Abstract

We report a novel technique to detect dynamic strain variations simultaneously at multiple locations. Our technique is based on Brillouin optical correlation domain analysis implemented through external modulation to generate multiple independently-accessible correlation peaks within the sensing fiber. Experiments are carried out to demonstrate the precise determination of Brillouin frequency shift (BFS) from multiple locations independently. As a proof of principle, two correlation peaks are generated within a 1 km long fiber and their independent tunability is verified experimentally by mapping the spatial profile of the two correlations. We also experimentally demonstrate the detection of dynamic strain variations at two locations simultaneously, each with a spatial resolution of 60 cm over 100 m long fiber.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin optical correlation domain analysis with more than 1 million effective sensing points based on differential measurement

Yong Hyun Kim, Kwanil Lee, and Kwang Yong Song
Opt. Express 23(26) 33241-33248 (2015)

High-resolution Brillouin optical correlation domain analysis with no spectral scanning

Eyal Preter, Dexin Ba, Yosef London, Orel Shlomi, Yair Antman, and Avi Zadok
Opt. Express 24(24) 27253-27267 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2, 352–354 (1990).
    [Crossref]
  2. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
    [Crossref] [PubMed]
  3. M. Nikles, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
    [Crossref] [PubMed]
  4. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22, 1321–1324 (2005).
    [Crossref]
  5. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11, 4152–4187 (2011).
    [Crossref]
  6. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).
  7. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser & Photonics Rev. 6, L1–L5 (2012).
    [Crossref]
  8. K. Y. Song and K. Hotate, “Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photonics Technol. Lett. 19, 1928–1930 (2007).
    [Crossref]
  9. H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors 11, 3687–3705 (2011).
    [Crossref] [PubMed]
  10. K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 14, 179–181 (2002).
    [Crossref]
  11. Y. Antman, N. Primerov, J. Sancho, L. Thévenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20, 7807–7821 (2012).
    [Crossref] [PubMed]
  12. K. Y. Song, Z. He, and K. Hotate, “Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme,” Opt. Express 14, 4256–4263 (2006).
    [Crossref] [PubMed]
  13. M. Tanaka and K. Hotate, “Application of correlation-based continuous-wave technique for fiber Brillouin sensing to measurement of strain distribution on a small size material,” IEEE Photonics Technol. Lett. 14, 675–677 (2002).
    [Crossref]
  14. K. Hotate and S. S. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photonics Technol. Lett. 15, 272–274 (2003).
    [Crossref]
  15. G. Ryu, G.-T. Kim, K. Y. Song, S. B. Lee, and K. Lee, “Brillouin optical correlation domain analysis enhanced by time-domain data processing for concurrent interrogation of multiple sensing points,” J. Lightwave Technol. 35, 5311–5316 (2017).
    [Crossref]
  16. D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22, 6453–6463 (2014).
    [Crossref] [PubMed]
  17. B. Somepalli, D. Venkitesh, and B. Srinivasan, “Simultaneous multi-point sensing through external phase modulation based Brillouin optical correlation domain analysis,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. M2A–3.
  18. K. Hotate, “Fiber distributed Brillouin sensing with optical correlation domain techniques,” Opt. Fiber Technol. 19, 700–719 (2013).
    [Crossref]
  19. B. Somepalli, D. Venkitesh, and B. Srinivasan, “Spatial mapping of correlation profile in Brillouin optical correlation domain analysis,” Meas. Sci. Technol. 28, 045202 (2017).
    [Crossref]
  20. C. Kito, H. Takahashi, K. Toge, and T. Manabe, “Dynamic strain measurement of 10-km fiber with frequency-swept pulsed BOTDA,” J. Lightwave Technol. 35, 1738–1743 (2017).
    [Crossref]
  21. M. O. Sonnaillon and F. J. Bonetto, “A low-cost, high-performance, digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously,” Rev. Sci. Instruments 76, 024703 (2005).
    [Crossref]
  22. B. Somepalli, D. Venkitesh, U. Khankhoje, and B. Srinivasan, “Deconvolution algorithm for accurate estimation of Brillouin frequency in Brillouin optical correlation domain analysis,” in Optical Fiber Sensors, (Optical Society of America, 2018), p. ThE20.
    [Crossref]
  23. J. Nocedal and S. J. Wright, Numerical Optimization (Springer, 2006).
  24. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  25. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  26. J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, and S. B. Lee, “Variable-frequency lock-in detection for the suppression of beat noise in Brillouin optical correlation domain analysis,” Opt. Express 19, 18721–18728 (2011).
    [Crossref] [PubMed]

