Abstract

A biosensor based on electromagnetically induced transparent (EIT) metamaterials (MMs) is proposed owing to the low loss and high Q-factor. The theoretical sensitivity of the biosensor based on EIT-like MMs were evaluated up to 248.8 GHz/RIU (RIU, Refractive Index Unit). In experiments, the cancer cells A549, as an analyte, are cultured on EIT-like MMs surface. The results show that when the cell concentration increases from 0.5 × 105 to 5 × 105 cells/ml, the frequency shift Δf could change from 24 to 50 GHz. Moreover, the coupled oscillators model is applied to explain the effect of the refractive index of analyte in simulations and the cell concentration in experiments on the EIT-like MMs. The fitting results exhibit that the refractive index of analyte and cell concentration significantly affect the radiative damping of the bright mode resonator γ1. The proposed EIT-like MMs biosensors show great potentials for cell measurement because any change that results in the lineshape variation in EIT-like MMs can only be attributed to the change of external dielectric environment due to the suppression of radiative losses.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency

Zhang Zhang, Hongwei Ding, Xin Yan, Lanju Liang, Dequan Wei, Meng Wang, Qili Yang, and Jianquan Yao
Opt. Mater. Express 8(3) 659-667 (2018)

Sensitive detection of the concentrations for normal epithelial cells based on Fano resonance metamaterial biosensors in terahertz range

Maosheng Yang, Zhang Zhang, Lanju Liang, Xin Yan, Dequan Wei, Xiaoxian Song, Haiting Zhang, YuYing Lu, Meng Wang, and Jianquan Yao
Appl. Opt. 58(23) 6268-6273 (2019)

All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range

Tian Ma, Qiuping Huang, Hongchuan He, Yi Zhao, XIaoxia Lin, and Yalin Lu
Opt. Express 27(12) 16624-16634 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  2. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  4. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  5. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
    [Crossref] [PubMed]
  6. O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107(16), 162603 (2015).
    [Crossref]
  7. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
    [Crossref] [PubMed]
  8. Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
    [Crossref]
  9. A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).
    [Crossref]
  10. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  11. Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
    [Crossref] [PubMed]
  12. Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-QFano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
    [Crossref]
  13. N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
    [Crossref] [PubMed]
  14. Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
    [Crossref] [PubMed]
  15. S. RoyChoudhury, V. Rawat, A. H. Jalal, S. N. Kale, and S. Bhansali, “Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents,” Biosens. Bioelectron. 86, 595–608 (2016).
    [Crossref] [PubMed]
  16. X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
    [Crossref] [PubMed]
  17. F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. Saee Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves Appl. 31(14), 1444–1452 (2017).
    [Crossref]
  18. A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Opt. Express 25(7), 7263–7272 (2017).
    [Crossref] [PubMed]
  19. F. B. Zarrabi, M. Bazgir, M. Naser-Moghadasi, and A. S. Arezoomand, “Symmetrical metamaterial nano particle for improving the Fano mode for biological application at mid infrared,” Optik (Stuttg.) 130, 1301191 (2017).
    [Crossref]
  20. S.-E. Mun, H. Yun, C. Choi, S.-J. Kim, and B. Lee, “Enhancement and switching of fano resonance in metamaterial,” Adv. Opt. Mater. 6(17), 1800545 (2018).
    [Crossref]
  21. M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
    [Crossref] [PubMed]
  22. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
    [Crossref]
  23. A. Keshavarz and Z. Vafapour, “Sensing avian influenza viruses using Terahertz metamaterial reflector,” IEEE Sens. J. 19(13), 5161 (2019).
    [Crossref]
  24. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref] [PubMed]
  25. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref] [PubMed]
  26. Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7(1), 84 (2018).
    [Crossref] [PubMed]
  27. L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
    [Crossref] [PubMed]
  28. A. Keshavarz and Z. Vafapour, “Water-based Terahertz metamaterial for skin cancer detection application,” IEEE Sens. J. 19(4), 1519–1524 (2019).
    [Crossref]
  29. F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
    [Crossref] [PubMed]
  30. J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018).
    [Crossref]
  31. A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
    [Crossref]
  32. A. Christofi, Y. Kawaguchi, A. Alù, and A. B. Khanikaev, “Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces,” Opt. Lett. 43(8), 1838–1841 (2018).
    [Crossref] [PubMed]
  33. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
    [PubMed]
  34. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  35. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  36. X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
    [Crossref] [PubMed]
  37. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
    [Crossref] [PubMed]
  38. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  39. Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
    [Crossref]
  40. Z. Zhang, H. Ding, X. Yan, L. Liang, D. Wei, M. Wang, Q. Yang, and J. Yao, “Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency,” Opt. Mater. Express 8(3), 659 (2018).
    [Crossref]

