Abstract

We present a novel T-type half-open resonant photoacoustic (PA) cell for trace gas detection. The T-type PA cell has just one buffer volume, and a fiber-optic acoustic sensor is placed at one end of the resonator. Compared with the conventional H-type PA cell, the first-order resonant frequency of the T-type PA cell is reduced by half and the PA signal is enhanced with the same resonator. The T-type resonant PA cell was used in acetylene (C2H2) gas detection system based on PA spectroscopy. Experimental results show that the minimum detectable limit of C2H2 is calculated to be 0.70 parts per billion (ppb), which is lower than the traditional H-type PA cell.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser

Yufei Ma, Shunda Qiao, Ying He, Yu Li, Zhonghua Zhang, Xin Yu, and Frank K. Tittel
Opt. Express 27(10) 14163-14172 (2019)

Demonstration of a highly sensitive photoacoustic spectrometer based on a miniaturized all-optical detecting sensor

Sheng Zhou, Martin Slaman, and Davide Iannuzzi
Opt. Express 25(15) 17541-17548 (2017)

Quartz-enhanced photoacoustic detection of ethylene using a 10.5 μm quantum cascade laser

Zhen Wang, Zhili Li, and Wei Ren
Opt. Express 24(4) 4143-4154 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19630–19634 (2006).
    [Crossref] [PubMed]
  2. M. M. J. W. van Herpen, A. K. Y. Ngai, S. E. Bisson, J. H. P. Hackstein, E. J. Woltering, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects,” Appl. Phys. B 82(4), 665–669 (2006).
    [Crossref]
  3. Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
    [Crossref]
  4. H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
    [Crossref] [PubMed]
  5. W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B 107(3), 849–860 (2012).
    [Crossref]
  6. Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38(4), 434–436 (2013).
    [Crossref] [PubMed]
  7. Y. Yun, W. Chen, Y. Wang, and C. Pan, “Photoacoustic detection of dissolved gases in transformer oil,” Eur. Trans. Electr. Power 18(6), 562–576 (2008).
    [Crossref]
  8. J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
    [Crossref]
  9. L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
    [Crossref] [PubMed]
  10. V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy, (Springer, 1986).
  11. S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3259–3268 (2004).
    [Crossref] [PubMed]
  12. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
    [Crossref] [PubMed]
  13. S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
    [Crossref]
  14. Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
    [Crossref] [PubMed]
  15. K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Appl. Phys. B 124(5), 74 (2018).
    [Crossref]
  16. K. Chen, Z. Yu, Z. Gong, and Q. Yu, “Lock-in white-light-interferometry-based all-optical photoacoustic spectrometer,” Opt. Lett. 43(20), 5038–5041 (2018).
    [Crossref] [PubMed]
  17. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
    [Crossref] [PubMed]
  18. S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
    [Crossref]
  19. Q. Wang, Z. Wang, J. Chang, and W. Ren, “Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing,” Opt. Lett. 42(11), 2114–2117 (2017).
    [Crossref] [PubMed]
  20. Z. Wang, Q. Wang, W. Zhang, H. Wei, Y. Li, and W. Ren, “Ultrasensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking,” Opt. Lett. 44(8), 1924–1927 (2019).
    [Crossref] [PubMed]
  21. Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant. 23(2), 199–209 (2017).
    [Crossref]
  22. Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators B Chem. 260, 357–363 (2018).
    [Crossref]
  23. H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
    [Crossref] [PubMed]
  24. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
    [Crossref] [PubMed]
  25. V. A. Kapitanov, V. Zeninari, B. Parvitte, D. Courtois, and Y. N. Ponomarev, “Optimisation of photoacoustic resonant cells with commercial microphones for diode laser gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2397–2404 (2002).
    [Crossref] [PubMed]
  26. R. A. Rooth, A. J. L. Verhage, and L. W. Wouters, “Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide,” Appl. Opt. 29(25), 3643–3653 (1990).
    [Crossref] [PubMed]
  27. X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
    [Crossref]
  28. K. Liu, J. Mei, W. Zhang, W. Chen, and X. Gao, “Multi-resonator photoacoustic spectroscopy,” Sens. Actuators B Chem. 251, 632–636 (2017).
    [Crossref]
  29. L. Hao, Z. Ren, Q. Shi, J. Wu, Y. Zheng, J. Zheng, and Q. Zhu, “A new cylindrical photoacoustic cell with improved performance,” Rev. Sci. Instrum. 73(2), 404–410 (2002).
    [Crossref]
  30. D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9(12), 3655–3701 (2007).
  31. A. Karbach and P. Hess, “High precision acoustic spectroscopy by laser excitation of resonator modes,” J. Chem. Phys. 83(3), 1075–1084 (1985).
    [Crossref]
  32. A. Karbach and P. Hess, “Photoacoustic signal in a cylindrical resonator: Theory and laser experiments for CH4 and C2H6,” J. Chem. Phys. 84(6), 2945–2952 (1986).
    [Crossref]
  33. S. Bernegger and M. W. Sigrist, “Longitudinal resonant spectrophone for CO-laserphotoacoustic spectroscopy,” Appl. Phys. B 44(2), 125–132 (1987).
    [Crossref]
  34. K. Chen, Z. Gong, and Q. Yu, “Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection,” Sens. Actuators A Phys. 274, 184–188 (2018).
    [Crossref]
  35. L. E. Kinster, A. R. Frey, and A. B. Coppens, Fundamentals of Acoustic (John Wiley & Sons, 2001).
  36. K. Chen, Q. Yu, Z. Gong, M. Guo, and C. Qu, “Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy,” Sens. Actuators B Chem. 268, 205–209 (2018).
    [Crossref]
  37. K. Chen, Z. Gong, M. Guo, S. Yu, C. Qu, X. Zhou, and Q. Yu, “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sens. Actuators A Phys. 279, 107–112 (2018).
    [Crossref]

