Abstract

Due to the quantum properties of light, solar background radiation (SBR) is the main source of noise in daytime wind observations of spaceborne Doppler wind lidars (DWLs). In previous works, the impact of SBR on the observation accuracy of spaceborne lidars was assessed mainly using the default or worst-case scenarios. We assessed the impact of SBR on the observations of spaceborne DWLs using the global distributions of SBR in summer and winter, which were obtained based on their orbit parameters, view geometry and optical parameters. Three experiments illustrate that the uncertainty in wind observations increases with an increase in the quantiles of SBR. The uncertainties of the whole profiles of wind are greater than 2 m s−1 in the troposphere and 3 m s−1 in the stratosphere when the quantile of the SBR is greater than 85% in summer and 95% in winter, which do not satisfy the accuracy expectations of the European Space Agency (ESA) for spaceborne DWLs. The facts indicate that the impact of SBR cannot be negligible for the observations of spaceborne DWLs. Based on the orbit parameters, view geometry, and optical parameters of new spaceborne DWLs, engineers can assess the impact of SBR on the accuracy of wind observations from a global perspective using the method proposed in this paper.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulation and assessment of solar background noise for spaceborne lidar

Chuanliang Zhang, Xuejin Sun, Riwei Zhang, and Yanwen Liu
Appl. Opt. 57(31) 9471-9479 (2018)

Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability

Matthew J. McGill, William D. Hart, Jack A. McKay, and James D. Spinhirne
Appl. Opt. 38(30) 6388-6397 (1999)

Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation

Haiyun Xia, Dongsong Sun, Yuanhong Yang, Fahua Shen, Jingjing Dong, and Takao Kobayashi
Appl. Opt. 46(29) 7120-7131 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
    [Crossref]
  2. M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc. 133, 107–116 (2007).
    [Crossref]
  3. N. Zagar, N. Gustafsson, and E. Kallen, “Dynamical response of equatorial waves in four-dimensional variational data assimilation,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(1), 29–46 (2004).
    [Crossref]
  4. A. Cress and W. Wergen, “Impact of profile observations on the German Weather Service’s NWP system,” Meteorol. Z. (Berl.) 10(2), 91–101 (2001).
    [Crossref]
  5. M. J. McGill, W. D. Hart, J. A. McKay, and J. D. Spinhirne, “Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability,” Appl. Opt. 38(30), 6388–6397 (1999).
    [Crossref] [PubMed]
  6. M. Rennie, CCN6 Results: Further Chain-of-Processors Testing of L2B Results and Testing of CCN6 L2B Processor Algorithm Updates (European Centre for Medium-Range Weather Forecasts, 2017).
  7. A. Heliere, J. L. Bezy, P. Bensi, and P. Ingmann, “System definition of the ESA Earth Explorer WALES mission,” Proc. SPIE 4881, 24–32 (2003).
  8. R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
    [Crossref]
  9. C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
    [Crossref]
  10. C. Kiemle, S. R. Kawa, M. Quatrevalet, and E. V. Browell, “Performance Simulations for a Spaceborne Methane Lidar Mission,” J. Geophys. Res. Atmos. 119(7), 4365–4379 (2014).
    [Crossref]
  11. S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B Chem. Phys. Meterol. 62, 759–769 (2010).
    [Crossref]
  12. Z. Liu, W. Hunt, M. Vaughan, C. Hostetler, M. McGill, K. Powell, D. Winker, and Y. Hu, “Estimating random errors due to shot noise in backscatter lidar observations,” Appl. Opt. 45(18), 4437–4447 (2006).
    [Crossref] [PubMed]
  13. T. Y. Nakajima, T. Imai, O. Uchino, and T. Nagai, “Influence of daylight and noise current on cloud and aerosol observations by spaceborne elastic scattering lidar,” Appl. Opt. 38(24), 5218–5228 (1999).
    [Crossref] [PubMed]
  14. W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar Description and Performance Assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
    [Crossref]
  15. C. Zhang, X. Sun, R. Zhang, and Y. Liu, “Simulation and assessment of solar background noise for spaceborne lidar,” Appl. Opt. 57(31), 9471–9479 (2018).
    [Crossref] [PubMed]
  16. C. Flesia and C. L. Korb, “Theory of the double-edge molecular technique for Doppler lidar wind measurement,” Appl. Opt. 38(3), 432–440 (1999).
    [Crossref] [PubMed]
  17. J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37(27), 6480–6486 (1998).
    [Crossref] [PubMed]
  18. G. J. Marseille and A. Stoffelen, “Simulation of wind profiles from a space-borne Doppler wind lidar,” Q. J. R. Meteorol. Soc. 129, 3079–3098 (2003).
    [Crossref]
  19. D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
    [Crossref]
  20. P. Flamant, J. Cuesta, M. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 273–286 (2008).
    [Crossref]
  21. O. Reitebuch, U. Paffrath, and I. Leike, ATBD: ADM-Aeolus Level 1B Product (European Space Research and Technology Centre, 2006).
  22. U. Paffrath, Performance Assessment of the Aeolus Doppler Wind Lidar Prototype (Ludwig-Maximilians-Universität München, 2006).
  23. R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).
  24. G. J. Marseille, A. Stoffelen, J. De Kloe, K. Houchi, H. Kornich, H. Schyberg, A. Straume, and O. Lerille, “ADM-Aeolus vertical sampling scenarios,” in Proceedings of the 8th International Sysposium on Tropospheric Profiling (2009).
  25. A. Mousivand, W. Verhoef, M. Menenti, and B. Gorte, “Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain,” Remote Sens. 7(6), 8019–8044 (2015).
    [Crossref]
  26. B. Mayer and A. Kylling, “Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use,” Atmos. Chem. Phys. 5(7), 1855–1877 (2005).
    [Crossref]
  27. C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
    [Crossref]
  28. V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
    [Crossref]
  29. R. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335-772 nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 108, 171–181 (2003).
    [Crossref]
  30. R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
    [Crossref]
  31. Y. B. Zhou, X. J. Sun, C. L. Zhang, R. W. Zhang, Y. Li, and H. R. Li, “3D aerosol climatology over East Asia derived from CALIOP observations,” Atmos. Environ. 152, 503–518 (2017).
    [Crossref]
  32. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL (Air Force Geophysical Laboratory) atmospheric constituent profiles (0. 120km). Environmental research papers (Air Force Geophysical Laboratory, 1986).
  33. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
    [Crossref]
  34. J. De Kloe, G. J. Marseille, and A. Stoffelen, ADM-Aeolus, Vertical Aeolus Measurement Positioning (The Royal Netherlands Meteorological Institute, 2007).