2019 (4)

A. Keshavarz and Z. Vafapour, “Sensing avian influenza viruses using Terahertz metamaterial reflector,” IEEE Sens. J. 19(13), 5161 (2019).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

A. Keshavarz and Z. Vafapour, “Water-based Terahertz metamaterial for skin cancer detection application,” IEEE Sens. J. 19(4), 1519–1524 (2019).
[Crossref]

A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).
[Crossref]

2018 (10)

Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
[Crossref] [PubMed]

Z. Zhang, H. Ding, X. Yan, L. Liang, D. Wei, M. Wang, Q. Yang, and J. Yao, “Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency,” Opt. Mater. Express 8(3), 659 (2018).
[Crossref]

J. Hu, T. Lang, Z. Hong, C. Shen, and G. Shi, “Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials,” J. Lightwave Technol. 36(11), 2083–2093 (2018).
[Crossref]

A. Christofi, Y. Kawaguchi, A. Alù, and A. B. Khanikaev, “Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces,” Opt. Lett. 43(8), 1838–1841 (2018).
[Crossref] [PubMed]

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7(1), 84 (2018).
[Crossref] [PubMed]

S.-E. Mun, H. Yun, C. Choi, S.-J. Kim, and B. Lee, “Enhancement and switching of fano resonance in metamaterial,” Adv. Opt. Mater. 6(17), 1800545 (2018).
[Crossref]

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref] [PubMed]

2017 (6)

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. Saee Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves Appl. 31(14), 1444–1452 (2017).
[Crossref]

F. B. Zarrabi, M. Bazgir, M. Naser-Moghadasi, and A. S. Arezoomand, “Symmetrical metamaterial nano particle for improving the Fano mode for biological application at mid infrared,” Optik (Stuttg.) 130, 1301191 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

A. Tyszka-Zawadzka, B. Janaszek, and P. Szczepański, “Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands,” Opt. Express 25(7), 7263–7272 (2017).
[Crossref] [PubMed]

2016 (3)

S. RoyChoudhury, V. Rawat, A. H. Jalal, S. N. Kale, and S. Bhansali, “Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents,” Biosens. Bioelectron. 86, 595–608 (2016).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-QFano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

2015 (4)

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107(16), 162603 (2015).
[Crossref]

2014 (2)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[PubMed]

2013 (2)

F. Zhang, Q. Zhao, J. Zhou, and S. Wang, “Polarization and incidence insensitive dielectric electromagnetically induced transparency metamaterial,” Opt. Express 21(17), 19675–19680 (2013).
[Crossref] [PubMed]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

2012 (2)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
[Crossref]

2011 (2)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (2)

J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

2008 (2)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Alici, K. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Alipour, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

Al-Naib, I.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-QFano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Alù, A.

Arezoomand, A. S.

F. B. Zarrabi, M. Bazgir, M. Naser-Moghadasi, and A. S. Arezoomand, “Symmetrical metamaterial nano particle for improving the Fano mode for biological application at mid infrared,” Optik (Stuttg.) 130, 1301191 (2017).
[Crossref]

Arju, N.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Averitt, R. D.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Bartal, G.

Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
[Crossref]

Bazgir, M.

F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. Saee Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves Appl. 31(14), 1444–1452 (2017).
[Crossref]

F. B. Zarrabi, M. Bazgir, M. Naser-Moghadasi, and A. S. Arezoomand, “Symmetrical metamaterial nano particle for improving the Fano mode for biological application at mid infrared,” Optik (Stuttg.) 130, 1301191 (2017).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Belov, P. A.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Bhansali, S.

S. RoyChoudhury, V. Rawat, A. H. Jalal, S. N. Kale, and S. Bhansali, “Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents,” Biosens. Bioelectron. 86, 595–608 (2016).
[Crossref] [PubMed]

Bo Li, Y.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[PubMed]

Cao, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-QFano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Chen, X.