2017 (3)

2014 (1)

2013 (1)

K. Hotate, “Fiber distributed Brillouin sensing with optical correlation domain techniques,” Opt. Fiber Technol. 19, 700–719 (2013).
[Crossref]

2012 (2)

Y. Antman, N. Primerov, J. Sancho, L. Thévenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20, 7807–7821 (2012).
[Crossref] [PubMed]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser & Photonics Rev. 6, L1–L5 (2012).
[Crossref]

2011 (3)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11, 4152–4187 (2011).
[Crossref]

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors 11, 3687–3705 (2011).
[Crossref] [PubMed]

J. H. Jeong, K. Lee, K. Y. Song, J.-M. Jeong, and S. B. Lee, “Variable-frequency lock-in detection for the suppression of beat noise in Brillouin optical correlation domain analysis,” Opt. Express 19, 18721–18728 (2011).
[Crossref] [PubMed]

2007 (1)

K. Y. Song and K. Hotate, “Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photonics Technol. Lett. 19, 1928–1930 (2007).
[Crossref]

2006 (1)

2005 (2)

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22, 1321–1324 (2005).
[Crossref]

M. O. Sonnaillon and F. J. Bonetto, “A low-cost, high-performance, digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously,” Rev. Sci. Instruments 76, 024703 (2005).
[Crossref]

2003 (1)

K. Hotate and S. S. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photonics Technol. Lett. 15, 272–274 (2003).
[Crossref]

2002 (2)

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 14, 179–181 (2002).
[Crossref]

M. Tanaka and K. Hotate, “Application of correlation-based continuous-wave technique for fiber Brillouin sensing to measurement of strain distribution on a small size material,” IEEE Photonics Technol. Lett. 14, 675–677 (2002).
[Crossref]

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

1996 (1)

1990 (2)

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2, 352–354 (1990).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Alahbabi, M. N.

Antman, Y.

Bao, X.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11, 4152–4187 (2011).
[Crossref]

Bonetto, F. J.

M. O. Sonnaillon and F. J. Bonetto, “A low-cost, high-performance, digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously,” Rev. Sci. Instruments 76, 024703 (2005).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11, 4152–4187 (2011).
[Crossref]

Cho, Y. T.

Denisov, A.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser & Photonics Rev. 6, L1–L5 (2012).
[Crossref]

Elooz, D.

Guo, H.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors 11, 3687–3705 (2011).
[Crossref] [PubMed]

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

He, Z.

Horiguchi, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2, 352–354 (1990).
[Crossref]

Hotate, K.

K. Hotate, “Fiber distributed Brillouin sensing with optical correlation domain techniques,” Opt. Fiber Technol. 19, 700–719 (2013).
[Crossref]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photonics Technol. Lett. 19, 1928–1930 (2007).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Optimization of Brillouin optical correlation domain analysis system based on intensity modulation scheme,” Opt. Express 14, 4256–4263 (2006).
[Crossref] [PubMed]

K. Hotate and S. S. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photonics Technol. Lett. 15, 272–274 (2003).
[Crossref]

M. Tanaka and K. Hotate, “Application of correlation-based continuous-wave technique for fiber Brillouin sensing to measurement of strain distribution on a small size material,” IEEE Photonics Technol. Lett. 14, 675–677 (2002).
[Crossref]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 14, 179–181 (2002).
[Crossref]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

Jeong, J. H.

Jeong, J.-M.

Khankhoje, U.

B. Somepalli, D. Venkitesh, U. Khankhoje, and B. Srinivasan, “Deconvolution algorithm for accurate estimation of Brillouin frequency in Brillouin optical correlation domain analysis,” in Optical Fiber Sensors, (Optical Society of America, 2018), p. ThE20.
[Crossref]

Kim, G.-T.

Kito, C.

Kurashima, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2, 352–354 (1990).
[Crossref]

Lee, K.