2019 (1)

2018 (6)

K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Appl. Phys. B 124(5), 74 (2018).
[Crossref]

K. Chen, Z. Gong, and Q. Yu, “Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection,” Sens. Actuators A Phys. 274, 184–188 (2018).
[Crossref]

K. Chen, Q. Yu, Z. Gong, M. Guo, and C. Qu, “Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy,” Sens. Actuators B Chem. 268, 205–209 (2018).
[Crossref]

K. Chen, Z. Gong, M. Guo, S. Yu, C. Qu, X. Zhou, and Q. Yu, “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sens. Actuators A Phys. 279, 107–112 (2018).
[Crossref]

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators B Chem. 260, 357–363 (2018).
[Crossref]

K. Chen, Z. Yu, Z. Gong, and Q. Yu, “Lock-in white-light-interferometry-based all-optical photoacoustic spectrometer,” Opt. Lett. 43(20), 5038–5041 (2018).
[Crossref] [PubMed]

2017 (8)

Q. Wang, Z. Wang, J. Chang, and W. Ren, “Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing,” Opt. Lett. 42(11), 2114–2117 (2017).
[Crossref] [PubMed]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant. 23(2), 199–209 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

K. Liu, J. Mei, W. Zhang, W. Chen, and X. Gao, “Multi-resonator photoacoustic spectroscopy,” Sens. Actuators B Chem. 251, 632–636 (2017).
[Crossref]

Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

2016 (1)

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

2015 (1)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

2014 (2)

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B 107(3), 849–860 (2012).
[Crossref]

2011 (1)

J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
[Crossref]

2008 (1)

Y. Yun, W. Chen, Y. Wang, and C. Pan, “Photoacoustic detection of dissolved gases in transformer oil,” Eur. Trans. Electr. Power 18(6), 562–576 (2008).
[Crossref]

2007 (1)

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9(12), 3655–3701 (2007).

2006 (2)

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19630–19634 (2006).
[Crossref] [PubMed]

M. M. J. W. van Herpen, A. K. Y. Ngai, S. E. Bisson, J. H. P. Hackstein, E. J. Woltering, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects,” Appl. Phys. B 82(4), 665–669 (2006).
[Crossref]

2004 (1)

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3259–3268 (2004).
[Crossref] [PubMed]

2002 (3)

L. Hao, Z. Ren, Q. Shi, J. Wu, Y. Zheng, J. Zheng, and Q. Zhu, “A new cylindrical photoacoustic cell with improved performance,” Rev. Sci. Instrum. 73(2), 404–410 (2002).
[Crossref]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref] [PubMed]

