Abstract

We propose a novel compound grating structure that exhibits a tunable ultra-narrowband transmission in the near infrared regime. The thin microstructure can realize a steep wave form through a Fano-like resonance by coupling different propagation-type SPP modes and with a narrow line width formed by the energy band gap. Additionally, the out-of-band suppression is remarkably enhanced. It effectively solves the constraint relationship between high transmittance, narrow line width, and weak side peak of the plasmonic filter, and the structure is suitable for integration with detectors in the near infrared regime.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic bandpass filter based on graphene nanoribbon

Huawei Zhuang, Fanmin Kong, Kang Li, and Shiwei Sheng
Appl. Opt. 54(10) 2558-2564 (2015)

Narrow-band plasmonic directional excitation of two metallic slits with a coupled cavity

Yueke Wang, Quansheng Chen, and Xinyu Wu
Appl. Opt. 54(27) 8152-8155 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
    [Crossref]
  2. M. L. Brongersma, “Introductory lecture: nanoplasmonics,” Faraday Discuss. 178, 9–36 (2015).
    [Crossref] [PubMed]
  3. X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
    [Crossref] [PubMed]
  4. F. Pincella, K. Isozaki, and K. Miki, “A visible light-driven plasmonic photocatalyst,” Light Sci. Appl. 3(1), e133 (2014).
    [Crossref]
  5. T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
    [Crossref] [PubMed]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  7. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  8. A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
    [Crossref]
  9. Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
    [Crossref] [PubMed]
  10. E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels,” Sci. Rep. 6(1), 28062 (2016).
    [Crossref] [PubMed]
  11. Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, and S. Pan, “Plasmonic induced triple-band absorber for sensor application,” Opt. Express 23(13), 17607–17612 (2015).
    [Crossref] [PubMed]
  12. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
    [Crossref]
  13. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 84(20), 205428 (2011).
    [Crossref]
  14. T. Cao, S. Wang, and W. X. Jiang, “Tunable metamaterials using a topological insulator at near-infrared regim,” RSC. Adv. 3(42), 19474–19480 (2013).
  15. Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
    [Crossref]
  16. K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, S. Xiao, and A. Boisen, “Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography,” Opt. Express 23(10), 12965–12978 (2015).
    [Crossref] [PubMed]
  17. Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008).
    [Crossref] [PubMed]
  18. A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
    [Crossref]
  19. B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
    [Crossref]
  20. S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
    [Crossref] [PubMed]
  21. C.-Z. Ning, “Semiconductor nanolasers and the size-energy-efficiency challenge: a review,” Adv. Photonics. 1(01), 014002 (2019).
    [Crossref]
  22. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  23. L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express 20(10), 11487–11495 (2012).
    [Crossref] [PubMed]
  24. X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, “Energy transfer in plasmonic photocatalytic composites,” Light Sci. Appl. 5(2), e16017 (2016).
    [Crossref] [PubMed]
  25. A. K. Popov, “Nonlinear optics of backward waves and extraordinary features of plasmonic nonlinear-optical microdevices,” Eur. Phys. J. D 58(2), 263–274 (2010).
    [Crossref]
  26. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
    [Crossref] [PubMed]
  27. Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
    [Crossref]
  28. J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
    [Crossref]
  29. G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20(16), 17503–17508 (2012).
    [Crossref] [PubMed]
  30. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
    [Crossref] [PubMed]
  31. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  32. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref] [PubMed]
  33. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  34. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
    [Crossref] [PubMed]
  35. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
    [Crossref] [PubMed]
  36. Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface,” ACS Photonics 5(2), 663–669 (2018).
    [Crossref]
  37. Y. S. Do, J. H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, “Plasmonic Color Filter and its Fabrication for Large-Area Applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
    [Crossref]
  38. I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi., A Appl. Mater. Sci. 212(8), 1625–1633 (2015).
    [Crossref]
  39. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
    [Crossref]
  40. Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
    [Crossref] [PubMed]
  41. J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2 Pt 2), 026603 (2011).
    [Crossref] [PubMed]
  42. Q. Li, Z. Li, H. Yang, H. Liu, X. Wang, J. Gao, and J. Zhao, “Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission,” Opt. Express 24(22), 25885–25893 (2016).
    [Crossref] [PubMed]
  43. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  44. S. Shu and Y. Y. Li, “Triple-layer Fabry-Perot/SPP aluminum absorber in the visible and near-infrared region,” Opt. Lett. 40(6), 934–937 (2015).
    [Crossref] [PubMed]
  45. P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
    [Crossref] [PubMed]
  46. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  47. F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express 19(6), 4848–4855 (2011).
    [Crossref] [PubMed]
  48. X. L. Hu, L. B. Sun, B. Zeng, L. S. Wang, Z. G. Yu, S. A. Bai, S. M. Yang, L. X. Zhao, Q. Li, M. Qiu, R. Z. Tai, H. J. Fecht, J. Z. Jiang, and D. X. Zhang, “Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission,” Appl. Opt. 55(1), 148–152 (2016).
    [Crossref] [PubMed]
  49. X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid Plasmonic Modes in Multilayer Trench Grating Structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
    [Crossref]
  50. M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
    [Crossref]
  51. S.-H. Chang and Y.-L. Su, “Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. I: resonant transmission,” J. Opt. Soc. Am. B 32(1), 38–44 (2015).
    [Crossref]
  52. G. Li, Y. Shen, G. Xiao, and C. Jin, “Double-layered metal grating for high-performance refractive index sensing,” Opt. Express 23(7), 8995–9003 (2015).
    [Crossref] [PubMed]
  53. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(12), 125113 (2004).
    [Crossref]

