Abstract

In this work, we investigate the evanescent field sensing mechanism provided by an all-dielectric metasurface supporting bound states in the continuum (BICs). The metasurface is based on a transparent photonic crystal with subwavelength thickness. The BIC electromagnetic field is localized along the direction normal to the photonic crystal nanoscale-thin slab (PhCS) because of a topology-induced confinement, exponentially decaying in the material to detect. On the other hand, it is totally delocalized in the PhCS plane, which favors versatile and multiplexing sensing schemes. Liquids with different refractive indices, ranging from 1.33 to 1.45, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. We observe an experimental exponential sensitivity leading to differential values as large as 226 nm/RIU with excellent FOM. This behavior is explained in terms of the physical superposition of the field with the material under investigation and supported by a thorough numerical analysis. The mechanism is then translated to the case of molecular adsorption where a suitable theoretical engineering of the optical structure points out potential sensitivities as large as 4000 nm/RIU.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum

Silvia Romano, Gianluigi Zito, Stefania Torino, Giuseppe Calafiore, Erika Penzo, Giuseppe Coppola, Stefano Cabrini, Ivo Rendina, and Vito Mocella
Photon. Res. 6(7) 726-733 (2018)

Mechanical bound states in the continuum for macroscopic optomechanics

Mengdi Zhao and Kejie Fang
Opt. Express 27(7) 10138-10151 (2019)

Observation of spin-polarized directive coupling of light at bound states in the continuum

Gianluigi Zito, Silvia Romano, Stefano Cabrini, Giuseppe Calafiore, Anna Chiara De Luca, Erika Penzo, and Vito Mocella
Optica 6(10) 1305-1312 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
    [Crossref]
  2. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Exp. 20, 20599–20604 (2012).
    [Crossref]
  3. L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129, 054704 (2008).
    [Crossref] [PubMed]
  4. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
    [Crossref] [PubMed]
  5. E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
    [Crossref]
  6. J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” Physikalische Zeitschrift 30, 465–467 (1929).
  7. C. Wei Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light. Sci. & Appl. 2, e84 (2013).
    [Crossref]
  8. D. Marinica, A. Borisov, and S. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100, 183902 (2008).
    [Crossref] [PubMed]
  9. M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
    [Crossref] [PubMed]
  10. E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B - Condens. Matter Mater. Phys. 78, 0751051 (2008).
    [Crossref]
  11. R. Porter and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43, 29–50 (2005).
    [Crossref]
  12. E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, and S. Cabrini, “Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum,” J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. 35, 06G401 (2017).
  13. B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113, 257401 (2014).
    [Crossref]
  14. S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light. Sci. & Appl. 3, e120 (2014).
    [Crossref]
  15. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater.1 (2016).
    [Crossref]
  16. V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B - Condens. Matter Mater. Phys. 92, 1–5 (2015).
    [Crossref]
  17. E. N. Bulgakov and D. N. Maksimov, “Optical response induced by bound states in the continuum in arrays of dielectric spheres,” J. Opt. Soc. Am. B 35, 2443 (2018).
    [Crossref]
  18. K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. (2018).
    [Crossref]
  19. K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
    [Crossref]
  20. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107, 183901 (2011).
    [Crossref] [PubMed]
  21. C. W. Hsu, B. Zhen, J. Lee, S.-l. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljac, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
    [Crossref] [PubMed]
  22. J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 1–5 (2012).
    [Crossref]
  23. A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
    [Crossref] [PubMed]
  24. S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
    [Crossref]
  25. B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
    [Crossref] [PubMed]
  26. E. N. Bulgakov and D. N. Maksimov, “Light enhancement by quasi-bound states in the continuum in dielectric arrays,” Opt. Express 25, 14134–14147 (2017).
    [Crossref] [PubMed]
  27. H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397 (2018).
    [Crossref]
  28. Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum,” arXiv:1903.00309 (2019).
  29. J. Jin, X. Yin, L. Ni, M. Soljačić, B. Zhen, and C. Peng, “Topologically enabled ultra-high-q guided resonances robust to out-of-plane scattering,” arXiv:1812.00892 (2018).
  30. A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection rules for symmetry-protected bound states in the continuum,” arXiv:1903.11125 (2019).
  31. F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics doi.org/10.1038/s41566-019-0394-6 (2019).
    [Crossref]
  32. A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
    [Crossref] [PubMed]
  33. S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
    [Crossref]
  34. S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 1–11 (2018).
    [Crossref]
  35. V. Liu and S. Fan, “S 4 : A free electromagnetic solver for layered periodic structures,” Comp. Phys. Comm. 183, 2233 – 2244 (2012).
    [Crossref]
  36. G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys 145, 054708 (2016).
    [Crossref] [PubMed]
  37. S. Managò, G. Zito, A. Rogato, M. Casalino, E. Esposito, A. C. De Luca, and E. De Tommasi, “Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced raman scattering substrates for cell membrane probing,” ACS Appl. Mater. Interfaces 10, 12406–12416 (2018).
    [Crossref] [PubMed]
  38. K. Sakoda, Optical Properties of Photonic Crystals (Optical Sciences, 2005).
    [Crossref]
  39. Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
    [Crossref]
  40. T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Refractive indices of amino acids, proteins, and related substances,” Amino Acids and Serum Proteins 44, 54–66 (1964).
    [Crossref]
  41. N. Bosio, H. Šípová-Jungová, N. Odebo Länk, T. J. Antosiewicz, R. Verre, and M. Käll, “Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparison,” ACS Photonics http://dx.doi.org/10.1021/acsphotonics.9b00434 (2019).
    [Crossref]
  42. G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
    [Crossref]
  43. P. Skafte-Pedersen, P. Nunes, S. Xiao, and N. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors 9, 8382–8390 (2009).
    [Crossref] [PubMed]

