Abstract

The fabrication of hollow core microstructured fibers is significantly more complex than solid fibers due to the necessity to control the hollow microstructure with high precision during the draw. We present the first model that can recreate tubular anti-resonant hollow core fiber draws, and accurately predict the draw parameters and geometry of the fiber. The model was validated against two different experimental fiber draws and very good agreement was found. We identify a dynamic within the draw process that can lead to a premature and irreversible contact between neighboring capillaries inside the hot zone, and describe mitigating strategies. We then use the model to explore the tolerance of the draw process to unavoidable structural variations within the preform, and to study feasibility and limiting phenomena of increasing the produced yield. We discover that the aspect ratio of the capillaries used in the preform has a direct effect on the uniformity of drawn fibers. Starting from high precision preforms the model predicts that it could be possible to draw 100 km of fiber from a single meter of preform.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti
Opt. Express 23(1) 312-329 (2015)

Studying the limits of production rate and yield for the volume manufacturing of hollow core photonic band gap fibers

Gregory T. Jasion, Eric Numkam Fokoua, John S. Shrimpton, David J. Richardson, and Francesco Poletti
Opt. Express 23(25) 32179-32190 (2015)

Predicting the drawing conditions for Microstructured Optical Fiber fabrication

Roman Kostecki, Heike Ebendorff-Heidepriem, Stephen C. Warren-Smith, and Tanya M. Monro
Opt. Mater. Express 4(1) 29-40 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  2. B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
    [Crossref] [PubMed]
  3. S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. U. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, and F. Poletti, “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express 26(7), 8866–8882 (2018).
    [Crossref] [PubMed]
  4. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  5. F. Yu, M. Cann, A. Brunton, W. Wadsworth, and J. Knight, “Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery,” Opt. Express 26(8), 10879–10887 (2018).
    [Crossref] [PubMed]
  6. W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
    [Crossref]
  7. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
    [Crossref] [PubMed]
  8. G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
    [Crossref] [PubMed]
  9. M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. C. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: Experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
    [Crossref]
  10. S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers-part ii: Numerical modeling of steady-state draw process,” J. Lightwave Technol. 23(7), 2255–2266 (2005).
    [Crossref]
  11. A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
    [Crossref]
  12. A. Fasano, H. K. Rasmussen, and J. M. R. Marín, “3d viscoelastic finite element modelling of polymer flow in the fiber drawing process for microstructured polymer optical fiber fabrication,” in The 24th International Conference on Plastic Optical Fibers (2015).
  13. S. S. Chakravarthy and W. K. Chiu, “Boundary integral method for the evolution of slender viscous fibres containing holes in the cross-section,” J. Fluid Mech. 621, 155–182 (2009).
    [Crossref]
  14. Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: Circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
    [Crossref]
  15. H. Tronnolone, Extensional and surface-tension-driven fluid flows in microstructured optical fibre fabrication (University of Adelaide, 2016).
  16. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref] [PubMed]
  17. D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).
  18. N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
    [Crossref] [PubMed]
  19. A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
    [Crossref]
  20. J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
    [Crossref]
  21. M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gérôme, and F. Benabid, “1 km long hc-pcf with losses at the fundamental rayleigh scattering limit in the green wavelength range,” in CLEO(Optical Society of America, USA, 2018), pp. SF1K–3.
  22. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39(7), 1853–1856 (2014).
    [Crossref] [PubMed]
  23. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
    [Crossref] [PubMed]
  24. S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
    [Crossref] [PubMed]
  25. T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
    [Crossref]
  26. C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
    [Crossref]
  27. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
    [Crossref] [PubMed]
  28. I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
    [Crossref]
  29. S. C. Xue, L. Poladian, G. W. Barton, and M. C. J. Large, “Radiative heat transfer in preforms for microstructured optical fibres,” Int. J. Heat Mass Tran. 50(7-8), 1569–1576 (2007).
    [Crossref]
  30. S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).
  31. Y. Chen and T. A. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Opt. Mater. Express 3(3), 346–356 (2013).
    [Crossref]
  32. G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
    [Crossref]
  33. R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
    [Crossref]
  34. Heraeus, “Heraeus quarzglas: thermal properties, fused silica,” https://www.heraeus.com/en/hqs/fused_silica_quartz_knowledge_base/properties/properties.html , Accessed 05/12, 2018.
  35. H. Schonhorn, H. Vazirani, and H. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser‐drawn silica fibers,” J. Appl. Phys. 49(7), 3703–3706 (1978).
    [Crossref]
  36. Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
    [Crossref]
  37. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23(13), 17394–17406 (2015).
    [Crossref] [PubMed]
  38. D. Bird, “Attenuation of model hollow-core, anti-resonant fibres,” Opt. Express 25(19), 23215–23237 (2017).
    [Crossref] [PubMed]
  39. M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
    [Crossref] [PubMed]
  40. F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
    [Crossref]
  41. M. S. Habib, J. E. Antonio-Lopez, C. Markos, A. Schülzgen, and R. Amezcua-Correa, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
    [Crossref] [PubMed]
  42. Y. Zhu, M. Chen, and Y. Liu, “Nested low-loss hollow core fiber,” IEEE J. Sel. Top. Quantum Electron., 1 (2019).
  43. G. T. Jasion, D. J. Richardson, and F. Poletti, “Novel antiresonant hollow core fiber design with ultralow leakage loss using transverse power flow analysis,” Optical Fiber Communication Conference (2019).

