger networking for mobile devices: fundamentals, standards, and applications,” IEEE Wirel. Commun. 22(2), 126–135 (2015).
[Crossref]

X. Lu, P. Wang, D. Niyato, and E. Hossain, “Dynamic spectrum access in cognitive radio networks with RF energy harvesting,” IEEE Wirel. Commun. 21(3), 102–110 (2014).
[Crossref]

Oh, C. W.

Ottonelli, S.

S. Ottonelli, F. D. Lucia, M. Vietro, M. Dabbicco, and G. Scamarcio, “Comparison of plane mirror vs retroreflector peformance for laser-self-mixing displacement sensors,” J. Eur. Opt. Soc. Rapid Publ. 4, 09036 (2009).
[Crossref]

Pantic, Z.

Z. Pantic and S. M. Lukic, “Framework and Topology for Active Tuning of Parallel Compensated Receivers in Power Transfer Systems,” IEEE Trans. Power Electron. 27(11), 4503–4513 (2012).
[Crossref]

Safavi-Naeini, S.

M. Fakharzadeh, S. K. Chaudhuri, and S. Safavi-Naeini, “Optical beamforming with tunable ring resonators,” in 2008 IEEE Antennas and Propagation Society International Symposium (2008), pp. 1–4.

Sahai, A.

A. Sahai and D. Graham, “Optical wireless power transmission at long wavelengths,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 164–170.
[Crossref]

Scamarcio, G.

S. Ottonelli, F. D. Lucia, M. Vietro, M. Dabbicco, and G. Scamarcio, “Comparison of plane mirror vs retroreflector peformance for laser-self-mixing displacement sensors,” J. Eur. Opt. Soc. Rapid Publ. 4, 09036 (2009).
[Crossref]

Schäfer, C. A.

Setiawan Putra, A. W.

A. W. Setiawan Putra, M. Tanizawa, and T. Maruyama, “Optical Wireless Power Transmission Using Si Photovoltaic Through Air, Water, and Skin,” IEEE Photonics Technol. Lett. 31(2), 157–160 (2019).
[Crossref]

Shin, E.-J.

Shu, C.

M. P. Fok and C. Shu, “Power equalization scheme for multi-wavelength source generation from a SOA fiber laser using an amplifier assist ring,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 788–789.
[Crossref]

Soljacic, M.

A. Kurs, R. Moffatt, and M. Soljačić, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett. 96(4), 044102 (2010).
[Crossref]

A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
[Crossref]

Sorrentino, R.

A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE 102(11), 1692–1711 (2014).
[Crossref]

Stancil, D. D.

B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Trans. Power Electron. 24(7), 1819–1825 (2009).
[Crossref]

Sun, J.

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 19(19), 1418–1420 (2007).
[Crossref]

Takushima, Y.

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett. 11(3), 322–324 (1999).
[Crossref]

Tangdiongga, E.

Tanizawa, M.

A. W. Setiawan Putra, M. Tanizawa, and T. Maruyama, “Optical Wireless Power Transmission Using Si Photovoltaic Through Air, Water, and Skin,” IEEE Photonics Technol. Lett. 31(2), 157–160 (2019).
[Crossref]

Tarricone, L.

A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE 102(11), 1692–1711 (2014).
[Crossref]

Tsui, C.

X. Li, C. Tsui, and W. Ki, “A 13.56 MHz Wireless Power Transfer System With Reconfigurable Resonant Regulating Rectifier and Wireless Power Control for Implantable Medical Devices,” IEEE J. Solid-State Circuits 50(4), 978–989 (2015).
[Crossref]

Videv, S.

J. Fakidis, S. Videv, S. Kucera, H. Claussen, and H. Haas, “Indoor Optical Wireless Power Transfer to Small Cells at Nighttime,” J. Lightwave Technol. JLT 34, 3236–3258 (2016).

Vietro, M.

S. Ottonelli, F. D. Lucia, M. Vietro, M. Dabbicco, and G. Scamarcio, “Comparison of plane mirror vs retroreflector peformance for laser-self-mixing displacement sensors,” J. Eur. Opt. Soc. Rapid Publ. 4, 09036 (2009).
[Crossref]

Wang, J.

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 19(19), 1418–1420 (2007).
[Crossref]

Wang, P.