2019 (1)

C.-Z. Ning, “Semiconductor nanolasers and the size-energy-efficiency challenge: a review,” Adv. Photonics. 1(01), 014002 (2019).
[Crossref]

2018 (3)

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface,” ACS Photonics 5(2), 663–669 (2018).
[Crossref]

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
[Crossref] [PubMed]

2017 (3)

S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref] [PubMed]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid Plasmonic Modes in Multilayer Trench Grating Structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

2016 (7)

X. L. Hu, L. B. Sun, B. Zeng, L. S. Wang, Z. G. Yu, S. A. Bai, S. M. Yang, L. X. Zhao, Q. Li, M. Qiu, R. Z. Tai, H. J. Fecht, J. Z. Jiang, and D. X. Zhang, “Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission,” Appl. Opt. 55(1), 148–152 (2016).
[Crossref] [PubMed]

Q. Li, Z. Li, H. Yang, H. Liu, X. Wang, J. Gao, and J. Zhao, “Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission,” Opt. Express 24(22), 25885–25893 (2016).
[Crossref] [PubMed]

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref] [PubMed]

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, “Energy transfer in plasmonic photocatalytic composites,” Light Sci. Appl. 5(2), e16017 (2016).
[Crossref] [PubMed]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
[Crossref]

2015 (10)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi., A Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

M. L. Brongersma, “Introductory lecture: nanoplasmonics,” Faraday Discuss. 178, 9–36 (2015).
[Crossref] [PubMed]

S.-H. Chang and Y.-L. Su, “Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. I: resonant transmission,” J. Opt. Soc. Am. B 32(1), 38–44 (2015).
[Crossref]

S. Shu and Y. Y. Li, “Triple-layer Fabry-Perot/SPP aluminum absorber in the visible and near-infrared region,” Opt. Lett. 40(6), 934–937 (2015).
[Crossref] [PubMed]

G. Li, Y. Shen, G. Xiao, and C. Jin, “Double-layered metal grating for high-performance refractive index sensing,” Opt. Express 23(7), 8995–9003 (2015).
[Crossref] [PubMed]

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, S. Xiao, and A. Boisen, “Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography,” Opt. Express 23(10), 12965–12978 (2015).
[Crossref] [PubMed]

Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, and S. Pan, “Plasmonic induced triple-band absorber for sensor application,” Opt. Express 23(13), 17607–17612 (2015).
[Crossref] [PubMed]

2014 (4)

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

F. Pincella, K. Isozaki, and K. Miki, “A visible light-driven plasmonic photocatalyst,” Light Sci. Appl. 3(1), e133 (2014).
[Crossref]

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

2013 (3)

Y. S. Do, J. H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, “Plasmonic Color Filter and its Fabrication for Large-Area Applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[Crossref]

T. Cao, S. Wang, and W. X. Jiang, “Tunable metamaterials using a topological insulator at near-infrared regim,” RSC. Adv. 3(42), 19474–19480 (2013).

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

2012 (4)

2011 (3)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 84(20), 205428 (2011).
[Crossref]

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2 Pt 2), 026603 (2011).
[Crossref] [PubMed]

F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express 19(6), 4848–4855 (2011).
[Crossref] [PubMed]

2010 (6)

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref] [PubMed]

A. K. Popov, “Nonlinear optics of backward waves and extraordinary features of plasmonic nonlinear-optical microdevices,” Eur. Phys. J. D 58(2), 263–274 (2010).
[Crossref]

2008 (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

2004 (1)

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(12), 125113 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Abbey, B.

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

AlGhaferi, A.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
[Crossref]

Allsop, T.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref] [PubMed]

Altug, H.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Alù, A.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 84(20), 205428 (2011).
[Crossref]

An, B.

Arif, R.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref] [PubMed]

Bai, S.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Bai, S. A.

Baik, K. Y.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Balaur, E.

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Behymer, E. M.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Boisen, A.

Bond, T. C.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Bora, M.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Bozhevolnyi, S. I.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Britten, J. A.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Brongersma, M. L.

M. L. Brongersma, “Introductory lecture: nanoplasmonics,” Faraday Discuss. 178, 9–36 (2015).
[Crossref] [PubMed]

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Busson, M. P.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Cai, G.

Cai, S.-L.

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

Cao, F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Cao, T.

T. Cao, S. Wang, and W. X. Jiang, “Tunable metamaterials using a topological insulator at near-infrared regim,” RSC. Adv. 3(42), 19474–19480 (2013).

Cetin, A. E.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Chang, A. S. P.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Chang, S.-H.

Chen, H.-Z.

S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref] [PubMed]

Chen, J.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2 Pt 2), 026603 (2011).
[Crossref] [PubMed]

Chen, Q.

Chen, Y.

Cheng, Y.

Cho, C. Y.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Cho, G. S.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Choi, E. H.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Choi, K. C.

Y. S. Do, J. H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, “Plasmonic Color Filter and its Fabrication for Large-Area Applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christ, A.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(12), 125113 (2004).
[Crossref]

Cui, T. J.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Culverhouse, P.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref] [PubMed]

Cumming, D. R. S.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface,” ACS Photonics 5(2), 663–669 (2018).
[Crossref]

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi., A Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

Dai, L.

S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref] [PubMed]

Dai, Y.

X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, “Energy transfer in plasmonic photocatalytic composites,” Light Sci. Appl. 5(2), e16017 (2016).
[Crossref] [PubMed]

Dayal, G.

Dehlinger, D. A.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ding, P.

Do, Y. S.

Y. S. Do, J. H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, “Plasmonic Color Filter and its Fabrication for Large-Area Applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[Crossref]

Du, K.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Eksioglu, Y.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Etezadi, D.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Fan, C.

Fan, P.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Fan, S.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Fang, N. X.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
[Crossref]

Fecht, H. J.

Fernández-Domínguez, A. I.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Feth, N.

Galarreta, B. C.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Gao, J.

Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
[Crossref] [PubMed]

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid Plasmonic Modes in Multilayer Trench Grating Structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

Q. Li, Z. Li, H. Yang, H. Liu, X. Wang, J. Gao, and J. Zhao, “Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission,” Opt. Express 24(22), 25885–25893 (2016).
[Crossref] [PubMed]

Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, and S. Pan, “Plasmonic induced triple-band absorber for sensor application,” Opt. Express 23(13), 17607–17612 (2015).
[Crossref] [PubMed]

Gao, L.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(12), 125113 (2004).
[Crossref]

Gippius, N. A.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(12), 125113 (2004).
[Crossref]

Gong, H.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Gong, Y.

Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
[Crossref] [PubMed]

Gordon, R.

Gouveia, L. C. P.

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi., A Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Grant, J.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface,” ACS Photonics 5(2), 663–669 (2018).
[Crossref]

Grant, J. P.

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi., A Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

Guo, C.

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid Plasmonic Modes in Multilayer Trench Grating Structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

Guo, C. F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Guo, L. J.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref] [PubMed]

Guo, R.

Halas, N. J.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hao, D.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface,” ACS Photonics 5(2), 663–669 (2018).
[Crossref]

He, J.

Hu, F.

Hu, W.

Hu, X. L.

Huang, B.-B.

X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, “Energy transfer in plasmonic photocatalytic composites,” Light Sci. Appl. 5(2), e16017 (2016).
[Crossref] [PubMed]

Huh, Y. H.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Hwang, B. Y.

Y. S. Do, J. H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, “Plasmonic Color Filter and its Fabrication for Large-Area Applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[Crossref]

Hwang, I.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Isozaki, K.

F. Pincella, K. Isozaki, and K. Miki, “A visible light-driven plasmonic photocatalyst,” Light Sci. Appl. 3(1), e133 (2014).
[Crossref]

Jeon, H. G.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Jiang, J. Z.

Jiang, S.

Jiang, W. X.

T. Cao, S. Wang, and W. X. Jiang, “Tunable metamaterials using a topological insulator at near-infrared regim,” RSC. Adv. 3(42), 19474–19480 (2013).

Jin, C.

Ju, B.-K.

Y. S. Do, J. H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, “Plasmonic Color Filter and its Fabrication for Large-Area Applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[Crossref]

Kalli, K.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref] [PubMed]

Ke, Y.-F.

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

Kenney, M.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface,” ACS Photonics 5(2), 663–669 (2018).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Kim, H.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[Crossref]

Kim, S.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[Crossref]

Kim, Y. C.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Klein, M. W.

Kou, S. S.

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

Kristensen, A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Kuhl, J.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(12), 125113 (2004).
[Crossref]

Kundrát, V.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref] [PubMed]

Larson, C. C.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Lee, B.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[Crossref]

Lee, S.-M.

Y. S. Do, J. H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, “Plasmonic Color Filter and its Fabrication for Large-Area Applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[Crossref]

Lee, Y. E.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
[Crossref]

Lee, Y. I.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, B.

S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref] [PubMed]

Li, G.

Li, Q.

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

X. L. Hu, L. B. Sun, B. Zeng, L. S. Wang, Z. G. Yu, S. A. Bai, S. M. Yang, L. X. Zhao, Q. Li, M. Qiu, R. Z. Tai, H. J. Fecht, J. Z. Jiang, and D. X. Zhang, “Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission,” Appl. Opt. 55(1), 148–152 (2016).
[Crossref] [PubMed]

Q. Li, Z. Li, H. Yang, H. Liu, X. Wang, J. Gao, and J. Zhao, “Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission,” Opt. Express 24(22), 25885–25893 (2016).
[Crossref] [PubMed]

Li, Y.

Li, Y. Y.

Li, Z.

Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
[Crossref] [PubMed]

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Q. Li, Z. Li, H. Yang, H. Liu, X. Wang, J. Gao, and J. Zhao, “Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission,” Opt. Express 24(22), 25885–25893 (2016).
[Crossref] [PubMed]

Liang, E.

Liao, Z.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Lim, Y.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[Crossref]

Lin, J.

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

Linden, S.

Link, S.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Liu, H.

Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
[Crossref] [PubMed]

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Q. Li, Z. Li, H. Yang, H. Liu, X. Wang, J. Gao, and J. Zhao, “Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission,” Opt. Express 24(22), 25885–25893 (2016).
[Crossref] [PubMed]

Liu, Q.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Liu, X.

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid Plasmonic Modes in Multilayer Trench Grating Structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

Liu, Z.

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Lu, J. Y.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
[Crossref]

Lu, Y.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2 Pt 2), 026603 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref] [PubMed]

Luo, Y.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Ma, R.-M.

S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref] [PubMed]

Ma, X.-C.

X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, “Energy transfer in plasmonic photocatalytic composites,” Light Sci. Appl. 5(2), e16017 (2016).
[Crossref] [PubMed]

Maier, S. A.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

McCrindle, I. J. H.

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi., A Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

Miki, K.

F. Pincella, K. Isozaki, and K. Miki, “A visible light-driven plasmonic photocatalyst,” Light Sci. Appl. 3(1), e133 (2014).
[Crossref]

Min, Q.

Ming, H.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2 Pt 2), 026603 (2011).
[Crossref] [PubMed]

Mogensen, K. B.

Mortensen, N. A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Munechika, K.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Nam, S. H.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
[Crossref]

Neal, R.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref] [PubMed]

Nguyen, H. T.

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Ning, C.-Z.

C.-Z. Ning, “Semiconductor nanolasers and the size-energy-efficiency challenge: a review,” Adv. Photonics. 1(01), 014002 (2019).
[Crossref]

Nordlander, P.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Oulton, R. F.

S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Pan, S.

Park, B.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Park, J. H.

Y. S. Do, J. H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, “Plasmonic Color Filter and its Fabrication for Large-Area Applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[Crossref]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Pincella, F.

F. Pincella, K. Isozaki, and K. Miki, “A visible light-driven plasmonic photocatalyst,” Light Sci. Appl. 3(1), e133 (2014).
[Crossref]

Popov, A. K.

A. K. Popov, “Nonlinear optics of backward waves and extraordinary features of plasmonic nonlinear-optical microdevices,” Eur. Phys. J. D 58(2), 263–274 (2010).
[Crossref]

Pusino, V.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface,” ACS Photonics 5(2), 663–669 (2018).
[Crossref]

Qiu, M.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

X. L. Hu, L. B. Sun, B. Zeng, L. S. Wang, Z. G. Yu, S. A. Bai, S. M. Yang, L. X. Zhao, Q. Li, M. Qiu, R. Z. Tai, H. J. Fecht, J. Z. Jiang, and D. X. Zhang, “Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission,” Appl. Opt. 55(1), 148–152 (2016).
[Crossref] [PubMed]

Qu, Y.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Ramakrishna, S. A.

Raza, A.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
[Crossref]

Ren, Z.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Rindzevicius, T.

Rozhin, A.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref] [PubMed]

Sadatnajafi, C.

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

Schmidt, M. S.

Shah, Y. D.

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface,” ACS Photonics 5(2), 663–669 (2018).
[Crossref]

Shen, X.

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Shen, Y.

Shen, Z.

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Shin, J. C.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Shu, S.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Su, Y.-H.

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

Su, Y.-L.

Sun, L. B.

Sun, T.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Tai, R. Z.

Tang, L.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tian, S.

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid Plasmonic Modes in Multilayer Trench Grating Structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

Tikhodeev, S. G.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(12), 125113 (2004).
[Crossref]

Uhm, H. S.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Wang, J.

Wang, L. S.

Wang, P.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2 Pt 2), 026603 (2011).
[Crossref] [PubMed]

Wang, S.

S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref] [PubMed]

T. Cao, S. Wang, and W. X. Jiang, “Tunable metamaterials using a topological insulator at near-infrared regim,” RSC. Adv. 3(42), 19474–19480 (2013).

Wang, T.

Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
[Crossref] [PubMed]

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Wang, X.