2018 (1)

2017 (1)

Y. B. Zhou, X. J. Sun, C. L. Zhang, R. W. Zhang, Y. Li, and H. R. Li, “3D aerosol climatology over East Asia derived from CALIOP observations,” Atmos. Environ. 152, 503–518 (2017).
[Crossref]

2015 (3)

A. Mousivand, W. Verhoef, M. Menenti, and B. Gorte, “Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain,” Remote Sens. 7(6), 8019–8044 (2015).
[Crossref]

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

2014 (2)

R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).

C. Kiemle, S. R. Kawa, M. Quatrevalet, and E. V. Browell, “Performance Simulations for a Spaceborne Methane Lidar Mission,” J. Geophys. Res. Atmos. 119(7), 4365–4379 (2014).
[Crossref]

2011 (2)

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

2010 (1)

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B Chem. Phys. Meterol. 62, 759–769 (2010).
[Crossref]

2009 (1)

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar Description and Performance Assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

2008 (3)

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

P. Flamant, J. Cuesta, M. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 273–286 (2008).
[Crossref]

2007 (1)

M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc. 133, 107–116 (2007).
[Crossref]

2006 (1)

2005 (2)

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

B. Mayer and A. Kylling, “Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use,” Atmos. Chem. Phys. 5(7), 1855–1877 (2005).
[Crossref]

2004 (1)

N. Zagar, N. Gustafsson, and E. Kallen, “Dynamical response of equatorial waves in four-dimensional variational data assimilation,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(1), 29–46 (2004).
[Crossref]

2003 (3)

A. Heliere, J. L. Bezy, P. Bensi, and P. Ingmann, “System definition of the ESA Earth Explorer WALES mission,” Proc. SPIE 4881, 24–32 (2003).