X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “Wireless charger networking for mobile devices: fundamentals, standards, and applications,” IEEE Wirel. Commun. 22(2), 126–135 (2015).
[Crossref]

X. Lu, P. Wang, D. Niyato, and E. Hossain, “Dynamic spectrum access in cognitive radio networks with RF energy harvesting,” IEEE Wirel. Commun. 21(3), 102–110 (2014).
[Crossref]

Wang, Z.

X. Wei, Z. Wang, and H. Dai, “A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Energies 7(7), 4316–4341 (2014).
[Crossref]

Wei, X.

X. Wei, Z. Wang, and H. Dai, “A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Energies 7(7), 4316–4341 (2014).
[Crossref]

Wu, J.

Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, “Distributed Laser Charging: A Wireless Power Transfer Approach,” IEEE Internet of Things Journal 5(5), 3853–3864 (2018).
[Crossref]

Wu, K.

S. Ladan, N. Ghassemi, A. Ghiotto, and K. Wu, “Highly Efficient Compact Rectenna for Wireless Energy Harvesting Application,” IEEE Microw. Mag. 14(1), 117–122 (2013).
[Crossref]

Xia, P.

Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, “Distributed Laser Charging: A Wireless Power Transfer Approach,” IEEE Internet of Things Journal 5(5), 3853–3864 (2018).
[Crossref]

Yang, L.

Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, “Distributed Laser Charging: A Wireless Power Transfer Approach,” IEEE Internet of Things Journal 5(5), 3853–3864 (2018).
[Crossref]

Yetisen, A. K.

R. Ahmed, A. K. Yetisen, S. H. Yun, and H. Butt, “Color-selective holographic retroreflector array for sensing applications,” Light Sci. Appl. 6(2), e16214 (2017).
[Crossref] [PubMed]

Yun, S. H.

R. Ahmed, A. K. Yetisen, S. H. Yun, and H. Butt, “Color-selective holographic retroreflector array for sensing applications,” Light Sci. Appl. 6(2), e16214 (2017).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, “Distributed Laser Charging: A Wireless Power Transfer Approach,” IEEE Internet of Things Journal 5(5), 3853–3864 (2018).
[Crossref]

Zhang, W.

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 19(19), 1418–1420 (2007).
[Crossref]

Ann. Phys. (1)

A. Karalis, J. D. Joannopoulos, and M. Soljačić, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
[Crossref]

Appl. Phys. Lett. (1)

A. Kurs, R. Moffatt, and M. Soljačić, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett. 96(4), 044102 (2010).
[Crossref]

Energies (1)

X. Wei, Z. Wang, and H. Dai, “A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Energies 7(7), 4316–4341 (2014).
[Crossref]

IEEE Internet of Things Journal (1)

Q. Zhang, W. Fang, Q. Liu, J. Wu, P. Xia, and L. Yang, “Distributed Laser Charging: A Wireless Power Transfer Approach,” IEEE Internet of Things Journal 5(5), 3853–3864 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Baby, L. R. Chen, S. Doucet, and S. LaRochelle, “Continuous-Wave Operation of Semiconductor Optical Amplifier-Based Multiwavelength Tunable Fiber Lasers With 25-GHz Spacing,” IEEE J. Sel. Top. Quantum Electron. 13(3), 764–769 (2007).
[Crossref]

IEEE J. Solid-State Circuits (1)

X. Li, C. Tsui, and W. Ki, “A 13.56 MHz Wireless Power Transfer System With Reconfigurable Resonant Regulating Rectifier and Wireless Power Control for Implantable Medical Devices,” IEEE J. Solid-State Circuits 50(4), 978–989 (2015).
[Crossref]

IEEE Microw. Mag. (1)

S. Ladan, N. Ghassemi, A. Ghiotto, and K. Wu, “Highly Efficient Compact Rectenna for Wireless Energy Harvesting Application,” IEEE Microw. Mag. 14(1), 117–122 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (3)

W. Zhang, J. Sun, J. Wang, and L. Liu, “Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers,” IEEE Photonics Technol. Lett. 19(19), 1418–1420 (2007).
[Crossref]

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photonics Technol. Lett. 11(3), 322–324 (1999).
[Crossref]

A. W. Setiawan Putra, M. Tanizawa, and T. Maruyama, “Optical Wireless Power Transmission Using Si Photovoltaic Through Air, Water, and Skin,” IEEE Photonics Technol. Lett. 31(2), 157–160 (2019).
[Crossref]