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7(1), 84 (2018).
[Crossref] [PubMed]

Cheng, Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Choi, C.

S.-E. Mun, H. Yun, C. Choi, S.-J. Kim, and B. Lee, “Enhancement and switching of fano resonance in metamaterial,” Adv. Opt. Mater. 6(17), 1800545 (2018).
[Crossref]

Christofi, A.

Cong, L.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-QFano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Cui, T. J.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Dabidian, N.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Dai, Q.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Ding, H.

Ding, J.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Dobrovolskiy, O. V.

O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107(16), 162603 (2015).
[Crossref]

Dong, J.

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref] [PubMed]

Ebrahimi, S.

F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. Saee Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves Appl. 31(14), 1444–1452 (2017).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Farmani, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

Filonov, D. S.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Fozdar, D. Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, J.

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7(1), 84 (2018).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Ghahraloud, H.

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Guo, X.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Hao, Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hong, Z.

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hu, H.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

Hu, J.

Huth, M.

O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107(16), 162603 (2015).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Jalal, A. H.

S. RoyChoudhury, V. Rawat, A. H. Jalal, S. N. Kale, and S. Bhansali, “Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents,” Biosens. Bioelectron. 86, 595–608 (2016).
[Crossref] [PubMed]

Janaszek, B.

Jeppesen, C.

Ji, W.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Jiang, M.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Jun Cui, T.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Kale, S. N.

S. RoyChoudhury, V. Rawat, A. H. Jalal, S. N. Kale, and S. Bhansali, “Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents,” Biosens. Bioelectron. 86, 595–608 (2016).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kawaguchi, Y.

Keshavarz, A.

A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).
[Crossref]

A. Keshavarz and Z. Vafapour, “Water-based Terahertz metamaterial for skin cancer detection application,” IEEE Sens. J. 19(4), 1519–1524 (2019).
[Crossref]

A. Keshavarz and Z. Vafapour, “Sensing avian influenza viruses using Terahertz metamaterial reflector,” IEEE Sens. J. 19(13), 5161 (2019).
[Crossref]

Khanikaev, A.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Khanikaev, A. B.

A. Christofi, Y. Kawaguchi, A. Alù, and A. B. Khanikaev, “Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces,” Opt. Lett. 43(8), 1838–1841 (2018).
[Crossref] [PubMed]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Kholmanov, I.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Kim, S.-J.

S.-E. Mun, H. Yun, C. Choi, S.-J. Kim, and B. Lee, “Enhancement and switching of fano resonance in metamaterial,” Adv. Opt. Mater. 6(17), 1800545 (2018).
[Crossref]

Kivshar, Y. S.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[PubMed]

Kristensen, A.

Kumar, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Lang, T.

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Lee, B.

S.-E. Mun, H. Yun, C. Choi, S.-J. Kim, and B. Lee, “Enhancement and switching of fano resonance in metamaterial,” Adv. Opt. Mater. 6(17), 1800545 (2018).
[Crossref]

Li, L.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liang, L.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Z. Zhang, H. Ding, X. Yan, L. Liang, D. Wei, M. Wang, Q. Yang, and J. Yao, “Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency,” Opt. Mater. Express 8(3), 659 (2018).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Limonov, M. F.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Liu, L.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, S.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Liu, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Ma, T.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Magnuson, C.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Manjappa, M.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-QFano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Mir, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

Mortensen, N. A.

Mousavi, S. H.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Mun, S.-E.

S.-E. Mun, H. Yun, C. Choi, S.-J. Kim, and B. Lee, “Enhancement and switching of fano resonance in metamaterial,” Adv. Opt. Mater. 6(17), 1800545 (2018).
[Crossref]

Naser-Moghadasi, M.

F. B. Zarrabi, M. Bazgir, M. Naser-Moghadasi, and A. S. Arezoomand, “Symmetrical metamaterial nano particle for improving the Fano mode for biological application at mid infrared,” Optik (Stuttg.) 130, 1301191 (2017).
[Crossref]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Padilla, W. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Park, Y.-S.

Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Purtseladze, D.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qiu, C. W.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

Rawat, V.

S. RoyChoudhury, V. Rawat, A. H. Jalal, S. N. Kale, and S. Bhansali, “Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents,” Biosens. Bioelectron. 86, 595–608 (2016).
[Crossref] [PubMed]

RoyChoudhury, S.