G. J. Marseille and A. Stoffelen, “Simulation of wind profiles from a space-borne Doppler wind lidar,” Q. J. R. Meteorol. Soc. 129, 3079–3098 (2003).
[Crossref]

R. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335-772 nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 108, 171–181 (2003).
[Crossref]

2001 (1)

A. Cress and W. Wergen, “Impact of profile observations on the German Weather Service’s NWP system,” Meteorol. Z. (Berl.) 10(2), 91–101 (2001).
[Crossref]

1999 (3)

1998 (2)

J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37(27), 6480–6486 (1998).
[Crossref] [PubMed]

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
[Crossref]

Abshire, J. B.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B Chem. Phys. Meterol. 62, 759–769 (2010).
[Crossref]

Amediek, A.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Amiridis, V.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Anderson, E.

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

Anderson, G. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL (Air Force Geophysical Laboratory) atmospheric constituent profiles (0. 120km). Environmental research papers (Air Force Geophysical Laboratory, 1986).

Andersson, E.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

Ansmann, A.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Balis, D.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

Bensi, P.

A. Heliere, J. L. Bezy, P. Bensi, and P. Ingmann, “System definition of the ESA Earth Explorer WALES mission,” Proc. SPIE 4881, 24–32 (2003).

Bezy, J. L.

A. Heliere, J. L. Bezy, P. Bensi, and P. Ingmann, “System definition of the ESA Earth Explorer WALES mission,” Proc. SPIE 4881, 24–32 (2003).

Bhartia, P. K.

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

Binietoglou, I.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Brinksma, E.

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

Browell, E. V.

C. Kiemle, S. R. Kawa, M. Quatrevalet, and E. V. Browell, “Performance Simulations for a Spaceborne Methane Lidar Mission,” J. Geophys. Res. Atmos. 119(7), 4365–4379 (2014).
[Crossref]

Bugliaro, L.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

Burasschnell, R.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

Cardinali, C.

M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc. 133, 107–116 (2007).
[Crossref]

Chetwynd, J. H.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL (Air Force Geophysical Laboratory) atmospheric constituent profiles (0. 120km). Environmental research papers (Air Force Geophysical Laboratory, 1986).

Clough, S. A.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL (Air Force Geophysical Laboratory) atmospheric constituent profiles (0. 120km). Environmental research papers (Air Force Geophysical Laboratory, 1986).

Collatz, G. J.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B Chem. Phys. Meterol. 62, 759–769 (2010).
[Crossref]

Cook, A. L.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

Cress, A.

A. Cress and W. Wergen, “Impact of profile observations on the German Weather Service’s NWP system,” Meteorol. Z. (Berl.) 10(2), 91–101 (2001).
[Crossref]

Cuesta, J.

P. Flamant, J. Cuesta, M. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 273–286 (2008).
[Crossref]

Culoma, A.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

Dabas, A.

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

P. Flamant, J. Cuesta, M. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 273–286 (2008).
[Crossref]

de Haan, J. F.

R. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335-772 nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 108, 171–181 (2003).
[Crossref]

De Kloe, J.

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

G. J. Marseille, A. Stoffelen, J. De Kloe, K. Houchi, H. Kornich, H. Schyberg, A. Straume, and O. Lerille, “ADM-Aeolus vertical sampling scenarios,” in Proceedings of the 8th International Sysposium on Tropospheric Profiling (2009).

J. De Kloe, G. J. Marseille, and A. Stoffelen, ADM-Aeolus, Vertical Aeolus Measurement Positioning (The Royal Netherlands Meteorological Institute, 2007).

Denneulin, M.

P. Flamant, J. Cuesta, M. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 273–286 (2008).
[Crossref]

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

Dowling, T.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

Ehret, G.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Emde, C.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

Endemann, M.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

Ferrare, R. A.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

Fix, A.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Flamant, P.

P. Flamant, J. Cuesta, M. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 273–286 (2008).
[Crossref]

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

Flesia, C.

Gasteiger, J.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

Gerasopoulos, E.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Giannakaki, E.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Gorte, B.

A. Mousivand, W. Verhoef, M. Menenti, and B. Gorte, “Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain,” Remote Sens. 7(6), 8019–8044 (2015).
[Crossref]

Gustafsson, N.

N. Zagar, N. Gustafsson, and E. Kallen, “Dynamical response of equatorial waves in four-dimensional variational data assimilation,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(1), 29–46 (2004).
[Crossref]

Hair, J. W.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

Hamann, U.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

Harper, D. B.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

Hart, W. D.