2019 (1)

2018 (4)

S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. U. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, and F. Poletti, “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express 26(7), 8866–8882 (2018).
[Crossref] [PubMed]

F. Yu, M. Cann, A. Brunton, W. Wadsworth, and J. Knight, “Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery,” Opt. Express 26(8), 10879–10887 (2018).
[Crossref] [PubMed]

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

2017 (6)

2016 (3)

2015 (3)

2014 (5)

2013 (4)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Y. Chen and T. A. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Opt. Mater. Express 3(3), 346–356 (2013).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

2012 (1)

2009 (1)

S. S. Chakravarthy and W. K. Chiu, “Boundary integral method for the evolution of slender viscous fibres containing holes in the cross-section,” J. Fluid Mech. 621, 155–182 (2009).
[Crossref]

2007 (1)

S. C. Xue, L. Poladian, G. W. Barton, and M. C. J. Large, “Radiative heat transfer in preforms for microstructured optical fibres,” Int. J. Heat Mass Tran. 50(7-8), 1569–1576 (2007).
[Crossref]

2005 (1)

2002 (2)

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

1982 (1)

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
[Crossref]

1978 (1)

H. Schonhorn, H. Vazirani, and H. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser‐drawn silica fibers,” J. Appl. Phys. 49(7), 3703–3706 (1978).
[Crossref]

Abokhamis, M. S.

Abokhamis Mousavi, S. M.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
[Crossref] [PubMed]

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

Akhmediev, N.

Alagashev, G. K.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Alam, S. U.

Alharbi, M.

Amezcua-Correa, R.

Antonio-Lopez, J. E.

Bache, M.

Baddela, N. K.

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Bang, O.

Barton, G. W.

S. C. Xue, L. Poladian, G. W. Barton, and M. C. J. Large, “Radiative heat transfer in preforms for microstructured optical fibres,” Int. J. Heat Mass Tran. 50(7-8), 1569–1576 (2007).
[Crossref]

S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers-part ii: Numerical modeling of steady-state draw process,” J. Lightwave Technol. 23(7), 2255–2266 (2005).
[Crossref]

Bawn, S.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

Belardi, W.

Benabid, F.

Bird, D.

Biriukov, A. S.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

Birks, T. A.

Biryukov, A. S.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Bottinga, Y.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
[Crossref]

Bradley, T.

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
[Crossref] [PubMed]

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

Bradley, T. D.

S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. U. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, and F. Poletti, “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express 26(7), 8866–8882 (2018).
[Crossref] [PubMed]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
[Crossref] [PubMed]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

Brunton, A.

Buchak, P.

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. C. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: Experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
[Crossref]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: Circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

Bufetov, I. A.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Cann, M.

Cao, Y. C.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Chakravarthy, S. S.

S. S. Chakravarthy and W. K. Chiu, “Boundary integral method for the evolution of slender viscous fibres containing holes in the cross-section,” J. Fluid Mech. 621, 155–182 (2009).
[Crossref]

Chang, W.

Chen, M.

Y. Zhu, M. Chen, and Y. Liu, “Nested low-loss hollow core fiber,” IEEE J. Sel. Top. Quantum Electron., 1 (2019).

Chen, M. J.