2019 (1)

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

2018 (7)

E. N. Bulgakov and D. N. Maksimov, “Optical response induced by bound states in the continuum in arrays of dielectric spheres,” J. Opt. Soc. Am. B 35, 2443 (2018).
[Crossref]

S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
[Crossref]

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397 (2018).
[Crossref]

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref] [PubMed]

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 1–11 (2018).
[Crossref]

S. Managò, G. Zito, A. Rogato, M. Casalino, E. Esposito, A. C. De Luca, and E. De Tommasi, “Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced raman scattering substrates for cell membrane probing,” ACS Appl. Mater. Interfaces 10, 12406–12416 (2018).
[Crossref] [PubMed]

2017 (5)

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

E. N. Bulgakov and D. N. Maksimov, “Light enhancement by quasi-bound states in the continuum in dielectric arrays,” Opt. Express 25, 14134–14147 (2017).
[Crossref] [PubMed]

E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, and S. Cabrini, “Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum,” J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. 35, 06G401 (2017).

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

2016 (1)

G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys 145, 054708 (2016).
[Crossref] [PubMed]

2015 (2)

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B - Condens. Matter Mater. Phys. 92, 1–5 (2015).
[Crossref]

2014 (2)

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light. Sci. & Appl. 3, e120 (2014).
[Crossref]

2013 (4)

C. W. Hsu, B. Zhen, J. Lee, S.-l. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljac, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref] [PubMed]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

C. Wei Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light. Sci. & Appl. 2, e84 (2013).
[Crossref]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

2012 (4)

V. Liu and S. Fan, “S 4 : A free electromagnetic solver for layered periodic structures,” Comp. Phys. Comm. 183, 2233 – 2244 (2012).
[Crossref]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Exp. 20, 20599–20604 (2012).
[Crossref]

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

2011 (1)

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

2009 (1)

P. Skafte-Pedersen, P. Nunes, S. Xiao, and N. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors 9, 8382–8390 (2009).
[Crossref] [PubMed]

2008 (3)

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129, 054704 (2008).
[Crossref] [PubMed]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B - Condens. Matter Mater. Phys. 78, 0751051 (2008).
[Crossref]

D. Marinica, A. Borisov, and S. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref] [PubMed]

2005 (1)

R. Porter and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43, 29–50 (2005).
[Crossref]

2002 (1)

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

1964 (1)

T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Refractive indices of amino acids, proteins, and related substances,” Amino Acids and Serum Proteins 44, 54–66 (1964).
[Crossref]

1929 (1)

J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” Physikalische Zeitschrift 30, 465–467 (1929).