Lee, S. B.

Levanon, N.

Manabe, T.

Mrad, N.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors 11, 3687–3705 (2011).
[Crossref] [PubMed]

Newson, T. P.

Nikles, M.

Nocedal, J.

J. Nocedal and S. J. Wright, Numerical Optimization (Springer, 2006).

Ong, S. S.

K. Hotate and S. S. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photonics Technol. Lett. 15, 272–274 (2003).
[Crossref]

Primerov, N.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser & Photonics Rev. 6, L1–L5 (2012).
[Crossref]

Y. Antman, N. Primerov, J. Sancho, L. Thévenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20, 7807–7821 (2012).
[Crossref] [PubMed]

Robert, P. A.

Ryu, G.

Sancho, J.

Y. Antman, N. Primerov, J. Sancho, L. Thévenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20, 7807–7821 (2012).
[Crossref] [PubMed]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser & Photonics Rev. 6, L1–L5 (2012).
[Crossref]

Somepalli, B.

B. Somepalli, D. Venkitesh, and B. Srinivasan, “Spatial mapping of correlation profile in Brillouin optical correlation domain analysis,” Meas. Sci. Technol. 28, 045202 (2017).
[Crossref]

B. Somepalli, D. Venkitesh, U. Khankhoje, and B. Srinivasan, “Deconvolution algorithm for accurate estimation of Brillouin frequency in Brillouin optical correlation domain analysis,” in Optical Fiber Sensors, (Optical Society of America, 2018), p. ThE20.
[Crossref]

B. Somepalli, D. Venkitesh, and B. Srinivasan, “Simultaneous multi-point sensing through external phase modulation based Brillouin optical correlation domain analysis,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. M2A–3.

Song, K. Y.

Sonnaillon, M. O.

M. O. Sonnaillon and F. J. Bonetto, “A low-cost, high-performance, digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously,” Rev. Sci. Instruments 76, 024703 (2005).
[Crossref]

Srinivasan, B.

B. Somepalli, D. Venkitesh, and B. Srinivasan, “Spatial mapping of correlation profile in Brillouin optical correlation domain analysis,” Meas. Sci. Technol. 28, 045202 (2017).
[Crossref]

B. Somepalli, D. Venkitesh, and B. Srinivasan, “Simultaneous multi-point sensing through external phase modulation based Brillouin optical correlation domain analysis,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. M2A–3.

B. Somepalli, D. Venkitesh, U. Khankhoje, and B. Srinivasan, “Deconvolution algorithm for accurate estimation of Brillouin frequency in Brillouin optical correlation domain analysis,” in Optical Fiber Sensors, (Optical Society of America, 2018), p. ThE20.
[Crossref]

Takahashi, H.

Tanaka, M.

M. Tanaka and K. Hotate, “Application of correlation-based continuous-wave technique for fiber Brillouin sensing to measurement of strain distribution on a small size material,” IEEE Photonics Technol. Lett. 14, 675–677 (2002).
[Crossref]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 14, 179–181 (2002).
[Crossref]

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2, 352–354 (1990).
[Crossref]

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[Crossref] [PubMed]

Thevenaz, L.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser & Photonics Rev. 6, L1–L5 (2012).
[Crossref]

Thévenaz, L.

Toge, K.

Venkitesh, D.

B. Somepalli, D. Venkitesh, and B. Srinivasan, “Spatial mapping of correlation profile in Brillouin optical correlation domain analysis,” Meas. Sci. Technol. 28, 045202 (2017).
[Crossref]

B. Somepalli, D. Venkitesh, U. Khankhoje, and B. Srinivasan, “Deconvolution algorithm for accurate estimation of Brillouin frequency in Brillouin optical correlation domain analysis,” in Optical Fiber Sensors, (Optical Society of America, 2018), p. ThE20.
[Crossref]

B. Somepalli, D. Venkitesh, and B. Srinivasan, “Simultaneous multi-point sensing through external phase modulation based Brillouin optical correlation domain analysis,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. M2A–3.

Wright, S. J.

J. Nocedal and S. J. Wright, Numerical Optimization (Springer, 2006).

Xiao, G.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors 11, 3687–3705 (2011).
[Crossref] [PubMed]

Yao, J.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors 11, 3687–3705 (2011).
[Crossref] [PubMed]

Zadok, A.

