Abstract

Extremely anisotropic media such as anisotropic zero-index media allow wave propagation in extraordinary ways that are absent in isotropic systems. Here, we propose an approach to realize a type of extremely anisotropic effective epsilon-near-zero media by exploiting anisotropic waveguide metamaterials. The metamaterial is composed of two kinds of dielectrics with metal wires in waveguides. Extreme anisotropy is realized by alternating layers of the two kinds of dielectrics, which lead to different cut-off frequencies for transverse electric modes in different directions. Anisotropic effective epsilon-near-zero media with low loss can be obtained around the cutoff frequencies. Based on the extreme anisotropy, the unique phenomena of directive emission, nearly perfect bending waveguides and arbitrary control of energy flux are demonstrated. Interestingly, subwavelength focusing of energy flux with a spotsize <0.2λ is observed (λ is the wavelength in free space). Our work provides a convenient approach for the realization of extremely anisotropic epsilon-near-zero media and unique applications in low-loss waveguide metamaterials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical isolation with epsilon-near-zero metamaterials

Arthur R. Davoyan, Ahmed M. Mahmoud, and Nader Engheta
Opt. Express 21(3) 3279-3286 (2013)

Eutectic epsilon-near-zero metamaterial terahertz waveguides

M. Massaouti, A. A. Basharin, M. Kafesaki, M. F. Acosta, R. I. Merino, V. M. Orera, E. N. Economou, C. M. Soukoulis, and S. Tzortzakis
Opt. Lett. 38(7) 1140-1142 (2013)

Side scattering shadow and energy concentration effects of epsilon-near-zero media

Jiawen Song, Jie Luo, and Yun Lai
Opt. Lett. 43(8) 1738-1741 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [Crossref] [PubMed]
  2. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  3. W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
    [Crossref] [PubMed]
  4. P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
    [Crossref] [PubMed]
  5. M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
    [Crossref] [PubMed]
  6. M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013).
    [Crossref]
  7. J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
    [Crossref] [PubMed]
  8. Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
    [Crossref]
  9. J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
    [Crossref]
  10. J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014).
    [Crossref] [PubMed]
  11. H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
    [Crossref]
  12. H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
    [Crossref]
  13. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref] [PubMed]
  14. J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012).
    [Crossref]
  15. Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
    [Crossref]
  16. Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
    [Crossref] [PubMed]
  17. Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
    [Crossref]
  18. J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
    [Crossref]
  19. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
    [Crossref]
  20. J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
    [Crossref]
  21. S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
    [Crossref]
  22. H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
    [Crossref]
  23. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
    [Crossref]
  24. A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
    [Crossref]
  25. J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
    [Crossref]
  26. X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
    [Crossref] [PubMed]
  27. J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
    [Crossref]
  28. X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
    [Crossref] [PubMed]
  29. X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
    [Crossref]
  30. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]
  31. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
    [Crossref]
  32. G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
    [Crossref]
  33. J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
    [Crossref]
  34. S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009).
    [Crossref]
  35. C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
    [Crossref]
  36. Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
    [Crossref]
  37. F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
    [Crossref]
  38. Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
    [Crossref] [PubMed]
  39. Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018).
    [Crossref]
  40. Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
    [Crossref] [PubMed]
  41. W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and applications (Springer, 2009).
  42. W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
    [Crossref]
  43. J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
    [Crossref] [PubMed]
  44. F. E. Gardiol, “Anisotropic slabs in rectangular waveguides,” IEEE T. Microw. Theory 18(8), 461–467 (1970).
    [Crossref]
  45. Y. Xu, “A study of waveguides filled with anisotropic metamaterials,” Microw. Opt. Technol. Lett. 41(5), 426–431 (2004).
    [Crossref]
  46. V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).
  47. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
    [Crossref] [PubMed]
  48. C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
    [Crossref] [PubMed]
  49. J. Luo, Y. Lai, and C. T. Chan, “Control of electromagnetic flux in inhomogeneous anisotropic media,” in Transformation Wave Physics - Electromagnetics, Elastodynamics, and Thermodynamics, M. Farhat, P. Chen, S. Guenneau and S. Enoch, ed. (Pan Stanford Publishing, 2016).

2018 (6)

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018).
[Crossref]

2017 (5)

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

2016 (4)

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

2015 (4)

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref] [PubMed]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

2014 (4)

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014).
[Crossref] [PubMed]

2013 (6)

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

2012 (7)

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012).
[Crossref]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

2011 (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

2010 (1)

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

2009 (2)

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009).
[Crossref]

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

2005 (1)

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).