Aieta, F.

Albella, P.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Altug, H.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref] [PubMed]

Alù, A.

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397 (2018).
[Crossref]

Ausman, L. K.

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129, 054704 (2008).
[Crossref] [PubMed]

Bahari, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Belov, P. A.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Exp. 20, 20599–20604 (2012).
[Crossref]

Bogdanov, A.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. (2018).
[Crossref]

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum,” arXiv:1903.00309 (2019).

Bogdanov, A. A.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Borisov, A.

D. Marinica, A. Borisov, and S. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref] [PubMed]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Bulgakov, E. N.

Cabrini, S.

S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
[Crossref]

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 1–11 (2018).
[Crossref]

E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, and S. Cabrini, “Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum,” J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. 35, 06G401 (2017).

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light. Sci. & Appl. 3, e120 (2014).
[Crossref]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Calafiore, G.

S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
[Crossref]

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

Caldarola, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Capasso, F.

Carter, M. J.

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection rules for symmetry-protected bound states in the continuum,” arXiv:1903.11125 (2019).

Casalino, M.

S. Managò, G. Zito, A. Rogato, M. Casalino, E. Esposito, A. C. De Luca, and E. De Tommasi, “Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced raman scattering substrates for cell membrane probing,” ACS Appl. Mater. Interfaces 10, 12406–12416 (2018).
[Crossref] [PubMed]

Chiara De Luca, A.

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Choi, D.-Y.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref] [PubMed]

Chua, S. L.

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Chua, S.-l.

C. W. Hsu, B. Zhen, J. Lee, S.-l. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljac, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref] [PubMed]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

C. Wei Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light. Sci. & Appl. 2, e84 (2013).
[Crossref]

Coppola, G.

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

Cortés, E.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Dal Negro, L.

E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, and S. Cabrini, “Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum,” J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. 35, 06G401 (2017).

De Luca, A. C.

S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
[Crossref]

S. Managò, G. Zito, A. Rogato, M. Casalino, E. Esposito, A. C. De Luca, and E. De Tommasi, “Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced raman scattering substrates for cell membrane probing,” ACS Appl. Mater. Interfaces 10, 12406–12416 (2018).
[Crossref] [PubMed]

De Tommasi, E.

S. Managò, G. Zito, A. Rogato, M. Casalino, E. Esposito, A. C. De Luca, and E. De Tommasi, “Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced raman scattering substrates for cell membrane probing,” ACS Appl. Mater. Interfaces 10, 12406–12416 (2018).
[Crossref] [PubMed]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

den Hollander, W.

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397 (2018).
[Crossref]

Devlin, R.

Dhuey, S.

E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, and S. Cabrini, “Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum,” J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. 35, 06G401 (2017).

Doeleman, H. M.

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397 (2018).
[Crossref]

Dreisow, F.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Esposito, E.

S. Managò, G. Zito, A. Rogato, M. Casalino, E. Esposito, A. C. De Luca, and E. De Tommasi, “Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced raman scattering substrates for cell membrane probing,” ACS Appl. Mater. Interfaces 10, 12406–12416 (2018).
[Crossref] [PubMed]

Evans, D. V.

R. Porter and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43, 29–50 (2005).
[Crossref]

Fainman, Y.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Fan, S.

V. Liu and S. Fan, “S 4 : A free electromagnetic solver for layered periodic structures,” Comp. Phys. Comm. 183, 2233 – 2244 (2012).
[Crossref]

Favraud, G.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

Fratalocchi, A.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

Frizyuk, K.

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum,” arXiv:1903.00309 (2019).