S. RoyChoudhury, V. Rawat, A. H. Jalal, S. N. Kale, and S. Bhansali, “Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents,” Biosens. Bioelectron. 86, 595–608 (2016).
[Crossref] [PubMed]

Ruoff, R. S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Rybin, M. V.

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Saee Arezoomand, A.

F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. Saee Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves Appl. 31(14), 1444–1452 (2017).
[Crossref]

Shen, C.

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shi, G.

Shklovskij, V. A.

O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107(16), 162603 (2015).
[Crossref]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Shvets, G.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Singh, R.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-QFano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Solanki, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Srivastava, Y. K.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-QFano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Suk, J. W.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Sum, T. C.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Szczepanski, P.

Tatar, K.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Trendafilov, S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Tyszka-Zawadzka, A.

Vafapour, Z.

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[PubMed]

Wan, X.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Wang, M.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Z. Zhang, H. Ding, X. Yan, L. Liang, D. Wei, M. Wang, Q. Yang, and J. Yao, “Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency,” Opt. Mater. Express 8(3), 659 (2018).
[Crossref]

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref] [PubMed]

Wang, S.

Wang, T.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, Y.

Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wei, D.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Z. Zhang, H. Ding, X. Yan, L. Liang, D. Wei, M. Wang, Q. Yang, and J. Yao, “Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency,” Opt. Mater. Express 8(3), 659 (2018).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Wu, Z.

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref] [PubMed]

Xiao, S.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
[Crossref] [PubMed]

Xie, J.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Xu, C.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yan, X.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Z. Zhang, H. Ding, X. Yan, L. Liang, D. Wei, M. Wang, Q. Yang, and J. Yao, “Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency,” Opt. Mater. Express 8(3), 659 (2018).
[Crossref]

Yang, M.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Yang, Q.

Yang, X.

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7(1), 84 (2018).
[Crossref] [PubMed]

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[PubMed]

Yao, J.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Z. Zhang, H. Ding, X. Yan, L. Liang, D. Wei, M. Wang, Q. Yang, and J. Yao, “Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency,” Opt. Mater. Express 8(3), 659 (2018).
[Crossref]

Ye, Z.

Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
[Crossref]

Yin, X.

Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yun, H.

S.-E. Mun, H. Yun, C. Choi, S.-J. Kim, and B. Lee, “Enhancement and switching of fano resonance in metamaterial,” Adv. Opt. Mater. 6(17), 1800545 (2018).
[Crossref]

Zarrabi, F. B.

F. B. Zarrabi, M. Bazgir, M. Naser-Moghadasi, and A. S. Arezoomand, “Symmetrical metamaterial nano particle for improving the Fano mode for biological application at mid infrared,” Optik (Stuttg.) 130, 1301191 (2017).
[Crossref]

F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. Saee Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves Appl. 31(14), 1444–1452 (2017).
[Crossref]

Zentgraf, T.

Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, F.

Zhang, J.

Zhang, M.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Zhang, S.

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-QFano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Z.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Z. Zhang, H. Ding, X. Yan, L. Liang, D. Wei, M. Wang, Q. Yang, and J. Yao, “Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency,” Opt. Mater. Express 8(3), 659 (2018).
[Crossref]

Zhao, J.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhao, Q.

Zheng, Y.

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref] [PubMed]

Zhou, J.

Zhu, X.

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

ACS Nano (1)

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref] [PubMed]

ACS Photonics (1)

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Adv. Mater. (1)

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

Y. K. Srivastava, M. Manjappa, L. Cong, W. Cao, I. Al-Naib, W. Zhang, and R. Singh, “Ultrahigh-QFano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry,” Adv. Opt. Mater. 4(3), 457–463 (2016).
[Crossref]

S.-E. Mun, H. Yun, C. Choi, S.-J. Kim, and B. Lee, “Enhancement and switching of fano resonance in metamaterial,” Adv. Opt. Mater. 6(17), 1800545 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107(16), 162603 (2015).
[Crossref]

Biosens. Bioelectron. (2)

S. RoyChoudhury, V. Rawat, A. H. Jalal, S. N. Kale, and S. Bhansali, “Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents,” Biosens. Bioelectron. 86, 595–608 (2016).
[Crossref] [PubMed]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Carbon (1)