2004 (1)

Y. Xu, “A study of waveguides filled with anisotropic metamaterials,” Microw. Opt. Technol. Lett. 41(5), 426–431 (2004).
[Crossref]

2003 (1)

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

1970 (1)

F. E. Gardiol, “Anisotropic slabs in rectangular waveguides,” IEEE T. Microw. Theory 18(8), 461–467 (1970).
[Crossref]

Alekseyev, L. V.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Alfaro-Mozaz, F. J.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Alonso-González, P.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Amenabar, I.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Bao, Q.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Barnakov, Y. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Belov, P. A.

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

Capasso, F.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Casanova, F.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Chan, C. T.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Chebykin, A. V.

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

Chen, H.

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Chen, X.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Cheng, Q.

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

Chu, S.

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Costa, J. R.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Cui, T. J.

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Dai, Z.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Della Giovampaola, C.

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Deng, H.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Dolado, I.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Edgar, J. H.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Eleftheriades, G. V.

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013).
[Crossref]

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Fang, K.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Feng, S.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

Feng Ma, H.

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

Fernandes, C. A.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Fischer, A. J.

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Gangopadhyay, S.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Gao, J.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Gao, L.

J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Gardiol, F. E.

F. E. Gardiol, “Anisotropic slabs in rectangular waveguides,” IEEE T. Microw. Theory 18(8), 461–467 (1970).
[Crossref]

Geng Cai, B.

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

Gong, Q.

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Gralak, B.

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

Gu, C.

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Guo, L. J.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Halterman, K.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

Hang, Z.

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

Hang, Z. H.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

He, S.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Hillenbrand, R.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Hou, B.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Hu, X.

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Huang, X.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Huangfu, J.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Hueso, L. E.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Jiang, H.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Jiang, H. T.

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

Jiang, T.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Jiang, W. X.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

Jun Cui, T.

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

Kalantar-Zadeh, K.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Kats, M. A.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kong, J.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Lai, Y.

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Lee, S. T.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Li, H.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Li, J.

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

Li, P.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Li, Q.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Li, S.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

Li, Y.

Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018).
[Crossref]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Li, Z.

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Liang, G.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Liu, L.

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Liu, S.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Liu, W.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Liu, W. W.

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

Liu, Y.

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Lu, W.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

Luk, T. S.

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Luo, J.

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014).
[Crossref] [PubMed]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012).
[Crossref]

Luo, Y.

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Ma, H. F.

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

Ma, W.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Ma, Y.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Martín-Sánchez, J.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Maslovski, S. I.

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009).
[Crossref]

Mathai, C. J.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Memarian, M.

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013).
[Crossref]

Narimanov, E. E.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).

Nikitin, A. Y.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Niu, X.

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Noginov, M. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Orlov, A. A.

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Poddubny, A. N.

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

Podolskiy, V. A.

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).

Polman, A.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Prudêncio, F. R.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Ramanathan, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Ran, J.

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

Ran, L.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Rensberg, J.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Richter, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Ronning, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Schmidt-Grund, R.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Schöppe, P.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Shalin, A. S.

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

Shen, L.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Shi, J.

Shi, J. H.

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

Silveirinha, M. G.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009).
[Crossref]

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

Smigaj, W.

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

Song, J.

Sriram, S.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Subramania, G.

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Sun, H.

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Sun, L.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Sun, Y.

Z. Li, Y. Sun, K. Wang, J. Song, J. Shi, C. Gu, L. Liu, and Y. Luo, “Tuning the dispersion of effective surface plasmon polaritons with multilayer systems,” Opt. Express 26(4), 4686–4697 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Taboada-Gutiérrez, J.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Tollan, C.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Tumkur, T.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Vélez, S.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Wan, C.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Wang, G.

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

Wang, K.

Wu, Y.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref] [PubMed]

Xiang Jiang, W.

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

Xu, C.

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

Xu, P.

J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29(1), 35–39 (2012).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

Xu, Y.

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

Y. Xu, “A study of waveguides filled with anisotropic metamaterials,” Microw. Opt. Technol. Lett. 41(5), 426–431 (2004).
[Crossref]

Yang, F.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Yang, X.

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

Yang, Y.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

Yao, Z.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

Yu, K.

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

Yuan, J.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Yuan, Y.

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Zhang, C.

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Zhang, S.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Zhang, X.

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref] [PubMed]

Zhang, Y.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Zhang, Z.

Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018).
[Crossref]

Zheng, H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Zhong, S.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Zhou, Y.

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

ACS Nano (1)

X. Chen, C. Zhang, F. Yang, G. Liang, Q. Li, and L. J. Guo, “Plasmonic lithography utilizing epsilon near zero hyperbolic metamaterial,” ACS Nano 11(10), 9863–9868 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

X. Niu, X. Hu, S. Chu, and Q. Gong, “Epsilon-near-zero photonics: A new platform for integrated devices,” Adv. Opt. Mater. 6(10), 1701292 (2018).
[Crossref]

Appl. Phys. Lett. (8)

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ϵ-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett. 103(5), 051111 (2013).
[Crossref]

J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100(22), 221903 (2012).
[Crossref]

H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101(25), 253513 (2012).
[Crossref]

H. F. Ma, J. H. Shi, Q. Cheng, and T. J. Cui, “Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide,” Appl. Phys. Lett. 103(2), 021908 (2013).
[Crossref]

Q. Cheng, B. Geng Cai, W. Xiang Jiang, H. Feng Ma, and T. Jun Cui, “Spatial power combination within fan-shaped region using anisotropic zero-index metamaterials,” Appl. Phys. Lett. 101(14), 141902 (2012).
[Crossref]

EPL (2)

Y. Li, H. T. Jiang, W. W. Liu, J. Ran, Y. Lai, and H. Chen, “Experimental realization of subwavelength flux manipulation in anisotropic near-zero index metamaterials,” EPL 113(5), 57006 (2016).
[Crossref]

J. Luo, Y. Xu, H. Chen, B. Hou, W. Lu, and Y. Lai, “Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions,” EPL 101(4), 44001 (2013).
[Crossref]

IEEE T. Microw. Theory (1)

F. E. Gardiol, “Anisotropic slabs in rectangular waveguides,” IEEE T. Microw. Theory 18(8), 461–467 (1970).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

M. Memarian and G. V. Eleftheriades, “Light concentration using hetero-junctions of anisotropic low permittivity metamaterials,” Light Sci. Appl. 2(11), e114 (2013).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Y. Xu, “A study of waveguides filled with anisotropic metamaterials,” Microw. Opt. Technol. Lett. 41(5), 426–431 (2004).
[Crossref]

Nat. Mater. (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11(3), 149–158 (2017).
[Crossref]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Nature (1)

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

New J. Phys. (1)

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Opt. Express (1)

Phys. Rev. A (1)

Y. Yuan, L. Shen, L. Ran, T. Jiang, J. Huangfu, and J. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Phys. Rev. Appl. (3)

J. Rensberg, Y. Zhou, S. Richter, C. Wan, S. Zhang, P. Schöppe, R. Schmidt-Grund, S. Ramanathan, F. Capasso, M. A. Kats, and C. Ronning, “Epsilon-near-zero substrate engineering for ultrathin-film perfect absorbers,” Phys. Rev. Appl. 8(1), 014009 (2017).
[Crossref]

Y. Li and Z. Zhang, “Experimental verification of guided-wave lumped circuits using waveguide metamaterials,” Phys. Rev. Appl. 9(4), 044024 (2018).
[Crossref]

Z. Li, L. Liu, H. Sun, Y. Sun, C. Gu, X. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Phys. Rev. B (2)

V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005).

C. Della Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (6)

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model for a class of wire media,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245101 (2009).
[Crossref]

A. V. Chebykin, A. A. Orlov, A. S. Shalin, A. N. Poddubny, and P. A. Belov, “Strong Purcell effect in anisotropic ϵ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(20), 205126 (2015).
[Crossref]

H. Jiang, W. Liu, K. Yu, K. Fang, Y. Sun, Y. Li, and H. Chen, “Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 045302 (2015).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

Phys. Rev. Lett. (6)

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[Crossref] [PubMed]

M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett. 102(10), 103902 (2009).
[Crossref] [PubMed]

J. Luo, W. Lu, Z. Hang, H. Chen, B. Hou, Y. Lai, and C. T. Chan, “Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index,” Phys. Rev. Lett. 112(7), 073903 (2014).
[Crossref] [PubMed]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

Phys. Rev. X (1)

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

Sci. Adv. (1)

Y. Li, I. Liberal, C. Della Giovampaola, and N. Engheta, “Waveguide metatronics: Lumped circuitry based on structural dispersion,” Sci. Adv. 2(6), e1501790 (2016).
[Crossref] [PubMed]