IEEE Photonics Technol. Lett. (5)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonics Technol. Lett. 2, 352–354 (1990).
[Crossref]

K. Hotate and M. Tanaka, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technol. Lett. 14, 179–181 (2002).
[Crossref]

M. Tanaka and K. Hotate, “Application of correlation-based continuous-wave technique for fiber Brillouin sensing to measurement of strain distribution on a small size material,” IEEE Photonics Technol. Lett. 14, 675–677 (2002).
[Crossref]

K. Hotate and S. S. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photonics Technol. Lett. 15, 272–274 (2003).
[Crossref]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photonics Technol. Lett. 19, 1928–1930 (2007).
[Crossref]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique–proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Laser & Photonics Rev. (1)

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser & Photonics Rev. 6, L1–L5 (2012).
[Crossref]

Meas. Sci. Technol. (1)

B. Somepalli, D. Venkitesh, and B. Srinivasan, “Spatial mapping of correlation profile in Brillouin optical correlation domain analysis,” Meas. Sci. Technol. 28, 045202 (2017).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

K. Hotate, “Fiber distributed Brillouin sensing with optical correlation domain techniques,” Opt. Fiber Technol. 19, 700–719 (2013).
[Crossref]

Opt. Lett. (2)

Rev. Sci. Instruments (1)

M. O. Sonnaillon and F. J. Bonetto, “A low-cost, high-performance, digital signal processor-based lock-in amplifier capable of measuring multiple frequency sweeps simultaneously,” Rev. Sci. Instruments 76, 024703 (2005).
[Crossref]

Sensors (1)

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors 11, 3687–3705 (2011).
[Crossref] [PubMed]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11, 4152–4187 (2011).
[Crossref]

Other (5)

B. Somepalli, D. Venkitesh, and B. Srinivasan, “Simultaneous multi-point sensing through external phase modulation based Brillouin optical correlation domain analysis,” in Asia Communications and Photonics Conference, (Optical Society of America, 2017), pp. M2A–3.

B. Somepalli, D. Venkitesh, U. Khankhoje, and B. Srinivasan, “Deconvolution algorithm for accurate estimation of Brillouin frequency in Brillouin optical correlation domain analysis,” in Optical Fiber Sensors, (Optical Society of America, 2018), p. ThE20.
[Crossref]