Chen, Y.

S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. U. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, and F. Poletti, “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express 26(7), 8866–8882 (2018).
[Crossref] [PubMed]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
[Crossref] [PubMed]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
[Crossref] [PubMed]

Y. Chen and T. A. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Opt. Mater. Express 3(3), 346–356 (2013).
[Crossref]

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

Chiu, W. K.

S. S. Chakravarthy and W. K. Chiu, “Boundary integral method for the evolution of slender viscous fibres containing holes in the cross-section,” J. Fluid Mech. 621, 155–182 (2009).
[Crossref]

Crowdy, D. G.

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. C. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: Experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
[Crossref]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: Circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

Davidson, I. A.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

Debord, B.

Dianov, E. M.

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

Ding, W.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Doremus, R. H.

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
[Crossref]

Dowler, A.

Ebendorff-Heidepriem, H.

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. C. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: Experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
[Crossref]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: Circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

Fitt, A. D.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Fokoua, E. N.

Foo, H. T. C.

Fourcade-Dutin, C.

Frisch, H.

H. Schonhorn, H. Vazirani, and H. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser‐drawn silica fibers,” J. Appl. Phys. 49(7), 3703–3706 (1978).
[Crossref]

Furusawa, K.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Gao, S. F.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Gérôme, F.

Gladyshev, A. V.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

Gouveia, M. A.

Gray, D.

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

Gray, D. R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Gu, S.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Habib, M. S.

Hasan, M. I.

Hayes, J.

S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. U. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, and F. Poletti, “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express 26(7), 8866–8882 (2018).
[Crossref] [PubMed]

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

Hayes, J. R.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
[Crossref] [PubMed]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

Heraeus,

Heraeus, “Heraeus quarzglas: thermal properties, fused silica,” https://www.heraeus.com/en/hqs/fused_silica_quartz_knowledge_base/properties/properties.html , Accessed 05/12, 2018.

Ho, H. L.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Hoenninger, C.

Horak, P.

Hu, J.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Hu, M.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Husakou, A.

Jasion, G.

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

Jasion, G. T.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
[Crossref] [PubMed]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

G. T. Jasion, D. J. Richardson, and F. Poletti, “Novel antiresonant hollow core fiber design with ultralow leakage loss using transverse power flow analysis,” Optical Fiber Communication Conference (2019).

Jiang, D. L.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Jin, W.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Joseph Weiblen, R.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Ju, J.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Jung, Y.

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

Knight, J.

Knight, J. C.

Kolyadin, A. N.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

Kosolapov, A. F.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

Krylov, A. A.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

Large, M. C. J.

S. C. Xue, L. Poladian, G. W. Barton, and M. C. J. Large, “Radiative heat transfer in preforms for microstructured optical fibres,” Int. J. Heat Mass Tran. 50(7-8), 1569–1576 (2007).
[Crossref]

S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers-part ii: Numerical modeling of steady-state draw process,” J. Lightwave Technol. 23(7), 2255–2266 (2005).
[Crossref]

Li, Y.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Li, Z.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Liang, S.

Liu, B.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Liu, Y.

Y. Zhu, M. Chen, and Y. Liu, “Nested low-loss hollow core fiber,” IEEE J. Sel. Top. Quantum Electron., 1 (2019).

Liu, Z.

Lwin, R.

Mangan, B. J.

Markos, C.

Meng, F.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Menyuk, C. R.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Monro, T. M.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Mottay, E.

Mousavi, S. A.

Mulvad, H. C. H.

Numkam Fokoua, E.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

Petrovich, M.

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

Petrovich, M. N.

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
[Crossref] [PubMed]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

Please, C. P.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

Plotnichenko, V. G.

Poladian, L.

S. C. Xue, L. Poladian, G. W. Barton, and M. C. J. Large, “Radiative heat transfer in preforms for microstructured optical fibres,” Int. J. Heat Mass Tran. 50(7-8), 1569–1576 (2007).
[Crossref]

S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers-part ii: Numerical modeling of steady-state draw process,” J. Lightwave Technol. 23(7), 2255–2266 (2005).
[Crossref]

Poletti, F.