Sci. Rep. (3)

X. Zhang and Y. Wu, “Effective medium theory for anisotropic metamaterials,” Sci. Rep. 5(1), 7892 (2015).
[Crossref] [PubMed]

J. Luo and Y. Lai, “Anisotropic zero-index waveguide with arbitrary shapes,” Sci. Rep. 4(1), 5875 (2014).
[Crossref] [PubMed]

C. Xu, G. Wang, Z. H. Hang, J. Luo, C. T. Chan, and Y. Lai, “Design of full-k-space flat bands in photonic crystals beyond the tight-binding picture,” Sci. Rep. 5(1), 18181 (2015).
[Crossref] [PubMed]

Science (1)

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Other (2)

W. Cai and V. Shalaev, Optical metamaterials: Fundamentals and applications (Springer, 2009).

J. Luo, Y. Lai, and C. T. Chan, “Control of electromagnetic flux in inhomogeneous anisotropic media,” in Transformation Wave Physics - Electromagnetics, Elastodynamics, and Thermodynamics, M. Farhat, P. Chen, S. Guenneau and S. Enoch, ed. (Pan Stanford Publishing, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Illustrations of (a) a two-dimensional effective anisotropic medium, (b) an anisotropic WMM composed of a metal-wire-added PPW and two kinds of filling dielectrics A and B. (c) Band structures of the anisotropic WMM when the filling material is a uniform anisotropic dielectric (black lines) or a dielectric multilayer (red dots). The corresponding unit cells of the WMM are illustrated by the insets. (d) Effective permittivities of the anisotropic WMM obtained from Eq. (2).
Fig. 2
Fig. 2 (a) EFCs of the designed anisotropic WMM (red lines) and background isotropic WMM (gray lines) at the working frequency fa/c =0.0590. (b) Schematic graph of the radiated waves obtained from EFCs based on conservation of surface-parallel wave vector. A source is placed in center of the anisotropic ENZ medium in the background of an isotropic medium. (c) The H z -distribution in the middle plane of the waveguide for the actual WMM model. A magnetic-current line source oriented in the z direction is placed in the center of the anisotropic WMM. (d) The H z -distribution in the two-dimensional effective medium model. A monopolar point source is placed in the center of the effective anisotropic ENZ medium.
Fig. 3
Fig. 3 (a) EFCs of the designed anisotropic WMM (red lines) and background isotropic WMM (gray lines) at the operating frequency fa/c =0.0587. (b) Schematic graph of the radiated waves obtained from EFCs based on conservation of surface-parallel wave vector. A source is placed in the center of the anisotropic ENZ medium in the background of an isotropic medium. (c) The H z -distribution in the middle plane of the waveguide for the actual WMM model. A magnetic-current line source oriented in the z direction is placed in the center of the anisotropic WMM. (d) The H z -distribution in the two-dimensional effective medium model. A monopolar point source is placed in the center of the effective anisotropic ENZ medium.
Fig. 4
Fig. 4 The distribution of H z in the middle part of several rectangular waveguides. (a) A wavy waveguide embedded with an anisotropic WMM with ε x,eff >> ε y,eff 0 + . (b) A wavy waveguide embedded with an isotropic WMM with ε eff 0.63. (c) A 90° waveguide bend, whose bending region is embedded with an anisotropic WMM with a near-zero effective permittivity along the propagation direction. The cross section of the rectangular waveguides is illustrated by the inset in (a). A TE01 mode with working frequency of fa/c =0.0590 is excited on the left port.
Fig. 5
Fig. 5 (a) Schematic graph of a model for subwavelength focusing of electromagnetic energy flux, which is composed of an anisotropic WMM with ε x,eff 3.4 and ε y,eff 0.001 (light blue region), an anisotropic WMM with ε x,eff 0.029 and ε y,eff 0.001 (light green region), and an isotropic WMM with ε eff 3.4 as the background medium (gray region). The unit cells and relevant parameters are shown in the inset graphs. The waveguide is a rectangular waveguide with cross-section dimensions 15a and 5a in the x and z directions, respectively. Snapshots of (b) total energy flux density, (c) H z , (d) E x when a TE01 mode with operating frequency of fa/c =0.0671 is excited on the left port.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k x 2 ε y,eff + k y 2 ε x,eff = k 0 2 ,
ε x,eff = ε x c 2 / 4 f 2 h 2 and ε y,eff = ε y c 2 / 4 f 2 h 2 .

Metrics