IEEE Trans. Power Electron. (2)

B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Trans. Power Electron. 24(7), 1819–1825 (2009).
[Crossref]

Z. Pantic and S. M. Lukic, “Framework and Topology for Active Tuning of Parallel Compensated Receivers in Power Transfer Systems,” IEEE Trans. Power Electron. 27(11), 4503–4513 (2012).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

K. Huang and V. K. N. Lau, “Enabling Wireless Power Transfer in Cellular Networks: Architecture, Modeling and Deployment,” IEEE Trans. Wirel. Commun. 13(2), 902–912 (2014).
[Crossref]

IEEE Wirel. Commun. (2)

X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “Wireless charger networking for mobile devices: fundamentals, standards, and applications,” IEEE Wirel. Commun. 22(2), 126–135 (2015).
[Crossref]

X. Lu, P. Wang, D. Niyato, and E. Hossain, “Dynamic spectrum access in cognitive radio networks with RF energy harvesting,” IEEE Wirel. Commun. 21(3), 102–110 (2014).
[Crossref]

Int. J. Optomechatronics (1)

J.-M. Breguet, S. Henein, I. Kjelberg, M. Gumy, W. Glettig, S. Lecomte, D. Boiko, and V. Mitev, “Tunable Extended-cavity Diode Laser Based on a Novel Flexure-mechanism,” Int. J. Optomechatronics 7(3), 181–192 (2013).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

S. Ottonelli, F. D. Lucia, M. Vietro, M. Dabbicco, and G. Scamarcio, “Comparison of plane mirror vs retroreflector peformance for laser-self-mixing displacement sensors,” J. Eur. Opt. Soc. Rapid Publ. 4, 09036 (2009).
[Crossref]

J. Lightwave Technol. JLT (1)

J. Fakidis, S. Videv, S. Kucera, H. Claussen, and H. Haas, “Indoor Optical Wireless Power Transfer to Small Cells at Nighttime,” J. Lightwave Technol. JLT 34, 3236–3258 (2016).

Jpn. J. Appl. Phys. (1)

Y. Katsuta and T. Miyamoto, “Design and experimental characterization of optical wireless power transmission using GaAs solar cell and series-connected high-power vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 57(8S2), 08PD01 (2018).
[Crossref]

Light Sci. Appl. (1)

R. Ahmed, A. K. Yetisen, S. H. Yun, and H. Butt, “Color-selective holographic retroreflector array for sensing applications,” Light Sci. Appl. 6(2), e16214 (2017).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Dasgupta, M.-M. Mennemanteuil, M. Buret, N. Cazier, G. Colas-des-Francs, and A. Bouhelier, “Optical wireless link between a nanoscale antenna and a transducing rectenna,” Nat. Commun. 9(1), 1992 (2018).
[Crossref] [PubMed]

Opt. Express (3)

Proc. IEEE (2)

A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE 102(11), 1692–1711 (2014).
[Crossref]

J. Garnica, R. A. Chinga, and J. Lin, “Wireless Power Transmission: From Far Field to Near Field,” Proc. IEEE 101(6), 1321–1331 (2013).
[Crossref]

Other (18)

C. T. Rim and C. Mi, Wireless Power Transfer for Electric Vehicles and Mobile Devices (John Wiley & Sons, 2017).

J. I. Agbinya, Wireless Power Transfer (River Publishers, 2015).

M. Fakharzadeh, S. K. Chaudhuri, and S. Safavi-Naeini, “Optical beamforming with tunable ring resonators,” in 2008 IEEE Antennas and Propagation Society International Symposium (2008), pp. 1–4.

S.-M. Kim and S.-M. Kim, “Wireless optical energy transmission using optical beamforming,” OE 52, 043205 (2013).
[Crossref]

L. Summerer and O. Purcell, “Concepts for wireless energy transmission via laser,” Europeans Space Agency (ESA)-Advanced Concepts Team (2009).

I. S. C. Committee, “IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz,” IEEE C95. 1–1991 (1992).

“Wireless recharging for devices gets FCC approval,” USA Today (2017).