Heliere, A.

A. Heliere, J. L. Bezy, P. Bensi, and P. Ingmann, “System definition of the ESA Earth Explorer WALES mission,” Proc. SPIE 4881, 24–32 (2003).

Herekakis, T.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Hess, M.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
[Crossref]

Hostetler, C.

Hostetler, C. A.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

Houchi, K.

G. J. Marseille, A. Stoffelen, J. De Kloe, K. Houchi, H. Kornich, H. Schyberg, A. Straume, and O. Lerille, “ADM-Aeolus vertical sampling scenarios,” in Proceedings of the 8th International Sysposium on Tropospheric Profiling (2009).

Hu, Y.

Huber, D.

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

P. Flamant, J. Cuesta, M. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 273–286 (2008).
[Crossref]

Hunt, W.

Hunt, W. H.

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar Description and Performance Assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Imai, T.

Ingmann, P.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

A. Heliere, J. L. Bezy, P. Bensi, and P. Ingmann, “System definition of the ESA Earth Explorer WALES mission,” Proc. SPIE 4881, 24–32 (2003).

Isaksen, L.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

Kallen, E.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

N. Zagar, N. Gustafsson, and E. Kallen, “Dynamical response of equatorial waves in four-dimensional variational data assimilation,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(1), 29–46 (2004).
[Crossref]

Kawa, S. R.

C. Kiemle, S. R. Kawa, M. Quatrevalet, and E. V. Browell, “Performance Simulations for a Spaceborne Methane Lidar Mission,” J. Geophys. Res. Atmos. 119(7), 4365–4379 (2014).
[Crossref]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B Chem. Phys. Meterol. 62, 759–769 (2010).
[Crossref]

Kazadzis, S.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Kiemle, C.

C. Kiemle, S. R. Kawa, M. Quatrevalet, and E. V. Browell, “Performance Simulations for a Spaceborne Methane Lidar Mission,” J. Geophys. Res. Atmos. 119(7), 4365–4379 (2014).
[Crossref]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Kneizys, F. X.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL (Air Force Geophysical Laboratory) atmospheric constituent profiles (0. 120km). Environmental research papers (Air Force Geophysical Laboratory, 1986).

Koelemeijer, R.

R. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335-772 nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 108, 171–181 (2003).
[Crossref]

Koepke, P.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
[Crossref]

Kokkalis, P.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Kontoes, C.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Korb, C. L.

Kornich, H.

G. J. Marseille, A. Stoffelen, J. De Kloe, K. Houchi, H. Kornich, H. Schyberg, A. Straume, and O. Lerille, “ADM-Aeolus vertical sampling scenarios,” in Proceedings of the 8th International Sysposium on Tropospheric Profiling (2009).

Kottas, M.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Kourtidis, K.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Kroon, M.

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

Kylling, A.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

B. Mayer and A. Kylling, “Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use,” Atmos. Chem. Phys. 5(7), 1855–1877 (2005).
[Crossref]

Kylling, J.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

Labow, G.

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

Le Rille, O.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

Leike, I.

O. Reitebuch, U. Paffrath, and I. Leike, ATBD: ADM-Aeolus Level 1B Product (European Space Research and Technology Centre, 2006).

Lerille, O.

G. J. Marseille, A. Stoffelen, J. De Kloe, K. Houchi, H. Kornich, H. Schyberg, A. Straume, and O. Lerille, “ADM-Aeolus vertical sampling scenarios,” in Proceedings of the 8th International Sysposium on Tropospheric Profiling (2009).

Levelt, P. F.

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

Li, H. R.

Y. B. Zhou, X. J. Sun, C. L. Zhang, R. W. Zhang, Y. Li, and H. R. Li, “3D aerosol climatology over East Asia derived from CALIOP observations,” Atmos. Environ. 152, 503–518 (2017).
[Crossref]

Li, Y.

Y. B. Zhou, X. J. Sun, C. L. Zhang, R. W. Zhang, Y. Li, and H. R. Li, “3D aerosol climatology over East Asia derived from CALIOP observations,” Atmos. Environ. 152, 503–518 (2017).
[Crossref]

R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).

Liu, L.

R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).

Liu, Y.