V. A. Kapitanov, V. Zeninari, B. Parvitte, D. Courtois, and Y. N. Ponomarev, “Optimisation of photoacoustic resonant cells with commercial microphones for diode laser gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2397–2404 (2002).
[Crossref] [PubMed]

1990 (1)

1987 (1)

S. Bernegger and M. W. Sigrist, “Longitudinal resonant spectrophone for CO-laserphotoacoustic spectroscopy,” Appl. Phys. B 44(2), 125–132 (1987).
[Crossref]

1986 (1)

A. Karbach and P. Hess, “Photoacoustic signal in a cylindrical resonator: Theory and laser experiments for CH4 and C2H6,” J. Chem. Phys. 84(6), 2945–2952 (1986).
[Crossref]

1985 (1)

A. Karbach and P. Hess, “High precision acoustic spectroscopy by laser excitation of resonator modes,” J. Chem. Phys. 83(3), 1075–1084 (1985).
[Crossref]

Abramski, K.

K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Appl. Phys. B 124(5), 74 (2018).
[Crossref]

Akikusa, N.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Bai, W.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Bakhirkin, Y. A.

Bernegger, S.

S. Bernegger and M. W. Sigrist, “Longitudinal resonant spectrophone for CO-laserphotoacoustic spectroscopy,” Appl. Phys. B 44(2), 125–132 (1987).
[Crossref]

Bewley, W. W.

Bisson, S. E.

M. M. J. W. van Herpen, A. K. Y. Ngai, S. E. Bisson, J. H. P. Hackstein, E. J. Woltering, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects,” Appl. Phys. B 82(4), 665–669 (2006).
[Crossref]

Borri, S.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Canedy, C. L.

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38(4), 434–436 (2013).
[Crossref] [PubMed]

Chang, J.

Chen, F.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Chen, K.

K. Chen, Z. Gong, and Q. Yu, “Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection,” Sens. Actuators A Phys. 274, 184–188 (2018).
[Crossref]

K. Chen, Q. Yu, Z. Gong, M. Guo, and C. Qu, “Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy,” Sens. Actuators B Chem. 268, 205–209 (2018).
[Crossref]

K. Chen, Z. Gong, M. Guo, S. Yu, C. Qu, X. Zhou, and Q. Yu, “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sens. Actuators A Phys. 279, 107–112 (2018).
[Crossref]

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators B Chem. 260, 357–363 (2018).
[Crossref]

K. Chen, Z. Yu, Z. Gong, and Q. Yu, “Lock-in white-light-interferometry-based all-optical photoacoustic spectrometer,” Opt. Lett. 43(20), 5038–5041 (2018).
[Crossref] [PubMed]

Chen, W.

K. Liu, J. Mei, W. Zhang, W. Chen, and X. Gao, “Multi-resonator photoacoustic spectroscopy,” Sens. Actuators B Chem. 251, 632–636 (2017).
[Crossref]

J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
[Crossref]

Y. Yun, W. Chen, Y. Wang, and C. Pan, “Photoacoustic detection of dissolved gases in transformer oil,” Eur. Trans. Electr. Power 18(6), 562–576 (2008).
[Crossref]

Coppens, A. B.

L. E. Kinster, A. R. Frey, and A. B. Coppens, Fundamentals of Acoustic (John Wiley & Sons, 2001).

Courtois, D.

V. A. Kapitanov, V. Zeninari, B. Parvitte, D. Courtois, and Y. N. Ponomarev, “Optimisation of photoacoustic resonant cells with commercial microphones for diode laser gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2397–2404 (2002).
[Crossref] [PubMed]

Curl, R. F.

Davidson, D. F.

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B 107(3), 849–860 (2012).
[Crossref]

De Natale, P.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Diebold, G. J.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Dong, L.

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

Dudzik, G.

K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Appl. Phys. B 124(5), 74 (2018).
[Crossref]

Dumitras, D. C.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9(12), 3655–3701 (2007).

Dunayevskiy, I. G.

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19630–19634 (2006).
[Crossref] [PubMed]

Dutu, D. C.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9(12), 3655–3701 (2007).

Emmenegger, L.

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3259–3268 (2004).
[Crossref] [PubMed]

Farooq, A.

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B 107(3), 849–860 (2012).
[Crossref]

Frey, A. R.