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
[Crossref] [PubMed]

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid Plasmonic Modes in Multilayer Trench Grating Structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

Q. Li, Z. Li, H. Yang, H. Liu, X. Wang, J. Gao, and J. Zhao, “Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission,” Opt. Express 24(22), 25885–25893 (2016).
[Crossref] [PubMed]

L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express 20(10), 11487–11495 (2012).
[Crossref] [PubMed]

Wang, X.-Y.

S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref] [PubMed]

Wang, Y.

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Wang, Y.-L.

S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref] [PubMed]

Webb, D. J.

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref] [PubMed]

Wegener, M.

Wilke, K.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, K.

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref] [PubMed]

Xiao, G.

Xiao, S.

Xu, T.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref] [PubMed]

Xue, Q.

Yang, H.

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
[Crossref] [PubMed]

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid Plasmonic Modes in Multilayer Trench Grating Structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

Q. Li, Z. Li, H. Yang, H. Liu, X. Wang, J. Gao, and J. Zhao, “Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission,” Opt. Express 24(22), 25885–25893 (2016).
[Crossref] [PubMed]

Yang, J. K. W.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Yang, S. M.

Yao, Q.-Y.

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

Ye, H.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Yi, H.

Yu, L.

X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, “Energy transfer in plasmonic photocatalytic composites,” Light Sci. Appl. 5(2), e16017 (2016).
[Crossref] [PubMed]

Yu, Z.

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

Yu, Z. G.

Yun, S. H.

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

Zeng, B.

Zentgraf, T.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(12), 125113 (2004).
[Crossref]

Zhang, D. X.

Zhang, J.

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

Zhang, T.

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
[Crossref]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhang, Z. M.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2 Pt 2), 026603 (2011).
[Crossref] [PubMed]

Zhao, D.

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

Zhao, J.

Zhao, L. X.

Zhao, Y.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 84(20), 205428 (2011).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, Z.

ACS Photonics (2)

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Y. D. Shah, J. Grant, D. Hao, M. Kenney, V. Pusino, and D. R. S. Cumming, “Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface,” ACS Photonics 5(2), 663–669 (2018).
[Crossref]

Adv. Opt. Mater. (4)

Y. S. Do, J. H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, “Plasmonic Color Filter and its Fabrication for Large-Area Applications,” Adv. Opt. Mater. 1(2), 133–138 (2013).
[Crossref]

Y. Qu, Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, “Spatially and Spectrally Resolved Narrowband Optical Absorber Based on 2D Grating Nanostructures on Metallic Films,” Adv. Opt. Mater. 4(3), 480–486 (2016).
[Crossref]

J. Y. Lu, S. H. Nam, K. Wilke, A. Raza, Y. E. Lee, A. AlGhaferi, N. X. Fang, and T. Zhang, “Localized Surface Plasmon-Enhanced Ultrathin Film Broadband Nanoporous Absorbers,” Adv. Opt. Mater. 4(8), 1255–1264 (2016).
[Crossref]

X. Liu, J. Gao, H. Yang, X. Wang, S. Tian, and C. Guo, “Hybrid Plasmonic Modes in Multilayer Trench Grating Structures,” Adv. Opt. Mater. 5(22), 1700496 (2017).
[Crossref]

Adv. Photonics. (1)

C.-Z. Ning, “Semiconductor nanolasers and the size-energy-efficiency challenge: a review,” Adv. Photonics. 1(01), 014002 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Bora, E. M. Behymer, D. A. Dehlinger, J. A. Britten, C. C. Larson, A. S. P. Chang, K. Munechika, H. T. Nguyen, and T. C. Bond, “Plasmonic black metals in resonant nanocavities,” Appl. Phys. Lett. 102(25), 251105 (2013).
[Crossref]

Eur. Phys. J. D (1)

A. K. Popov, “Nonlinear optics of backward waves and extraordinary features of plasmonic nonlinear-optical microdevices,” Eur. Phys. J. D 58(2), 263–274 (2010).
[Crossref]

Faraday Discuss. (1)

M. L. Brongersma, “Introductory lecture: nanoplasmonics,” Faraday Discuss. 178, 9–36 (2015).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (7)