Genevet, P.

Grinblat, G.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Groves, M. L.

T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Refractive indices of amino acids, proteins, and related substances,” Amino Acids and Serum Proteins 44, 54–66 (1964).
[Crossref]

Gu, Q.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Heinrich, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Hipp, N. J.

T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Refractive indices of amino acids, proteins, and related substances,” Amino Acids and Serum Proteins 44, 54–66 (1964).
[Crossref]

Homola, J.

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

Hsu, C. W.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-l. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljac, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater.1 (2016).
[Crossref]

Iorsh, I. V.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Jin, J.

J. Jin, X. Yin, L. Ni, M. Soljačić, B. Zhen, and C. Peng, “Topologically enabled ultra-high-q guided resonances robust to out-of-plane scattering,” arXiv:1812.00892 (2018).

Joannopoulos, J. D.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, J. Lee, S.-l. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljac, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref] [PubMed]

C. Wei Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light. Sci. & Appl. 2, e84 (2013).
[Crossref]

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater.1 (2016).
[Crossref]

Johnson, S. G.

C. Wei Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light. Sci. & Appl. 2, e84 (2013).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S.-l. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljac, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref] [PubMed]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

Kanté, B.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Khorasaninejad, M.

Kivshar, Y.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. (2018).
[Crossref]

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum,” arXiv:1903.00309 (2019).

Kivshar, Y. S.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Exp. 20, 20599–20604 (2012).
[Crossref]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
[Crossref] [PubMed]

Kodigala, A.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Koenderink, A. F.

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397 (2018).
[Crossref]

Koshelev, K.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. (2018).
[Crossref]

Koshelev, K. L.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Krasnok, A. E.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Exp. 20, 20599–20604 (2012).
[Crossref]

Lamberti, A.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 1–11 (2018).
[Crossref]

Lavrinenko, A. V.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-l. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljac, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref] [PubMed]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Leitis, A.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref] [PubMed]

Lepetit, T.

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Liang, X.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

Liu, M.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref] [PubMed]

Liu, V.

V. Liu and S. Fan, “S 4 : A free electromagnetic solver for layered periodic structures,” Comp. Phys. Comm. 183, 2233 – 2244 (2012).
[Crossref]

Lu, L.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

Maier, S. A.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Maksimov, D. N.

Malek, S. C.

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection rules for symmetry-protected bound states in the continuum,” arXiv:1903.11125 (2019).

Malureanu, R.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Managò, S.

S. Managò, G. Zito, A. Rogato, M. Casalino, E. Esposito, A. C. De Luca, and E. De Tommasi, “Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced raman scattering substrates for cell membrane probing,” ACS Appl. Mater. Interfaces 10, 12406–12416 (2018).
[Crossref] [PubMed]

S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
[Crossref]

Marinica, D.

D. Marinica, A. Borisov, and S. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref] [PubMed]

Masullo, M.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 1–11 (2018).
[Crossref]

McMeekin, T. L.

T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Refractive indices of amino acids, proteins, and related substances,” Amino Acids and Serum Proteins 44, 54–66 (1964).
[Crossref]

Miroshnichenko, A. E.

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Exp. 20, 20599–20604 (2012).
[Crossref]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
[Crossref] [PubMed]

Mocella, V.

S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
[Crossref]

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 1–11 (2018).
[Crossref]

E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, and S. Cabrini, “Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum,” J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. 35, 06G401 (2017).

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B - Condens. Matter Mater. Phys. 92, 1–5 (2015).
[Crossref]

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light. Sci. & Appl. 3, e120 (2014).
[Crossref]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Molina, M. I.

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
[Crossref] [PubMed]

Monticone, F.

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397 (2018).
[Crossref]

Mortensen, N.

P. Skafte-Pedersen, P. Nunes, S. Xiao, and N. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors 9, 8382–8390 (2009).
[Crossref] [PubMed]

Nenninger, G. G.

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

Neshev, D. N.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref] [PubMed]

Ni, L.