L. E. Kinster, A. R. Frey, and A. B. Coppens, Fundamentals of Acoustic (John Wiley & Sons, 2001).

Galli, I.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Gao, X.

K. Liu, J. Mei, W. Zhang, W. Chen, and X. Gao, “Multi-resonator photoacoustic spectroscopy,” Sens. Actuators B Chem. 251, 632–636 (2017).
[Crossref]

Giusfredi, G.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Gluszek, A.

K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Appl. Phys. B 124(5), 74 (2018).
[Crossref]

Go, R.

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19630–19634 (2006).
[Crossref] [PubMed]

Gong, Z.

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators B Chem. 260, 357–363 (2018).
[Crossref]

K. Chen, Z. Gong, and Q. Yu, “Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection,” Sens. Actuators A Phys. 274, 184–188 (2018).
[Crossref]

K. Chen, Z. Gong, M. Guo, S. Yu, C. Qu, X. Zhou, and Q. Yu, “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sens. Actuators A Phys. 279, 107–112 (2018).
[Crossref]

K. Chen, Q. Yu, Z. Gong, M. Guo, and C. Qu, “Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy,” Sens. Actuators B Chem. 268, 205–209 (2018).
[Crossref]

K. Chen, Z. Yu, Z. Gong, and Q. Yu, “Lock-in white-light-interferometry-based all-optical photoacoustic spectrometer,” Opt. Lett. 43(20), 5038–5041 (2018).
[Crossref] [PubMed]

Guo, M.

K. Chen, Q. Yu, Z. Gong, M. Guo, and C. Qu, “Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy,” Sens. Actuators B Chem. 268, 205–209 (2018).
[Crossref]

K. Chen, Z. Gong, M. Guo, S. Yu, C. Qu, X. Zhou, and Q. Yu, “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sens. Actuators A Phys. 279, 107–112 (2018).
[Crossref]

Hackstein, J. H. P.

M. M. J. W. van Herpen, A. K. Y. Ngai, S. E. Bisson, J. H. P. Hackstein, E. J. Woltering, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects,” Appl. Phys. B 82(4), 665–669 (2006).
[Crossref]

Hanson, R. K.

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B 107(3), 849–860 (2012).
[Crossref]

Hao, L.

L. Hao, Z. Ren, Q. Shi, J. Wu, Y. Zheng, J. Zheng, and Q. Zhu, “A new cylindrical photoacoustic cell with improved performance,” Rev. Sci. Instrum. 73(2), 404–410 (2002).
[Crossref]

Harren, F. J. M.

M. M. J. W. van Herpen, A. K. Y. Ngai, S. E. Bisson, J. H. P. Hackstein, E. J. Woltering, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects,” Appl. Phys. B 82(4), 665–669 (2006).
[Crossref]

He, Y.

Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Hess, P.

A. Karbach and P. Hess, “Photoacoustic signal in a cylindrical resonator: Theory and laser experiments for CH4 and C2H6,” J. Chem. Phys. 84(6), 2945–2952 (1986).
[Crossref]

A. Karbach and P. Hess, “High precision acoustic spectroscopy by laser excitation of resonator modes,” J. Chem. Phys. 83(3), 1075–1084 (1985).
[Crossref]

Ho, H. L.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant. 23(2), 199–209 (2017).
[Crossref]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38(4), 434–436 (2013).
[Crossref] [PubMed]

Hudzikowski, A.

K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Appl. Phys. B 124(5), 74 (2018).
[Crossref]

Hüglin, C.

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3259–3268 (2004).
[Crossref] [PubMed]

Jia, S.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

Jin, W.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant. 23(2), 199–209 (2017).
[Crossref]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38(4), 434–436 (2013).
[Crossref] [PubMed]

Kapitanov, V. A.

V. A. Kapitanov, V. Zeninari, B. Parvitte, D. Courtois, and Y. N. Ponomarev, “Optimisation of photoacoustic resonant cells with commercial microphones for diode laser gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2397–2404 (2002).
[Crossref] [PubMed]

Karbach, A.