Liu, Z.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

Z. Liu, W. Hunt, M. Vaughan, C. Hostetler, M. McGill, K. Powell, D. Winker, and Y. Hu, “Estimating random errors due to shot noise in backscatter lidar observations,” Appl. Opt. 45(18), 4437–4447 (2006).
[Crossref] [PubMed]

Lucker, P. L.

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar Description and Performance Assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Mamouri, R.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Mao, J.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B Chem. Phys. Meterol. 62, 759–769 (2010).
[Crossref]

Marinou, E.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Marseille, G.

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

Marseille, G. J.

G. J. Marseille and A. Stoffelen, “Simulation of wind profiles from a space-borne Doppler wind lidar,” Q. J. R. Meteorol. Soc. 129, 3079–3098 (2003).
[Crossref]

G. J. Marseille, A. Stoffelen, J. De Kloe, K. Houchi, H. Kornich, H. Schyberg, A. Straume, and O. Lerille, “ADM-Aeolus vertical sampling scenarios,” in Proceedings of the 8th International Sysposium on Tropospheric Profiling (2009).

J. De Kloe, G. J. Marseille, and A. Stoffelen, ADM-Aeolus, Vertical Aeolus Measurement Positioning (The Royal Netherlands Meteorological Institute, 2007).

Mayer, B.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

B. Mayer and A. Kylling, “Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use,” Atmos. Chem. Phys. 5(7), 1855–1877 (2005).
[Crossref]

McGill, M.

McGill, M. J.

McKay, J. A.

McPeters, R.

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

Menenti, M.

A. Mousivand, W. Verhoef, M. Menenti, and B. Gorte, “Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain,” Remote Sens. 7(6), 8019–8044 (2015).
[Crossref]

Meynart, R.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

Mona, L.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Mousivand, A.

A. Mousivand, W. Verhoef, M. Menenti, and B. Gorte, “Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain,” Remote Sens. 7(6), 8019–8044 (2015).
[Crossref]

Nagai, T.

Nakajima, T. Y.

Nett, H.

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

Obland, M. D.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

Paffrath, U.

O. Reitebuch, U. Paffrath, and I. Leike, ATBD: ADM-Aeolus Level 1B Product (European Space Research and Technology Centre, 2006).

Pailleux, J.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

Papagiannopoulos, N.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Papayannis, A.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Pappalardo, G.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Pause, C.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

Petropavlovskikh, I.

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

Poli, P.

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

Powell, K.

Powell, K. A.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar Description and Performance Assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Proestakis, E.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Quatrevalet, M.

C. Kiemle, S. R. Kawa, M. Quatrevalet, and E. V. Browell, “Performance Simulations for a Spaceborne Methane Lidar Mission,” J. Geophys. Res. Atmos. 119(7), 4365–4379 (2014).
[Crossref]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Reitebuch, O.

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

O. Reitebuch, U. Paffrath, and I. Leike, ATBD: ADM-Aeolus Level 1B Product (European Space Research and Technology Centre, 2006).

Rennie, M.

M. Rennie, CCN6 Results: Further Chain-of-Processors Testing of L2B Results and Testing of CCN6 L2B Processor Algorithm Updates (European Centre for Medium-Range Weather Forecasts, 2017).

Richter, B.

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

Rogers, R. R.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

Schult, I.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
[Crossref]

Schwarz, A.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Schyberg, H.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

G. J. Marseille, A. Stoffelen, J. De Kloe, K. Houchi, H. Kornich, H. Schyberg, A. Straume, and O. Lerille, “ADM-Aeolus vertical sampling scenarios,” in Proceedings of the 8th International Sysposium on Tropospheric Profiling (2009).

Shettle, E. P.

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL (Air Force Geophysical Laboratory) atmospheric constituent profiles (0. 120km). Environmental research papers (Air Force Geophysical Laboratory, 1986).

Solomos, S.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Spinhirne, J. D.

Stammes, P.

R. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335-772 nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 108, 171–181 (2003).
[Crossref]

Stoffelen, A.

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

G. J. Marseille and A. Stoffelen, “Simulation of wind profiles from a space-borne Doppler wind lidar,” Q. J. R. Meteorol. Soc. 129, 3079–3098 (2003).
[Crossref]

G. J. Marseille, A. Stoffelen, J. De Kloe, K. Houchi, H. Kornich, H. Schyberg, A. Straume, and O. Lerille, “ADM-Aeolus vertical sampling scenarios,” in Proceedings of the 8th International Sysposium on Tropospheric Profiling (2009).