J. Jin, X. Yin, L. Ni, M. Soljačić, B. Zhen, and C. Peng, “Topologically enabled ultra-high-q guided resonances robust to out-of-plane scattering,” arXiv:1812.00892 (2018).

Nolte, S.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Nunes, P.

P. Skafte-Pedersen, P. Nunes, S. Xiao, and N. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors 9, 8382–8390 (2009).
[Crossref] [PubMed]

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Overvig, A. C.

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection rules for symmetry-protected bound states in the continuum,” arXiv:1903.11125 (2019).

Peleg, O.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Peng, C.

J. Jin, X. Yin, L. Ni, M. Soljačić, B. Zhen, and C. Peng, “Topologically enabled ultra-high-q guided resonances robust to out-of-plane scattering,” arXiv:1812.00892 (2018).

Penzo, E.

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 1–11 (2018).
[Crossref]

S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
[Crossref]

E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, and S. Cabrini, “Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum,” J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. 35, 06G401 (2017).

Petrov, M.

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum,” arXiv:1903.00309 (2019).

Piliarik, M.

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

Plotnik, Y.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Porter, R.

R. Porter and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43, 29–50 (2005).
[Crossref]

Qiu, W.

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Rahmani, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Rendina, I.

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 1–11 (2018).
[Crossref]

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light. Sci. & Appl. 3, e120 (2014).
[Crossref]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Rodriguez, A. W.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

Rogato, A.

S. Managò, G. Zito, A. Rogato, M. Casalino, E. Esposito, A. C. De Luca, and E. De Tommasi, “Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced raman scattering substrates for cell membrane probing,” ACS Appl. Mater. Interfaces 10, 12406–12416 (2018).
[Crossref] [PubMed]

Romano, S.

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 1–11 (2018).
[Crossref]

S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
[Crossref]

E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, and S. Cabrini, “Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum,” J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. 35, 06G401 (2017).

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B - Condens. Matter Mater. Phys. 92, 1–5 (2015).
[Crossref]

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light. Sci. & Appl. 3, e120 (2014).
[Crossref]

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Roschuk, T.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Rusciano, G.

G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys 145, 054708 (2016).
[Crossref] [PubMed]

Sadreev, A. F.

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B - Condens. Matter Mater. Phys. 78, 0751051 (2008).
[Crossref]

Sadrieva, Z.

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum,” arXiv:1903.00309 (2019).

Sadrieva, Z. F.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Optical Sciences, 2005).
[Crossref]

Samusev, A.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Sasso, A.

G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys 145, 054708 (2016).
[Crossref] [PubMed]

Schatz, G. C.

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129, 054704 (2008).
[Crossref] [PubMed]

Segev, M.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Shabanov, S.

D. Marinica, A. Borisov, and S. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref] [PubMed]

Shapira, O.

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Shrestha, S.

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection rules for symmetry-protected bound states in the continuum,” arXiv:1903.11125 (2019).

Sinev, I. S.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Skafte-Pedersen, P.

P. Skafte-Pedersen, P. Nunes, S. Xiao, and N. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors 9, 8382–8390 (2009).
[Crossref] [PubMed]

Soljac, M.

C. W. Hsu, B. Zhen, J. Lee, S.-l. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljac, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref] [PubMed]

Soljacic, M.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

C. Wei Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light. Sci. & Appl. 2, e84 (2013).
[Crossref]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

J. Jin, X. Yin, L. Ni, M. Soljačić, B. Zhen, and C. Peng, “Topologically enabled ultra-high-q guided resonances robust to out-of-plane scattering,” arXiv:1812.00892 (2018).

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater.1 (2016).
[Crossref]

Stone, A. D.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater.1 (2016).
[Crossref]

Szameit, A.

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Takayama, O.

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Tittl, A.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref] [PubMed]

Torino, S.

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

von Neumann, J.

J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” Physikalische Zeitschrift 30, 465–467 (1929).

Wang, Y.