A. Karbach and P. Hess, “Photoacoustic signal in a cylindrical resonator: Theory and laser experiments for CH4 and C2H6,” J. Chem. Phys. 84(6), 2945–2952 (1986).
[Crossref]

A. Karbach and P. Hess, “High precision acoustic spectroscopy by laser excitation of resonator modes,” J. Chem. Phys. 83(3), 1075–1084 (1985).
[Crossref]

Kim, C. S.

Kim, M.

Kinster, L. E.

L. E. Kinster, A. R. Frey, and A. B. Coppens, Fundamentals of Acoustic (John Wiley & Sons, 2001).

Kosterev, A. A.

Krzempek, K.

K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Appl. Phys. B 124(5), 74 (2018).
[Crossref]

Letokhov, V. S.

V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy, (Springer, 1986).

Lewicki, R.

Li, J.

J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
[Crossref]

Li, Y.

Liu, K.

K. Liu, J. Mei, W. Zhang, W. Chen, and X. Gao, “Multi-resonator photoacoustic spectroscopy,” Sens. Actuators B Chem. 251, 632–636 (2017).
[Crossref]

Lou, M.

Ma, J.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant. 23(2), 199–209 (2017).
[Crossref]

Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38(4), 434–436 (2013).
[Crossref] [PubMed]

Ma, W.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

Ma, Y.

Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref] [PubMed]

Magureanu, A. M.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9(12), 3655–3701 (2007).

Manohar, S.

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

Matei, C.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9(12), 3655–3701 (2007).

Mazzotti, D.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Mei, J.

K. Liu, J. Mei, W. Zhang, W. Chen, and X. Gao, “Multi-resonator photoacoustic spectroscopy,” Sens. Actuators B Chem. 251, 632–636 (2017).
[Crossref]

Merritt, C. D.

Meyer, J. R.

Ngai, A. K. Y.

M. M. J. W. van Herpen, A. K. Y. Ngai, S. E. Bisson, J. H. P. Hackstein, E. J. Woltering, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects,” Appl. Phys. B 82(4), 665–669 (2006).
[Crossref]

Niklès, M.

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3259–3268 (2004).
[Crossref] [PubMed]

Nikodem, M.

K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Appl. Phys. B 124(5), 74 (2018).
[Crossref]

Pan, C.

Y. Yun, W. Chen, Y. Wang, and C. Pan, “Photoacoustic detection of dissolved gases in transformer oil,” Eur. Trans. Electr. Power 18(6), 562–576 (2008).
[Crossref]

Parvitte, B.

V. A. Kapitanov, V. Zeninari, B. Parvitte, D. Courtois, and Y. N. Ponomarev, “Optimisation of photoacoustic resonant cells with commercial microphones for diode laser gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2397–2404 (2002).
[Crossref] [PubMed]

Patel, C. K. N.

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19630–19634 (2006).
[Crossref] [PubMed]

Patimisco, P.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Petrus, M.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9(12), 3655–3701 (2007).

Ponomarev, Y. N.

V. A. Kapitanov, V. Zeninari, B. Parvitte, D. Courtois, and Y. N. Ponomarev, “Optimisation of photoacoustic resonant cells with commercial microphones for diode laser gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2397–2404 (2002).
[Crossref] [PubMed]

Popa, C.

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9(12), 3655–3701 (2007).

Prasanna, M.

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19630–19634 (2006).
[Crossref] [PubMed]

Pushkarsky, M. B.

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19630–19634 (2006).
[Crossref] [PubMed]

Qu, C.

K. Chen, Q. Yu, Z. Gong, M. Guo, and C. Qu, “Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy,” Sens. Actuators B Chem. 268, 205–209 (2018).
[Crossref]

K. Chen, Z. Gong, M. Guo, S. Yu, C. Qu, X. Zhou, and Q. Yu, “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sens. Actuators A Phys. 279, 107–112 (2018).
[Crossref]

Razansky, D.

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

Razeghi, M.

Ren, W.

Ren, Z.

L. Hao, Z. Ren, Q. Shi, J. Wu, Y. Zheng, J. Zheng, and Q. Zhu, “A new cylindrical photoacoustic cell with improved performance,” Rev. Sci. Instrum. 73(2), 404–410 (2002).
[Crossref]

Rooth, R. A.

Scamarcio, G.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

Schilt, S.

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3259–3268 (2004).
[Crossref] [PubMed]

Shi, Q.