Y.-H. Su, Y.-F. Ke, S.-L. Cai, and Q.-Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light Sci. Appl. 1(6), e14 (2012).
[Crossref]

B. Park, S. H. Yun, C. Y. Cho, Y. C. Kim, J. C. Shin, H. G. Jeon, Y. H. Huh, I. Hwang, K. Y. Baik, Y. I. Lee, H. S. Uhm, G. S. Cho, and E. H. Choi, “Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors,” Light Sci. Appl. 3(12), e222 (2014).
[Crossref]

X. Liu, J. Gao, J. Gao, H. Yang, X. Wang, T. Wang, Z. Shen, Z. Liu, H. Liu, J. Zhang, Z. Li, Y. Wang, and Q. Li, “Microcavity electrodynamics of hybrid surface plasmon polariton modes in high-quality multilayer trench gratings,” Light Sci. Appl. 7(1), 14 (2018).
[Crossref] [PubMed]

F. Pincella, K. Isozaki, and K. Miki, “A visible light-driven plasmonic photocatalyst,” Light Sci. Appl. 3(1), e133 (2014).
[Crossref]

T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, and D. J. Webb, “Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures,” Light Sci. Appl. 5(2), e16036 (2016).
[Crossref] [PubMed]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, “Energy transfer in plasmonic photocatalytic composites,” Light Sci. Appl. 5(2), e16017 (2016).
[Crossref] [PubMed]

Nanoscale (1)

Q. Li, Z. Li, X. Wang, T. Wang, H. Liu, H. Yang, Y. Gong, and J. Gao, “Structurally tunable plasmonic absorption bands in a self-assembled nano-hole array,” Nanoscale 10(40), 19117–19124 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

S. Wang, X.-Y. Wang, B. Li, H.-Z. Chen, Y.-L. Wang, L. Dai, R. F. Oulton, and R.-M. Ma, “Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit,” Nat. Commun. 8(1), 1889 (2017).
[Crossref] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(1), 59 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

P. Fan, Z. Yu, S. Fan, and M. L. Brongersma, “Optical Fano resonance of an individual semiconductor nanostructure,” Nat. Mater. 13(5), 471–475 (2014).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (11)

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, and S. Pan, “Plasmonic induced triple-band absorber for sensor application,” Opt. Express 23(13), 17607–17612 (2015).
[Crossref] [PubMed]

M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express 15(8), 5238–5247 (2007).
[Crossref] [PubMed]

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for infrared frequencies,” Opt. Express 20(16), 17503–17508 (2012).
[Crossref] [PubMed]

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012).
[Crossref] [PubMed]

L. Gao, L. Tang, F. Hu, R. Guo, X. Wang, and Z. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express 20(10), 11487–11495 (2012).
[Crossref] [PubMed]

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, S. Xiao, and A. Boisen, “Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography,” Opt. Express 23(10), 12965–12978 (2015).
[Crossref] [PubMed]

Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16(13), 9708–9713 (2008).
[Crossref] [PubMed]

F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Opt. Express 19(6), 4848–4855 (2011).
[Crossref] [PubMed]

G. Li, Y. Shen, G. Xiao, and C. Jin, “Double-layered metal grating for high-performance refractive index sensing,” Opt. Express 23(7), 8995–9003 (2015).
[Crossref] [PubMed]

Q. Li, Z. Li, H. Yang, H. Liu, X. Wang, J. Gao, and J. Zhao, “Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission,” Opt. Express 24(22), 25885–25893 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(12), 125113 (2004).
[Crossref]

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 84(20), 205428 (2011).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(2 Pt 2), 026603 (2011).
[Crossref] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

I. J. H. McCrindle, J. P. Grant, L. C. P. Gouveia, and D. R. S. Cumming, “Infrared plasmonic filters integrated with an optical and terahertz multi-spectral material,” Phys. Status Solidi., A Appl. Mater. Sci. 212(8), 1625–1633 (2015).
[Crossref]

Prog. Quantum Electron. (1)

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010).
[Crossref]

RSC. Adv. (1)

T. Cao, S. Wang, and W. X. Jiang, “Tunable metamaterials using a topological insulator at near-infrared regim,” RSC. Adv. 3(42), 19474–19480 (2013).