J. De Kloe, G. J. Marseille, and A. Stoffelen, ADM-Aeolus, Vertical Aeolus Measurement Positioning (The Royal Netherlands Meteorological Institute, 2007).

Straume, A.

G. J. Marseille, A. Stoffelen, J. De Kloe, K. Houchi, H. Kornich, H. Schyberg, A. Straume, and O. Lerille, “ADM-Aeolus vertical sampling scenarios,” in Proceedings of the 8th International Sysposium on Tropospheric Profiling (2009).

Sun, X.

C. Zhang, X. Sun, R. Zhang, and Y. Liu, “Simulation and assessment of solar background noise for spaceborne lidar,” Appl. Opt. 57(31), 9471–9479 (2018).
[Crossref] [PubMed]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B Chem. Phys. Meterol. 62, 759–769 (2010).
[Crossref]

Sun, X. J.

Y. B. Zhou, X. J. Sun, C. L. Zhang, R. W. Zhang, Y. Li, and H. R. Li, “3D aerosol climatology over East Asia derived from CALIOP observations,” Atmos. Environ. 152, 503–518 (2017).
[Crossref]

R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).

Tan, D. G. H.

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

Tsekeri, A.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Uchino, O.

Vaughan, J. M.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

Vaughan, M.

Vaughan, M. A.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar Description and Performance Assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Veefkind, J. P.

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

Verhoef, W.

A. Mousivand, W. Verhoef, M. Menenti, and B. Gorte, “Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain,” Remote Sens. 7(6), 8019–8044 (2015).
[Crossref]

Wandinger, U.

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Weaver, C. J.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B Chem. Phys. Meterol. 62, 759–769 (2010).
[Crossref]

Weimer, C.

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar Description and Performance Assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Weissmann, M.

M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc. 133, 107–116 (2007).
[Crossref]

Wergen, W.

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

A. Cress and W. Wergen, “Impact of profile observations on the German Weather Service’s NWP system,” Meteorol. Z. (Berl.) 10(2), 91–101 (2001).
[Crossref]

Winker, D.

Winker, D. M.

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar Description and Performance Assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

Wirth, M.

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Yan, W.

R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).

Zagar, N.

N. Zagar, N. Gustafsson, and E. Kallen, “Dynamical response of equatorial waves in four-dimensional variational data assimilation,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(1), 29–46 (2004).
[Crossref]

Zhang, C.

Zhang, C. L.

Y. B. Zhou, X. J. Sun, C. L. Zhang, R. W. Zhang, Y. Li, and H. R. Li, “3D aerosol climatology over East Asia derived from CALIOP observations,” Atmos. Environ. 152, 503–518 (2017).
[Crossref]

R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).

Zhang, R.

Zhang, R. W.

Y. B. Zhou, X. J. Sun, C. L. Zhang, R. W. Zhang, Y. Li, and H. R. Li, “3D aerosol climatology over East Asia derived from CALIOP observations,” Atmos. Environ. 152, 503–518 (2017).
[Crossref]

R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).

Zhao, J.

R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).

Zhou, J. H.

R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).

Zhou, Y. B.

Y. B. Zhou, X. J. Sun, C. L. Zhang, R. W. Zhang, Y. Li, and H. R. Li, “3D aerosol climatology over East Asia derived from CALIOP observations,” Atmos. Environ. 152, 503–518 (2017).
[Crossref]

Appl. Opt. (6)

Atmos. Chem. Phys. (3)

R. R. Rogers, C. A. Hostetler, J. W. Hair, R. A. Ferrare, Z. Liu, M. D. Obland, D. B. Harper, A. L. Cook, K. A. Powell, M. A. Vaughan, and D. M. Winker, “Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar,” Atmos. Chem. Phys. 11(3), 1295–1311 (2011).
[Crossref]

B. Mayer and A. Kylling, “Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use,” Atmos. Chem. Phys. 5(7), 1855–1877 (2005).
[Crossref]

V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann, “LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET,” Atmos. Chem. Phys. 15(13), 7127–7153 (2015).
[Crossref]

Atmos. Environ. (1)