E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, and S. Cabrini, “Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum,” J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. 35, 06G401 (2017).

Wei Hsu, C.

C. Wei Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light. Sci. & Appl. 2, e84 (2013).
[Crossref]

Wigner, E. P.

J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” Physikalische Zeitschrift 30, 465–467 (1929).

Xiao, S.

P. Skafte-Pedersen, P. Nunes, S. Xiao, and N. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors 9, 8382–8390 (2009).
[Crossref] [PubMed]

Yesilkoy, F.

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref] [PubMed]

Yin, X.

J. Jin, X. Yin, L. Ni, M. Soljačić, B. Zhen, and C. Peng, “Topologically enabled ultra-high-q guided resonances robust to out-of-plane scattering,” arXiv:1812.00892 (2018).

Yu, N.

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection rules for symmetry-protected bound states in the continuum,” arXiv:1903.11125 (2019).

Zhen, B.

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

C. Wei Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light. Sci. & Appl. 2, e84 (2013).
[Crossref]

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

C. W. Hsu, B. Zhen, J. Lee, S.-l. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljac, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref] [PubMed]

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

J. Jin, X. Yin, L. Ni, M. Soljačić, B. Zhen, and C. Peng, “Topologically enabled ultra-high-q guided resonances robust to out-of-plane scattering,” arXiv:1812.00892 (2018).

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater.1 (2016).
[Crossref]

Zito, G.

S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
[Crossref]

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

S. Managò, G. Zito, A. Rogato, M. Casalino, E. Esposito, A. C. De Luca, and E. De Tommasi, “Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced raman scattering substrates for cell membrane probing,” ACS Appl. Mater. Interfaces 10, 12406–12416 (2018).
[Crossref] [PubMed]

G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys 145, 054708 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. Managò, G. Zito, A. Rogato, M. Casalino, E. Esposito, A. C. De Luca, and E. De Tommasi, “Bioderived three-dimensional hierarchical nanostructures as efficient surface-enhanced raman scattering substrates for cell membrane probing,” ACS Appl. Mater. Interfaces 10, 12406–12416 (2018).
[Crossref] [PubMed]

ACS Photonics (1)

Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko, “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photonics 4, 723–727 (2017).
[Crossref]

Amino Acids and Serum Proteins (1)

T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Refractive indices of amino acids, proteins, and related substances,” Amino Acids and Serum Proteins 44, 54–66 (1964).
[Crossref]

Appl. Phys. Lett. (1)

E. De Tommasi, A. Chiara De Luca, S. Cabrini, I. Rendina, S. Romano, and V. Mocella, “Plasmon-like surface states in negative refractive index photonic crystals,” Appl. Phys. Lett. 102, 081113 (2013).
[Crossref]

Comp. Phys. Comm. (1)

V. Liu and S. Fan, “S 4 : A free electromagnetic solver for layered periodic structures,” Comp. Phys. Comm. 183, 2233 – 2244 (2012).
[Crossref]

J. Chem. Phys (1)

G. Zito, G. Rusciano, and A. Sasso, “Enhancement factor statistics of surface enhanced raman scattering in multiscale heterostructures of nanoparticles,” J. Chem. Phys 145, 054708 (2016).
[Crossref] [PubMed]

J. Chem. Phys. (1)

L. K. Ausman and G. C. Schatz, “Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons,” J. Chem. Phys. 129, 054704 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

S. Romano, G. Zito, S. Managò, G. Calafiore, E. Penzo, S. Cabrini, A. C. De Luca, and V. Mocella, “Surface-enhanced raman and fluorescence spectroscopy with an all-dielectric metasurface,” J. Phys. Chem. C 122, 19738–19745 (2018).
[Crossref]

J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. (1)

E. Penzo, S. Romano, Y. Wang, S. Dhuey, L. Dal Negro, V. Mocella, and S. Cabrini, “Patterning of electrically tunable light-emitting photonic structures demonstrating bound states in the continuum,” J. Vac. Sc. & Technol. B, Nanotechnol. Microelectron. Materials, Process. Meas. Phenom. 35, 06G401 (2017).