L. Hao, Z. Ren, Q. Shi, J. Wu, Y. Zheng, J. Zheng, and Q. Zhu, “A new cylindrical photoacoustic cell with improved performance,” Rev. Sci. Instrum. 73(2), 404–410 (2002).
[Crossref]

Sigrist, M. W.

S. Bernegger and M. W. Sigrist, “Longitudinal resonant spectrophone for CO-laserphotoacoustic spectroscopy,” Appl. Phys. B 44(2), 125–132 (1987).
[Crossref]

Spagnolo, V.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Sun, R.

Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Tan, Y.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant. 23(2), 199–209 (2017).
[Crossref]

Thévenaz, L.

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3259–3268 (2004).
[Crossref] [PubMed]

Tittel, F. K.

Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref] [PubMed]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 27(21), 1902–1904 (2002).
[Crossref] [PubMed]

Tsekoun, A. G.

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19630–19634 (2006).
[Crossref] [PubMed]

van Herpen, M. M. J. W.

M. M. J. W. van Herpen, A. K. Y. Ngai, S. E. Bisson, J. H. P. Hackstein, E. J. Woltering, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects,” Appl. Phys. B 82(4), 665–669 (2006).
[Crossref]

Verhage, A. J. L.

Vurgaftman, I.

Wang, Q.

Wang, Y.

Y. Yun, W. Chen, Y. Wang, and C. Pan, “Photoacoustic detection of dissolved gases in transformer oil,” Eur. Trans. Electr. Power 18(6), 562–576 (2008).
[Crossref]

Wang, Z.

Warren, M. V.

Wei, H.

Woltering, E. J.

M. M. J. W. van Herpen, A. K. Y. Ngai, S. E. Bisson, J. H. P. Hackstein, E. J. Woltering, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects,” Appl. Phys. B 82(4), 665–669 (2006).
[Crossref]

Wouters, L. W.

Wu, H.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

Wu, J.

L. Hao, Z. Ren, Q. Shi, J. Wu, Y. Zheng, J. Zheng, and Q. Zhu, “A new cylindrical photoacoustic cell with improved performance,” Rev. Sci. Instrum. 73(2), 404–410 (2002).
[Crossref]

Wysocki, G.

K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Appl. Phys. B 124(5), 74 (2018).
[Crossref]

Xiao, L.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

Xiong, L.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Yamanishi, N.

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Yang, F.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant. 23(2), 199–209 (2017).
[Crossref]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

Yang, Y.

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators B Chem. 260, 357–363 (2018).
[Crossref]

Ye, W.

Yin, W.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

Yin, X.

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

Yu, B.

J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
[Crossref]

Yu, F.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Yu, Q.

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators B Chem. 260, 357–363 (2018).
[Crossref]

K. Chen, Z. Gong, M. Guo, S. Yu, C. Qu, X. Zhou, and Q. Yu, “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sens. Actuators A Phys. 279, 107–112 (2018).
[Crossref]

K. Chen, Z. Gong, and Q. Yu, “Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection,” Sens. Actuators A Phys. 274, 184–188 (2018).
[Crossref]

K. Chen, Q. Yu, Z. Gong, M. Guo, and C. Qu, “Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy,” Sens. Actuators B Chem. 268, 205–209 (2018).
[Crossref]

K. Chen, Z. Yu, Z. Gong, and Q. Yu, “Lock-in white-light-interferometry-based all-optical photoacoustic spectrometer,” Opt. Lett. 43(20), 5038–5041 (2018).
[Crossref] [PubMed]

Yu, S.

K. Chen, Z. Gong, M. Guo, S. Yu, C. Qu, X. Zhou, and Q. Yu, “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sens. Actuators A Phys. 279, 107–112 (2018).
[Crossref]

Yu, X.

Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Yu, Y.

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

Yu, Z.

Yun, Y.

Y. Yun, W. Chen, Y. Wang, and C. Pan, “Photoacoustic detection of dissolved gases in transformer oil,” Eur. Trans. Electr. Power 18(6), 562–576 (2008).
[Crossref]

Zeninari, V.

V. A. Kapitanov, V. Zeninari, B. Parvitte, D. Courtois, and Y. N. Ponomarev, “Optimisation of photoacoustic resonant cells with commercial microphones for diode laser gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2397–2404 (2002).
[Crossref] [PubMed]

Zhang, C.