Y. B. Zhou, X. J. Sun, C. L. Zhang, R. W. Zhang, Y. Li, and H. R. Li, “3D aerosol climatology over East Asia derived from CALIOP observations,” Atmos. Environ. 152, 503–518 (2017).
[Crossref]

Atmos. Meas. Tech. (1)

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
[Crossref]

Bull. Am. Meteorol. Soc. (2)

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
[Crossref]

A. Stoffelen, J. Pailleux, E. Kallen, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, “The atmospheric dynamics mission for global wind field measurement,” Bull. Am. Meteorol. Soc. 86(1), 73–88 (2005).
[Crossref]

Geosci. Model Dev. (1)

C. Emde, R. Burasschnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause, T. Dowling, and L. Bugliaro, “The libRadtran software package for radiative transfer calculations (Version 2.0),” Geosci. Model Dev. 8(12), 10237–10303 (2015).
[Crossref]

J. Atmos. Ocean. Technol. (1)

W. H. Hunt, D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, “CALIPSO Lidar Description and Performance Assessment,” J. Atmos. Ocean. Technol. 26(7), 1214–1228 (2009).
[Crossref]

J. Geophys. Res. (1)

R. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335-772 nm derived from 5.5 years of GOME observations,” J. Geophys. Res. 108, 171–181 (2003).
[Crossref]

J. Geophys. Res. Atmos. (2)

R. McPeters, M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt, “Validation of the Aura Ozone Monitoring Instrument total column ozone product,” J. Geophys. Res. Atmos. 113, D15S14 (2008).
[Crossref]

C. Kiemle, S. R. Kawa, M. Quatrevalet, and E. V. Browell, “Performance Simulations for a Spaceborne Methane Lidar Mission,” J. Geophys. Res. Atmos. 119(7), 4365–4379 (2014).
[Crossref]

Meteorol. Z. (Berl.) (1)

A. Cress and W. Wergen, “Impact of profile observations on the German Weather Service’s NWP system,” Meteorol. Z. (Berl.) 10(2), 91–101 (2001).
[Crossref]

Proc. SPIE (1)

A. Heliere, J. L. Bezy, P. Bensi, and P. Ingmann, “System definition of the ESA Earth Explorer WALES mission,” Proc. SPIE 4881, 24–32 (2003).

Q. J. R. Meteorol. Soc. (2)

M. Weissmann and C. Cardinali, “Impact of airborne Doppler lidar observations on ECMWF forecasts,” Q. J. R. Meteorol. Soc. 133, 107–116 (2007).
[Crossref]

G. J. Marseille and A. Stoffelen, “Simulation of wind profiles from a space-borne Doppler wind lidar,” Q. J. R. Meteorol. Soc. 129, 3079–3098 (2003).
[Crossref]

Remote Sens. (1)

A. Mousivand, W. Verhoef, M. Menenti, and B. Gorte, “Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain,” Remote Sens. 7(6), 8019–8044 (2015).
[Crossref]

Tellus B Chem. Phys. Meterol. (1)

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B Chem. Phys. Meterol. 62, 759–769 (2010).
[Crossref]

Tellus, Ser. A, Dyn. Meterol. Oceanogr. (3)

D. G. H. Tan, E. Anderson, J. De Kloe, G. Marseille, A. Stoffelen, P. Poli, M. Denneulin, A. Dabas, D. Huber, O. Reitebuch, P. Flamant, O. Le Rille, and H. Nett, “The ADM-Aeolus wind retrieval algorithms,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 191–205 (2008).
[Crossref]

P. Flamant, J. Cuesta, M. Denneulin, A. Dabas, and D. Huber, “ADM-Aeolus retrieval algorithms for aerosol and cloud products,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 273–286 (2008).
[Crossref]

N. Zagar, N. Gustafsson, and E. Kallen, “Dynamical response of equatorial waves in four-dimensional variational data assimilation,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 56(1), 29–46 (2004).
[Crossref]

Wuli Xuebao (1)

R. W. Zhang, X. J. Sun, W. Yan, J. Zhao, L. Liu, Y. Li, C. L. Zhang, and J. H. Zhou, “Simulation of frequency discrimination for spaceborne Doppler wind lidar (II): Study on the retrieval of atmospheric wind speed for Rayleigh channel based on Fabry-Perot interferometer,” Wuli Xuebao 63(14), 147–156 (2014).