Light. Sci. & Appl. (2)

S. Romano, S. Cabrini, I. Rendina, and V. Mocella, “Guided resonance in negative index photonic crystals: a new approach,” Light. Sci. & Appl. 3, e120 (2014).
[Crossref]

C. Wei Hsu, B. Zhen, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Bloch surface eigenstates within the radiation continuum,” Light. Sci. & Appl. 2, e84 (2013).
[Crossref]

Materials (1)

S. Romano, A. Lamberti, M. Masullo, E. Penzo, S. Cabrini, I. Rendina, and V. Mocella, “Optical biosensors based on photonic crystals supporting bound states in the continuum,” Materials 11, 1–11 (2018).
[Crossref]

Meas. Sci. Technol. (1)

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038 (2002).
[Crossref]

Nanophotonics (1)

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8, 725–745 (2019).
[Crossref]

Nat. Commun. (1)

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and A. F. Koenderink, “Experimental observation of a polarization vortex at an optical bound state in the continuum,” Nat. Photonics 12, 397 (2018).
[Crossref]

Nature (2)

C. W. Hsu, B. Zhen, J. Lee, S.-l. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljac, “Observation of trapped light within the radiation continuum,” Nature 499, 188–191 (2013).
[Crossref] [PubMed]

A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B. Kanté, “Lasing action from photonic bound states in continuum,” Nature 541, 196–199 (2017).
[Crossref] [PubMed]

Opt. Exp. (1)

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Exp. 20, 20599–20604 (2012).
[Crossref]

Opt. Express (1)

Optica (1)

Photonics Res. (1)

S. Romano, G. Zito, S. Torino, S. Cabrini, I. Rendina, G. Coppola, G. Calafiore, E. Penzo, and V. Mocella, “Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum,” Photonics Res. 6, 726–733 (2018).
[Crossref]

Phys. Rev. B - Condens. Matter Mater. Phys. (2)

V. Mocella and S. Romano, “Giant field enhancement in photonic resonant lattices,” Phys. Rev. B - Condens. Matter Mater. Phys. 92, 1–5 (2015).
[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B - Condens. Matter Mater. Phys. 78, 0751051 (2008).
[Crossref]

Phys. Rev. Lett. (5)

D. Marinica, A. Borisov, and S. Shabanov, “Bound States in the Continuum in Photonics,” Phys. Rev. Lett. 100, 183902 (2008).
[Crossref] [PubMed]

M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett. 108, 070401 (2012).
[Crossref] [PubMed]

B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological Nature of Optical Bound States in the Continuum,” Phys. Rev. Lett. 113, 257401 (2014).
[Crossref]

J. Lee, B. Zhen, S. L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and M. Segev, “Experimental Observation of Optical Bound States in the Continuum,” Phys. Rev. Lett. 107, 183901 (2011).
[Crossref] [PubMed]

Physikalische Zeitschrift (1)

J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” Physikalische Zeitschrift 30, 465–467 (1929).

Proc. Natl. Acad. Sci. (1)

B. Zhen, S.-L. Chua, J. Lee, A. W. Rodriguez, X. Liang, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals,” Proc. Natl. Acad. Sci. 110, 13711–13716 (2013).
[Crossref] [PubMed]

Science (1)

A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, “Imaging-based molecular barcoding with pixelated dielectric metasurfaces,” Science 360, 1105–1109 (2018).
[Crossref] [PubMed]

Sensors (1)

P. Skafte-Pedersen, P. Nunes, S. Xiao, and N. Mortensen, “Material limitations on the detection limit in refractometry,” Sensors 9, 8382–8390 (2009).
[Crossref] [PubMed]

Wave Motion (1)

R. Porter and D. V. Evans, “Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays,” Wave Motion 43, 29–50 (2005).
[Crossref]

Other (8)

C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljacic, “Bound states in the continuum,” Nat. Rev. Mater.1 (2016).
[Crossref]

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum,” arXiv:1903.00309 (2019).