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant. 23(2), 199–209 (2017).
[Crossref]

Zhang, J.

Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

Zhang, L.

Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

Zhang, W.

Zhao, X.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Zharov, V. P.

V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy, (Springer, 1986).

Zheng, H.

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

Zheng, J.

L. Hao, Z. Ren, Q. Shi, J. Wu, Y. Zheng, J. Zheng, and Q. Zhu, “A new cylindrical photoacoustic cell with improved performance,” Rev. Sci. Instrum. 73(2), 404–410 (2002).
[Crossref]

Zheng, Y.

L. Hao, Z. Ren, Q. Shi, J. Wu, Y. Zheng, J. Zheng, and Q. Zhu, “A new cylindrical photoacoustic cell with improved performance,” Rev. Sci. Instrum. 73(2), 404–410 (2002).
[Crossref]

Zhou, X.

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators B Chem. 260, 357–363 (2018).
[Crossref]

K. Chen, Z. Gong, M. Guo, S. Yu, C. Qu, X. Zhou, and Q. Yu, “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sens. Actuators A Phys. 279, 107–112 (2018).
[Crossref]

Zhu, Q.

L. Hao, Z. Ren, Q. Shi, J. Wu, Y. Zheng, J. Zheng, and Q. Zhu, “A new cylindrical photoacoustic cell with improved performance,” Rev. Sci. Instrum. 73(2), 404–410 (2002).
[Crossref]

Adv. Opt. Photonics (1)

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (4)

S. Bernegger and M. W. Sigrist, “Longitudinal resonant spectrophone for CO-laserphotoacoustic spectroscopy,” Appl. Phys. B 44(2), 125–132 (1987).
[Crossref]

K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Appl. Phys. B 124(5), 74 (2018).
[Crossref]

M. M. J. W. van Herpen, A. K. Y. Ngai, S. E. Bisson, J. H. P. Hackstein, E. J. Woltering, and F. J. M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects,” Appl. Phys. B 82(4), 665–669 (2006).
[Crossref]

W. Ren, A. Farooq, D. F. Davidson, and R. K. Hanson, “CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm,” Appl. Phys. B 107(3), 849–860 (2012).
[Crossref]

Appl. Phys. Lett. (2)

Y. Ma, Y. He, L. Zhang, X. Yu, J. Zhang, R. Sun, and F. K. Tittel, “Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork,” Appl. Phys. Lett. 110(3), 031107 (2017).
[Crossref]

S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, N. Yamanishi, G. Scamarcio, P. De Natale, and V. Spagnolo, “Intracavity quartz-enhanced photoacoustic sensor,” Appl. Phys. Lett. 104(9), 091114 (2014).
[Crossref]

Appl. Spectrosc. Rev. (1)

J. Li, W. Chen, and B. Yu, “Recent progress on infrared photoacoustic spectroscopy techniques,” Appl. Spectrosc. Rev. 46(6), 440–471 (2011).
[Crossref]

Eur. Trans. Electr. Power (1)

Y. Yun, W. Chen, Y. Wang, and C. Pan, “Photoacoustic detection of dissolved gases in transformer oil,” Eur. Trans. Electr. Power 18(6), 562–576 (2008).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

Y. Tan, C. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE J. Sel. Top. Quant. 23(2), 199–209 (2017).
[Crossref]

J. Chem. Phys. (2)

A. Karbach and P. Hess, “High precision acoustic spectroscopy by laser excitation of resonator modes,” J. Chem. Phys. 83(3), 1075–1084 (1985).
[Crossref]

A. Karbach and P. Hess, “Photoacoustic signal in a cylindrical resonator: Theory and laser experiments for CH4 and C2H6,” J. Chem. Phys. 84(6), 2945–2952 (1986).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

D. C. Dumitras, D. C. Dutu, C. Matei, A. M. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9(12), 3655–3701 (2007).

Nat. Commun. (2)

H. Wu, L. Dong, H. Zheng, Y. Yu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nat. Commun. 8(1), 15331 (2017).
[Crossref] [PubMed]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6(1), 6767 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. U.S.A. (2)

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19630–19634 (2006).
[Crossref] [PubMed]