Other (6)

G. J. Marseille, A. Stoffelen, J. De Kloe, K. Houchi, H. Kornich, H. Schyberg, A. Straume, and O. Lerille, “ADM-Aeolus vertical sampling scenarios,” in Proceedings of the 8th International Sysposium on Tropospheric Profiling (2009).

O. Reitebuch, U. Paffrath, and I. Leike, ATBD: ADM-Aeolus Level 1B Product (European Space Research and Technology Centre, 2006).

U. Paffrath, Performance Assessment of the Aeolus Doppler Wind Lidar Prototype (Ludwig-Maximilians-Universität München, 2006).

J. De Kloe, G. J. Marseille, and A. Stoffelen, ADM-Aeolus, Vertical Aeolus Measurement Positioning (The Royal Netherlands Meteorological Institute, 2007).

G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL (Air Force Geophysical Laboratory) atmospheric constituent profiles (0. 120km). Environmental research papers (Air Force Geophysical Laboratory, 1986).

M. Rennie, CCN6 Results: Further Chain-of-Processors Testing of L2B Results and Testing of CCN6 L2B Processor Algorithm Updates (European Centre for Medium-Range Weather Forecasts, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Lookup table of the partial derivative of HLOS wind component to Rayleigh response, which is determined by temperature and pressure.
Fig. 2
Fig. 2 Optical structure of spaceborne DWLs in the simulation system.
Fig. 3
Fig. 3 Process to obtain the global distribution of SBR for spaceborne DWL.
Fig. 4
Fig. 4 Global distributions of SBR at 355 nm received by the spaceborne DWLs of which the orbit and view geometry were set according to Table 1. The isolines of SBR are related to the percentiles of 50%, 60%, 70%, 80%, 90%, and 100%, respectively. (a) summer, (b) winter.
Fig. 5
Fig. 5 Frequency of SBR values. The frequency of zero SBR was not shown which is nearly 50%. (a) summer, (b) winter.
Fig. 6
Fig. 6 The profiles of wind observation uncertainty under various atmospheric constitutes. The red solid lines illustrate the accuracy requirement of the ESA for spaceborne DWLs. (a) No SBR; (b) The value of SBR equals to 169.03 mW m−2 sr−1 nm−1.
Fig. 7
Fig. 7 Sensitivity of the uncertainty in wind observations on SBR. The label on the brackets denotes the corresponding quantiles of the global distribution of SBR on summer shown in Fig. 4(a).
Fig. 8
Fig. 8 Profiles uncertainty in wind observations on the Rayleigh channel under different quantiles of SBR ranges from 50% to 100%, here the 100% percentile of SBR means the maximum value of SBR, and it’s related values of SBR are labelled in the top of the figures. The white contour illustrates the accuracy requirement for spaceborne DWLs of the ESA. (a) summer, (b)winter.

Tables (5)

Tables Icon

Table 1 Instrument parameters used for simulations.

Tables Icon

Table 2 Size distribution parameters and SSA, ASY coefficient of six aerosol types at 355 nm.

Tables Icon

Table 3 Quantile SBR statistics from the Aeolus telescope.

Tables Icon

Table 4 Mean of uncertainty in wind observations on Rayleigh channel under different levels of SBR.

Tables Icon

Table 5 The descriptions and units of the variables used in this paper.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ n p 2 ¯ = n ¯ p
σ HLOS = ( v HLOS R ATM σ R ATM ) 2 + ( v HLOS T σ T ) 2 + ( v HLOS P σ P ) 2 + ( v HLOS ρ σ ρ ) 2
R ATM = N A N B N A + N B
σ HLOS = v HLOS R ATM σ R ATM
σ R ATM = 2 N A + N B N B 2 σ A 2 + N A 2 σ B 2 ,
σ A 2 = N A + N S,A + σ Ray 2 , σ B 2 = N B + N S,B + σ Ray 2
S X (z)= Eλ hc π A r 2 4 β X (z) R (z) 2 τ (z) 2 Δ Z LOS T RX T TX
N s =n E Q E O L s φ R A r 2 π 4 ΔλΔt h c λ ,
ϖ(z)= i=1 6 η i (z) ϖ i ,
g(z)= i=1 6 η i (z) g i ,

Metrics