J. Jin, X. Yin, L. Ni, M. Soljačić, B. Zhen, and C. Peng, “Topologically enabled ultra-high-q guided resonances robust to out-of-plane scattering,” arXiv:1812.00892 (2018).

A. C. Overvig, S. C. Malek, M. J. Carter, S. Shrestha, and N. Yu, “Selection rules for symmetry-protected bound states in the continuum,” arXiv:1903.11125 (2019).

F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar, and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces,” Nat. Photonics doi.org/10.1038/s41566-019-0394-6 (2019).
[Crossref]

K. Koshelev, A. Bogdanov, and Y. Kivshar, “Meta-optics and bound states in the continuum,” Sci. Bull. (2018).
[Crossref]

N. Bosio, H. Šípová-Jungová, N. Odebo Länk, T. J. Antosiewicz, R. Verre, and M. Käll, “Plasmonic versus all-dielectric nanoantennas for refractometric sensing: a direct comparison,” ACS Photonics http://dx.doi.org/10.1021/acsphotonics.9b00434 (2019).
[Crossref]

K. Sakoda, Optical Properties of Photonic Crystals (Optical Sciences, 2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Layout of the PhCS unit cell. (b) Operating principle of the sensing scheme: the high Q resonance shifts as function of the cladding material due to density change of the homogeneous liquid cladding or molecular adsorption to the surface where the electromagnetic field is localized and amplified, thus increasing interaction of the molecules with light.
Fig. 2
Fig. 2 (a) Representative TM-like mode profiles at Γ (C4ν point group) in the unit cell, numerically calculated for the PhCS/liquid interface under consideration: two singly-degenerate symmetry-protected BICs of type A1 and B1, respectively, and a doubly-degenerate resonance-trapped BIC, classified as E-mode. (b) Top view of the electric field intensity in the unit cell. (c) Side view of the electric field intensity revealing the confinement and the evanescent character outside the structured film of index np.
Fig. 3
Fig. 3 (a) Symmetry increasing along z-axis of the A1 type BIC field with progressively balanced evanescent tails in quartz substrate and liquid cladding (please note reversed color scale in |E|2 for visualization clarity). The E-field arrow map reveals a TM-like character with exponentially decreasing amplitude along z (colormap associated to the sign of Ez). (b) Exponential growth of the decay length δ of the evanescent tail in the liquid cladding when the cladding index nc approaches the quartz substrate ns = 1.45. The model fit (solid line) is given in Eq. (1).
Fig. 4
Fig. 4 (a) Exponential growth of λp as a function of the liquid cladding index nc (B1-mode) for fixed ns = 1.45, and np = ns + Δ. Varying suitably the index mismatch Δ = npns for feasible material parameters that allow BIC existence, it is possible to tune the sensitivity of the curve λp (nc) in specific ranges of RI for targeted applications, changing its character from a near linear behavior to a steep exponential curve. Thepoints are numerically calculated results from FEM simulations, whereas the solid line is the model fit in Eq. (1).
Fig. 5
Fig. 5 (a) Scanning electron imaging micrographs of a characteristic sample. (b) Schematic layout of the PhCS integrated in the microfluidic chamber and basic characterization setup (input light is polarized with a Glan-Thompson polarizer); reflectance is obtained as 1 − T(θ, λ). (c) Dispersion diagram along ΓX of the PhCS for nc = 1. The three bands have theoretically vanishing linewidths approching θ = 0°. Numerical simulations classify the top band mode as B1 and the converging bands as E-type.
Fig. 6
Fig. 6 (a) Representative resonance spectra in refractometric sensing for several cladding liquids. (b) FWHM of the resonant peak as a function of the spectral peak position. (c) Comparison of the exponential sensitivity curves of the resonant peak as a function of the cladding refractive index nc for np = 2.215 (top panel) and np = 1.90 (bottom panel).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ p = λ 0 + δ λ exp [ α ( n c n 0 n p n s ) ] ,

Metrics