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

L. Hao, Z. Ren, Q. Shi, J. Wu, Y. Zheng, J. Zheng, and Q. Zhu, “A new cylindrical photoacoustic cell with improved performance,” Rev. Sci. Instrum. 73(2), 404–410 (2002).
[Crossref]

Sens. Actuators A Phys. (2)

K. Chen, Z. Gong, M. Guo, S. Yu, C. Qu, X. Zhou, and Q. Yu, “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sens. Actuators A Phys. 279, 107–112 (2018).
[Crossref]

K. Chen, Z. Gong, and Q. Yu, “Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection,” Sens. Actuators A Phys. 274, 184–188 (2018).
[Crossref]

Sens. Actuators B Chem. (4)

K. Chen, Q. Yu, Z. Gong, M. Guo, and C. Qu, “Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy,” Sens. Actuators B Chem. 268, 205–209 (2018).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. K. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

K. Liu, J. Mei, W. Zhang, W. Chen, and X. Gao, “Multi-resonator photoacoustic spectroscopy,” Sens. Actuators B Chem. 251, 632–636 (2017).
[Crossref]

Z. Gong, K. Chen, Y. Yang, X. Zhou, and Q. Yu, “Photoacoustic spectroscopy based multi-gas detection using high-sensitivity fiber-optic low-frequency acoustic sensor,” Sens. Actuators B Chem. 260, 357–363 (2018).
[Crossref]

Sensors (Basel) (1)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

S. Schilt, L. Thévenaz, M. Niklès, L. Emmenegger, and C. Hüglin, “Ammonia monitoring at trace level using photoacoustic spectroscopy in industrial and environmental applications,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(14), 3259–3268 (2004).
[Crossref] [PubMed]

V. A. Kapitanov, V. Zeninari, B. Parvitte, D. Courtois, and Y. N. Ponomarev, “Optimisation of photoacoustic resonant cells with commercial microphones for diode laser gas detection,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(11), 2397–2404 (2002).
[Crossref] [PubMed]

Other (2)

L. E. Kinster, A. R. Frey, and A. B. Coppens, Fundamentals of Acoustic (John Wiley & Sons, 2001).

V. P. Zharov and V. S. Letokhov, Laser Optoacoustic Spectroscopy, (Springer, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic structure of (a) the conventional H-type longitudinal resonant PA cell and (b) the implemented T-type half-open longitudinal resonant PA cell.
Fig. 2
Fig. 2 Simulated PA field distribution cloud maps of T-type and H-type resonant PA cells at the first resonant frequency.
Fig. 3
Fig. 3 Frequency responses of T-type and H-type resonant PA cells.
Fig. 4
Fig. 4 Schematic structure of the test setup for C2H2 gas based on PAS.
Fig. 5
Fig. 5 Frequency responses of the two cantilever microphones, which are corresponded to T-type and H-type resonant PA cells.
Fig. 6
Fig. 6 The PAS signals as a function of C2H2 concentrations
Fig. 7
Fig. 7 The background noise was analyzed by filling the PA cell with pure N2 for (a) the proposed T-type half-open longitudinal resonant PA cell and (b) the conventional H-type longitudinal resonant PA cell.
Fig. 8
Fig. 8 Cleaning time comparison of the two kinds of PA cells.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

2 p( r ,t) 1 v 2 2 p( r ,t) t 2 = γ1 v 2 H( r ,t) t ,
( 2 + ω 2 v 2 )p( r ,ω)= iω(γ1) v 2 H( r ,ω),
p( r ,ω)= A j (ω) p j ( r ),
( 2 + k j 2 ) p j ( r )=0,
p j ( r ) n surface =0,
p j ( r )= cos sin (mφ) J m ( π α mn R r )cos( πq 2L z ),
f j = f nmp = ω j 2π = v 2 ( α mn R ) 2 + ( q 2L ) 2 ,
f 001 = v 4L ,
p 001 ( r )=cos( π 2L z ).
f 001H = v 2L .
F= 2(γ1) L 2 Q π 2 Vv ,
Q= R f η πρ +(γ1) κM πρC ,
F= 2 (γ1)LR π 3/2 V f [ 2η ρ +(γ1) 2κM ρC ] .
L T =L+ 8 3π R,
L H =L+ 16 3π R.

Metrics