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

IEEE Sens. J. (3)

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

A. Keshavarz and Z. Vafapour, “Sensing avian influenza viruses using Terahertz metamaterial reflector,” IEEE Sens. J. 19(13), 5161 (2019).
[Crossref]

A. Keshavarz and Z. Vafapour, “Water-based Terahertz metamaterial for skin cancer detection application,” IEEE Sens. J. 19(4), 1519–1524 (2019).
[Crossref]

J. Electromagn. Waves Appl. (1)

F. B. Zarrabi, M. Bazgir, S. Ebrahimi, and A. Saee Arezoomand, “Fano resonance for U-I nano-array independent to the polarization providing bio-sensing applications,” J. Electromagn. Waves Appl. 31(14), 1444–1452 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Light Sci. Appl. (2)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7(1), 84 (2018).
[Crossref] [PubMed]

Nano Lett. (2)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref] [PubMed]

Nanoscale (1)

X. Guo, H. Hu, X. Zhu, X. Yang, and Q. Dai, “Higher order Fano graphene metamaterials for nanoscale optical sensing,” Nanoscale 9(39), 14998–15004 (2017).
[Crossref] [PubMed]

Nat. Commun. (3)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[PubMed]

L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8(1), 197 (2017).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optik (Stuttg.) (1)

F. B. Zarrabi, M. Bazgir, M. Naser-Moghadasi, and A. S. Arezoomand, “Symmetrical metamaterial nano particle for improving the Fano mode for biological application at mid infrared,” Optik (Stuttg.) 130, 1301191 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

Z. Ye, S. Zhang, Y. Wang, Y.-S. Park, T. Zentgraf, G. Bartal, X. Yin, and X. Zhang, “Mapping the near-field dynamics in plasmon-induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 86(15), 155148 (2012).
[Crossref]

Phys. Rev. Lett. (2)

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

M. V. Rybin, D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep. 5(1), 8774 (2015).
[Crossref] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic illustration and performance of biosensor based on the EIT-like MMs. (a) The periodic structure and diagram of the EIT-like MMs. The geometrical parameters are g = 13.5 µm, d = 3.5 µm, m = 15 µm, l = 75 µm, respectively (b) Simulated transmission spectra of the EIT-like MMs, CW and the SRRs (c) The micrograph of the fabricated EIT-like MMs with A549. (d) Experimentally measured transmission spectra of the EIT-like MMs.
Fig. 2
Fig. 2 (a) and (b) The simulated electric field distributions of the CW and the EIT metamaterials at 1.178 THz. (c) The surface current distributions of the EIT metamaterials at 1.178 THz.
Fig. 3
Fig. 3 (a) The effect of transmission on refractive index of the analyte with the thickness of 11 µm. (b) The frequency shift with the refractive index of analyte extracted from (a).
Fig. 4
Fig. 4 (a) The effect of transmission on cell concentration ranging from 0.5 × 105 to 5 × 105 cells/ml. (b) The frequency shift with cell concentration ranging from 0.5 × 105 to 5 × 105 cells/ml.
Fig. 5
Fig. 5 The fitting results of coupled harmonic oscillator model to simulations and experiments. (a)-(e) The simulated transmission spectra of the EIT metamaterials with the increasing of refractive index of the analyte with the thickness of 11 µm and the corresponding theoretical fitted transmission spectra. (f)-(k) The experiment transmission spectra of the EIT metamaterials with the increasing of cell concentration and the corresponding theoretical fitted transmission spectra.
Fig. 6
Fig. 6 (a) The fitting parameters γ1, γ2, δ and κ as a function of the refractive index of the analyte with the thickness of 11 µm. (b) The fitting parameters γ1, γ2, δ and κ as a function of cell concentration ranging from 0.5 × 105 to 5 × 105 cells/ml.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x ¨ 1 + γ 1 x ˙ 1 + ω 0 2 x 1 + κ x 2 = E , x ¨ 2 + γ 2 x ˙ 2 + ( ω 0 + δ ) 2 x 2 + κ x 1 = 0
χ = χ r + i χ i ( ω ω 0 δ ) + i γ 2 2 ( ω ω 0 + i γ 1 2 ) ( ω ω 0 δ + i γ 2 2 ) κ 2 4
T 1 χ i = 1 g χ i

Metrics