A. Sahai and D. Graham, “Optical wireless power transmission at long wavelengths,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 164–170.
[Crossref]

O. Alpert and R. Paschotta, “Wireless laser system for power transmission utilizing a gain medium between retroreflectors,” United States patent US8525097B2 (September 3, 2013).

S.-M. Kim and D.-H. Rhee, “Experimental demonstration of optical wireless power transfer with a DC-to-DC transfer efficiency of 12.1%,” OE 57, 086108 (2018).
[Crossref]

International Standard IEC 60825–1 © IEC: 1993 + A1:1997 + A2:2001: Safety of Laser Products – Part 1: Equipment Classification and Requirements (International Electrotechnical Commissions, 2014).

R. Della-Pergola, O. Alpert, O. Nahmias, and V. Vaisleib, “Spatially distributed laser resonator,” United States patent US9905988B2 (February 27, 2018).

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett., OL 28, 1981–1983 (2003).
[Crossref]

R. J. Grasso, J. E. Odhner, H. Stewart, and R. V. McDaniel, “Laser radar range and detection performance for MEMS corner cube retroreflector arrays,” in Advanced Free-Space Optical Communications Techniques and Technologies (International Society for Optics and Photonics, 2004), Vol. 5614, pp. 43–52.

J. P. Cruz and A. Plakhov, “Comparative Study on Efficiency of Mirror Retroreflectors,” in Optimization in the Natural Sciences, A. Plakhov, T. Tchemisova, and A. Freitas, eds., Communications in Computer and Information Science (Springer International Publishing, 2015), pp. 20–32.

M. P. Fok and C. Shu, “Power equalization scheme for multi-wavelength source generation from a SOA fiber laser using an amplifier assist ring,” in 2005 IEEE LEOS Annual Meeting Conference Proceedings (2005), pp. 788–789.
[Crossref]

J. Pengyu and J. Wei, “The power equalization of multi-wavelength fiber laser based on SOA,” in 2013 22nd Wireless and Optical Communication Conference (2013), pp. 595–598.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the proposed WOPT system. The WOPT employs diverging angular dispersion and distributed laser cavity resonance to maximize the wireless power transfer with reduced safety hazards.
Fig. 2
Fig. 2 Diffraction grating causing diverging angular dispersion of incident broadband beam. (a) Reflection of only the wavelength band, that is normally incident on the plane mirror, in the incident direction. In this case, linewidth broadening is due to the grating resolution. (b) Broader wavelength band trapped in the cavity by retroreflector contributing to multiple resonant lines, especially at close proximity.
Fig. 3
Fig. 3 Response of retroreflector if incident beam spot size is (a) thin and (b) thick compared to the retroreflector pitch.
Fig. 4
Fig. 4 Shifts of FOV dependency from the SOA/grating parameters to the focal length of L2, using a two-lens telescope.
Fig. 5
Fig. 5 Schematic of experimental setup for proof-of-principle demonstration. In two-channel resonance, the transverse spatial distribution of optical power is along the transmitter-receiver line-of-sight (solid purple and solid beige lines). The spatially dispersed ASE is suppressed in the resonance. PC: polarization controller; SOA: semiconductor optical amplifier; T: 1% power tap; FC: fiber collimator; P: polarizer; BE: beam expander; DG: diffraction grating; L1: lens 1; L2: lens 2; PD: photodiode.
Fig. 6
Fig. 6 Channel linewidth as a function of transmitter–receiver separation. In close proximity, the retroreflector array reflects a broad set of wavelengths that lead to gain competition between multiple wavelengths vying for resonance, resulting in a broader linewidth.
Fig. 7
Fig. 7 Variation in output power as a function of transmitter–receiver separation in power transfer mode and safety mode. Here, output power is defined as the power transmitted through the retroreflector.
Fig. 8
Fig. 8 Spatial separation plotted as a function of spectral separation. The theoretical prediction and measured data are in good agreement.
Fig. 9
Fig. 9 (a) Effect of increasing the number of resonant channels on the channel linewidth and average power of a reference receiver. (b) Spectrum showing seven resonating channels. Rx1 is the reference receiver.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R= λ c δλ =mN
δλ= λ c mN = λ c m ( p W 0 )= 4ln2 π λ c m ( pcosσ W I )
θ d = sin 1 ( m λ 1 p sin θ i )
f 1 ×tan( α 2 )= f 2 ×tan( β 2 )

Metrics