S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. U. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, and F. Poletti, “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express 26(7), 8866–8882 (2018).
[Crossref] [PubMed]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
[Crossref] [PubMed]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

G. T. Jasion, D. J. Richardson, and F. Poletti, “Novel antiresonant hollow core fiber design with ultralow leakage loss using transverse power flow analysis,” Optical Fiber Communication Conference (2019).

Pryamikov, A. D.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

Qi, L. F.

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Richardson, D. J.

S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. U. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, and F. Poletti, “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express 26(7), 8866–8882 (2018).
[Crossref] [PubMed]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
[Crossref] [PubMed]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

G. T. Jasion, D. J. Richardson, and F. Poletti, “Novel antiresonant hollow core fiber design with ultralow leakage loss using transverse power flow analysis,” Optical Fiber Communication Conference (2019).

Richet, P.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
[Crossref]

Sakr, H.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

Sandoghchi, S. R.

S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. U. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, and F. Poletti, “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express 26(7), 8866–8882 (2018).
[Crossref] [PubMed]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
[Crossref] [PubMed]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

Schonhorn, H.

H. Schonhorn, H. Vazirani, and H. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser‐drawn silica fibers,” J. Appl. Phys. 49(7), 3703–3706 (1978).
[Crossref]

Schülzgen, A.

Shrimpton, J. S.

Slavik, R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

Slavík, R.

Stokes, Y. M.

M. J. Chen, Y. M. Stokes, P. Buchak, D. G. Crowdy, H. T. C. Foo, A. Dowler, and H. Ebendorff-Heidepriem, “Drawing tubular fibres: Experiments versus mathematical modelling,” Opt. Mater. Express 6(1), 166–180 (2016).
[Crossref]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: Circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

Tanner, R. I.

Taranta, A.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

Thomas, J. P.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

Urbain, G.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
[Crossref]

Vazirani, H.

H. Schonhorn, H. Vazirani, and H. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser‐drawn silica fibers,” J. Appl. Phys. 49(7), 3703–3706 (1978).
[Crossref]

Vincetti, L.

Wadsworth, W.

Wadsworth, W. J.

Wang, C.

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Wang, P.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Wang, Y. Y.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Wei, C.

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Wheeler, N.

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

Wheeler, N. V.

S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. U. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, and F. Poletti, “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express 26(7), 8866–8882 (2018).
[Crossref] [PubMed]

N. V. Wheeler, T. D. Bradley, J. R. Hayes, M. A. Gouveia, S. Liang, Y. Chen, S. R. Sandoghchi, S. M. Abokhamis Mousavi, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR,” Opt. Lett. 42(13), 2571–2574 (2017).
[Crossref] [PubMed]

J. R. Hayes, S. R. Sandoghchi, T. D. Bradley, Z. Liu, R. Slavík, M. A. Gouveia, N. V. Wheeler, G. Jasion, Y. Chen, E. N. Fokoua, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Antiresonant hollow core fiber with an octave spanning bandwidth for short haul data communications,” J. Lightwave Technol. 35(3), 437–442 (2017).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. Numkam Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavík, F. Poletti, M. N. Petrovich, and D. J. Richardson, “Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission,” J. Lightwave Technol. 34(1), 104–113 (2016).
[Crossref]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Wong, N.

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

Xue, S. C.

S. C. Xue, L. Poladian, G. W. Barton, and M. C. J. Large, “Radiative heat transfer in preforms for microstructured optical fibres,” Int. J. Heat Mass Tran. 50(7-8), 1569–1576 (2007).
[Crossref]

S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers-part ii: Numerical modeling of steady-state draw process,” J. Lightwave Technol. 23(7), 2255–2266 (2005).
[Crossref]

Yatsenko, Y. P.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

Yu, F.

Zhang, X.

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhu, M. Chen, and Y. Liu, “Nested low-loss hollow core fiber,” IEEE J. Sel. Top. Quantum Electron., 1 (2019).