J. Nocedal and S. J. Wright, Numerical Optimization (Springer, 2006).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Mechanism of generating multiple FM signals using external phase modulation. (a) Typical frequency spectra of an electrical signal with FM modulation at different center frequencies and (b) corresponding output spectrum of optical phase modulator. (c–d) Independent tunability of correlation peaks by modifying the modulation frequency of one of the FM signals from fm2 to fm3.
Fig. 2
Fig. 2 Schematic of the experimental setup and the fiber under test. The optical spectra before and after the BPF1 are shown in the inset; PM: Phase modulator; AWG: Arbitrary waveform generator; BPF: Bandpass filter; EDFA: Erbium-doped fiber amplifier; EOM: Electro-optic modulator; ISO: Optical isolator; PS: Polarization scrambler; FBG: Fiber Bragg grating; PD: Photo detector; ESA: Electrical spectrum analyzer.
Fig. 3
Fig. 3 Amplified probe trace obtained by pulsing the pump showing two correlation peaks when phase modulator is driven with two FM signals [17].
Fig. 4
Fig. 4 Amplified probe traces with (a) fixed fm1 and varying fm2 (b) fixed fm2 and varying fm1 showing the independent tunability of the two correlation peaks [17].
Fig. 5
Fig. 5 Spectrum recorded at the output of the photo detector when phase modulator is driven with one FM signal with fm of 75 kHz.
Fig. 6
Fig. 6 (a) BGS along 1.1 km long FUT obtained by varying fm from 71 kHz to 80 kHz and (b) the corresponding BFS as a function of the sensing fiber length.
Fig. 7
Fig. 7 BGS traces corresponding to the correlation peaks at (a) 510 m and (b) 1057 m generated using fm1 = 75 kHz and fm2 = 80.5 kHz respectively when strain is applied on Fiber 2.
Fig. 8
Fig. 8 FUT to emulate dynamic strain over 100 m long fiber using an optical switch.
Fig. 9
Fig. 9 BGS traces of the correlation peak location within (a) Fiber 1 (fm1 = 75 kHz) and (b) Fiber 2 (fm2 = 80.5 kHz) when Fiber 2 is subjected to dynamic strain with a switching frequency of 1 Hz. The corresponding BFS as a function of time are shown in (c) and (d). Step size of probe frequency scanning is 3 MHz.
Fig. 10
Fig. 10 BGS traces of the correlation peak location within (a) Fiber 1 (fm1 = 75 kHz) and (b) Fiber 2 (fm2 = 80.5 kHz) when Fiber 2 is subjected to dynamic strain with a switching frequency of 3.3 Hz. The corresponding BFS as a function of time are shown in (c) and (d). Step size of probe frequency scanning is 10 MHz.
Fig. 11
Fig. 11 (a) Amplified probe at a lock-in frequency of 161 kHz at a fixed pump-probe frequency offset of 10.750 GHz, when Fiber 2 is subjected to dynamic strain with a switching frequency of 50 Hz. BGS of the two fibers are shown in (b) for reference.
Fig. 12
Fig. 12 BGS traces of the correlation peak location within (a) Fiber 1 (fm1 = 730 kHz) and (b) Fiber 2 (fm2 = 845 kHz) obtained simultaneously when Fiber 2 is subjected to dynamic strain with a switching frequency of 2 Hz. The corresponding BFS as a function of time are shown in (c) and (d). Step size of probe frequency scanning is 1 MHz.
Fig. 13
Fig. 13 Strength of signal from each sensing point for varying number of sensing points (N) when external modulation-based BOCDA is implemented. The signal strength is normalized to that when one sensing point is monitored (N = 1).
Fig. 14
Fig. 14 Amplified probe traces at different lock-in frequencies for varying frequency offset between pump and probe; BFS is assumed to be 10.800 GHz.
Fig. 15
Fig. 15 Simulated BGS traces at correlation peak locations corresponding to (a) fm1 = 74 kHz and (b) fm2 = 78 kHz. Strain is simulated at the location corresponding to the correlation peak at fm1 = 74 kHz. BGS traces are obtained through lock-in detection corresponding to 2fm frequencies.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d = c 2 n f m ~ 10 8 f m ,
Δ z = c Δ ν B 2 π n f m Δ f ,
E in ( t ) = E 1 exp [ j { ( ω c + ω 1 ) t + Δ f 1 f m 1 sin ( 2 π f m 1 t ) } ] + E 2 exp [ j { ( ω c + ω 2 ) t + Δ f 2 f m 2 sin ( 2 π f m 2 t ) } ] ,
I ( t ) = I 0 + I 1 cos ( 2 π f m 1 t ) + I 2 cos ( 2 π f m 2 t ) ,
E laser ( t ) = E 0 exp [ j { ω c t + Δ f 1 f m 1 sin ( 2 π f m 1 t ) + Δ f 2 f m 2 sin ( 2 π f m 2 t ) } ] ,
V ( t ) = V 0 [ sin { ω 1 t + Δ f 1 f m 1 sin ( 2 π f m 1 t ) } + sin { ω 2 t + Δ f 2 f m 2 sin ( 2 π f m 2 t ) } ]
E mod ( t ) = E 0 exp ( j ω c t ) exp ( j π V ( t ) V π )
E mod ( t ) = E 0 exp ( j ω c t ) ( 1 + j π V ( t ) V π + )
E mod ( t ) = E 0 exp ( j ω c t ) + E 1 [ exp { j ( ( ω c + ω 1 ) t + Δ f 1 f m 1 sin ( 2 π f m 1 t ) ) } + exp { j ( ( ω c + ω 2 ) t + Δ f 2 f m 2 sin ( 2 π f m 2 t ) ) } ] E 1 [ exp { j ( ( ω c ω 1 ) t Δ f 1 f m 1 sin ( 2 π f m 1 t ) ) } + exp { j ( ( ω c ω 2 ) t Δ f 2 f m 2 sin ( 2 π f m 2 t ) ) } ] +

Metrics