Sci. Rep. (2)

E. Balaur, C. Sadatnajafi, S. S. Kou, J. Lin, and B. Abbey, “Continuously Tunable, Polarization Controlled, Colour Palette Produced from Nanoscale Plasmonic Pixels,” Sci. Rep. 6(1), 28062 (2016).
[Crossref] [PubMed]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Diagram of the designed compound-grating microstructure. The inset shows the structural details of the hybrid gratings. The materials of the gold region (metal layer) and the transparent blue region (dielectric spacer and substrate) are used as Au and SiO2, respectively.
Fig. 2
Fig. 2 (a) Simulated transmission spectrum from the design exhibits high transmission, ultra narrow line width, and the resonance position of the two hybrid modes. The inset indicates the dispersion relation of SPs and different Bragg coupling orders. (b) and (c) Longitudinal relative magnetic-field and electric-field intensity distributions of the microstructure of A mode resonance respectively. (d) and (e) Longitudinal relative magnetic and electric field distributions of B mode resonance respectively. The color bars stand for the normalized field intensity.
Fig. 3
Fig. 3 The ultra-narrow transmission peak for the compound-grating microstructure as a function of wavelength and the period P. (a) The transmission peak wavelength obtained by FDTD simulation; the color bar denotes the transmittance affected by period and wavelength. (b) The resonance position of Sspp solved by the mathematical analysis of the dispersion relation; the color bar denotes the wavenumber (WN) of SPs that can be excited under periodic and wavelength conditions.
Fig. 4
Fig. 4 (a) The corresponding values for energy enhancement (|ELSPR/E0|2) of LSPR and the peak transmittance of the A mode in different h1. (b) The relative electric-field intensity distributions with different h1 of 30, 40 and 50 nm, respectively. The color bar stands for the normalized electric field intensity, and its upper limit is set to be |E/E0| = 6.
Fig. 5
Fig. 5 (a) Side peak intensity suppression of the transmission behavior with varying the thickness H of dielectric layer. The color bar stands for the relative transmittance. (b) Several important characteristic transmission curves are given for specific H values. When the dielectric layer is removed (H = 0 nm), the plasmonic EOT phenomenon will disappear.
Fig. 6
Fig. 6 (a) The transmission behavior of the designed microstructure is significantly modulated by the ratio of w2/w1 and frequency. (b) and (c) The transmission spectra with the ratio of W2/W1 = 2/3 and 3/2, respectively. (d) and (e) The relative magnetic field distributions under the conditions of W2/W1 = 2/3 and 3/2, respectively. The color bars stand for the normalized magnetic field intensity.
Fig. 7
Fig. 7 (a) The dependence of transmission on the P of the compound-grating microstructure with the ratio of W2/W1 = 2/3. (b) The relative magnetic-field intensity distributions with different P’s ranging from 1.9 μm to 2.2 μm. The color bars stand for the normalized magnetic field intensity. (c) The relationship between the P and transmission peak wavelength obtained by FDTD and fitting method respectively, and the corresponding FWHM values are also exhibited.
Fig. 8
Fig. 8 (a) The dependence of transmission on the P of the compound-grating microstructure with the ratio of W2/W1 = 3/2. (b) The relative magnetic-field intensity distributions with different P’s ranging from 1.9 μm to 2.2 μm. The color bars stand for the normalized magnetic field intensity. (c) The corresponding values for Q and transmittance in different P.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k mode = k 0 sinθ+iG
k sp = k 0 ε m ε d ε m + ε d
λ s = P i ε m ε d ε m + ε d
ε d k m + ε m k d tanh( k d 2 H)=0
2 W 1 β+ ϕ r =2mπ
λ r = 6 5 n eff P/(m ϕ r /2π)

Metrics