Adv. Opt. Photonics (1)

C. Wei, R. Joseph Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photonics 9(3), 504–561 (2017).
[Crossref]

Fibers (Basel) (1)

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Y. P. Yatsenko, and A. S. Biriukov, “Revolver hollow core optical fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

Geochim. Cosmochim. Acta (1)

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982).
[Crossref]

IEEE Photonics J. (1)

F. Meng, B. Liu, Y. Li, C. Wang, and M. Hu, “Low loss hollow-core antiresonant fiber with nested elliptical cladding elements,” IEEE Photonics J. 9(1), 1–11 (2017).
[Crossref]

Int. J. Heat Mass Tran. (1)

S. C. Xue, L. Poladian, G. W. Barton, and M. C. J. Large, “Radiative heat transfer in preforms for microstructured optical fibres,” Int. J. Heat Mass Tran. 50(7-8), 1569–1576 (2007).
[Crossref]

J. Appl. Phys. (2)

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92(12), 7619–7629 (2002).
[Crossref]

H. Schonhorn, H. Vazirani, and H. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser‐drawn silica fibers,” J. Appl. Phys. 49(7), 3703–3706 (1978).
[Crossref]

J. Eng. Math. (1)

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43(2/4), 201–227 (2002).
[Crossref]

J. Fluid Mech. (2)

S. S. Chakravarthy and W. K. Chiu, “Boundary integral method for the evolution of slender viscous fibres containing holes in the cross-section,” J. Fluid Mech. 621, 155–182 (2009).
[Crossref]

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: Circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

J. Lightwave Technol. (3)

Nat. Commun. (1)

S. F. Gao, Y. Y. Wang, W. Ding, D. L. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. K. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Opt. Express (12)

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22(9), 10735–10746 (2014).
[Crossref] [PubMed]

S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. U. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, and F. Poletti, “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt. Express 26(7), 8866–8882 (2018).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

F. Yu, M. Cann, A. Brunton, W. Wadsworth, and J. Knight, “Single-mode solarization-free hollow-core fiber for ultraviolet pulse delivery,” Opt. Express 26(8), 10879–10887 (2018).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23(1), 312–329 (2015).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23(13), 17394–17406 (2015).
[Crossref] [PubMed]

D. Bird, “Attenuation of model hollow-core, anti-resonant fibres,” Opt. Express 25(19), 23215–23237 (2017).
[Crossref] [PubMed]

F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22(20), 23807–23828 (2014).
[Crossref] [PubMed]

M. S. Habib, J. E. Antonio-Lopez, C. Markos, A. Schülzgen, and R. Amezcua-Correa, “Single-mode, low loss hollow-core anti-resonant fiber designs,” Opt. Express 27(4), 3824–3836 (2019).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

W. Jin, H. L. Ho, Y. C. Cao, J. Ju, and L. F. Qi, “Gas detection with micro- and nano-engineered optical fibers,” Opt. Fiber Technol. 19(6), 741–759 (2013).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (2)

Quantum Electron. (1)

A. F. Kosolapov, G. K. Alagashev, A. N. Kolyadin, A. D. Pryamikov, A. S. Biryukov, I. A. Bufetov, and E. M. Dianov, “Hollow-core revolver fibre with a double-capillary reflective cladding,” Quantum Electron. 46(3), 267–270 (2016).
[Crossref]

Other (9)

M. Chafer, F. Delahaye, F. Amrani, B. Debord, F. Gérôme, and F. Benabid, “1 km long hc-pcf with losses at the fundamental rayleigh scattering limit in the green wavelength range,” in CLEO(Optical Society of America, USA, 2018), pp. SF1K–3.

D. J. Richardson, Y. Chen, N. Wheeler, J. Hayes, T. Bradley, Z. Liu, S. R. Sandoghchi, G. Jasion, E. Numkam Fokoua, D. Gray, R. Slavík, Y. Jung, N. Wong, F. Poletti, and M. Petrovich, “Photonic bandgap fibres for low-latency data transmission,” (2015).

H. Tronnolone, Extensional and surface-tension-driven fluid flows in microstructured optical fibre fabrication (University of Adelaide, 2016).

A. Fasano, H. K. Rasmussen, and J. M. R. Marín, “3d viscoelastic finite element modelling of polymer flow in the fiber drawing process for microstructured polymer optical fiber fabrication,” in The 24th International Conference on Plastic Optical Fibers (2015).

Heraeus, “Heraeus quarzglas: thermal properties, fused silica,” https://www.heraeus.com/en/hqs/fused_silica_quartz_knowledge_base/properties/properties.html , Accessed 05/12, 2018.

T. D. Bradley, J. R. Hayes, Y. Chen, G. T. Jasion, S. R. Sandoghchi, R. Slavik, E. N. Fokoua, S. Bawn, H. Sakr, I. A. Davidson, A. Taranta, J. P. Thomas, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Record low-loss 1.3db/km data transmitting antiresonant hollow core fibre,” in 2018 European Conference on Optical Communication (ECOC)(2018).
[Crossref]

S. R. Sandoghchi, D. Gray, Y. Chen, N. Wheeler, T. Bradley, J. Hayes, E. Numkam Fokoua, G. Jasion, S. M. Abokhamis Mousavi, M. Petrovich, and F. Poletti, “High dynamic range technique for discrete and distributed scattering loss measurement in microstructured optical fibres,” European Conference on Optical Communication (2015).

Y. Zhu, M. Chen, and Y. Liu, “Nested low-loss hollow core fiber,” IEEE J. Sel. Top. Quantum Electron., 1 (2019).

G. T. Jasion, D. J. Richardson, and F. Poletti, “Novel antiresonant hollow core fiber design with ultralow leakage loss using transverse power flow analysis,” Optical Fiber Communication Conference (2019).

Supplementary Material (1)

NameDescription
» Visualization 1       Visualisation 1. Simulation results of the fabrication of tubular hollow core fiber. Animation illustrates the evolution of the structure as it is drawn down from the preform to the fiber. Mid-draw contact is illustrated.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 An example of a 7 capillary tubular HCF geometry and its parameters: core radius, rcore, capillary thickness, t, capillary radius, Rc, and gap size, δ.
Fig. 2
Fig. 2 (a) The 2nd stage preform (cane), (b) the fiber, (c) diagram of the fiber drawing process.
Fig. 3
Fig. 3 Schematic of preform, fiber and neck-down with nomenclature and an example of a furnace and fiber temperature profile.
Fig. 4
Fig. 4 Capillary draw with constant df /Df, pressure required at different draw tensions. Experimental Capillary draw, crosses, compared with results found from Fitt model, solid line.
Fig. 5
Fig. 5 Mid-draw contact occurs as a possible consequence of the expansion and contraction phases of the capillaries during the neck-down. (a) The normalized outer and inner radius of the fiber jacket through the neck-down. (b) The radius of the internal capillaries during neck-down for a high and low tension case normalized to the radius at which contact occurs, the regions where surface tension or pressure dominate are indicated. (c) An experimental example of a fiber that has contacted mid-draw showing evidence of contraction after contact. Visualization 1 shows how the simulated structures change through the neck-down.
Fig. 6
Fig. 6 6C fibers with low, (a), and high, (b), capillary pressure. 7C fibers with low, (c), and high, (d), capillary pressure.
Fig. 7
Fig. 7 Comparison of the simulated results and mean of the measured capillaries in the 6C fiber (a), and the 7C fiber (b). The error bars indicate the range of measured values; the diameter when the capillaries touch is indicated as the dotted horizontal line. Simulated fiber geometries are shown at the specified pressures.
Fig. 8
Fig. 8 A cane with a range of subtly different capillaries was drawn to fiber. (a) The final capillary size when all the cane capillaries were drawn at the same pressure, the intersection of the experimental values suggests the expected range of cane capillary diameters in the experimental case. (b) Full range of pressures applied to a cane with the identified range of capillary pressures, plotted with the experimental results.
Fig. 9
Fig. 9 (a) Capillary pressure required, comparing larger yield preforms with different dc0/Dc0. (b) Sensitivity to pressure for larger yield preforms.
Fig. 10
Fig. 10 The impact of mid-draw contact is shown by plotting the achievable capillary diameter that can be drawn before mid-draw contact occurs, normalized to the target capillary diameter as a function of preform yield.

Tables (3)

Tables Icon

Table 1 Preform geometry and draw parameters for experimental validation.

Tables Icon

Table 2 Second stage preform dimensions for the yield upscaling study, all preforms produce the fiber geometry defined in Table 3. The experimental 7C preform is marked with an asterisk and its fiber dimensions are given in Table 1.

Tables Icon

Table 3 Target fiber geometry for yield upscaling study.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρ( R j 2 r j 2 )( w dw dz g )= d dz ( 3μ( R j 2 r j 2 ) dw dz +γ( R j + r j ) )
d dz ( r j 2 w )= d dz ( R j 2 w )= p core r j 2 R j 2 γ r j R j ( r j + R j ) μ( R j 2 r j 2 )
R j 2 r j 2 2 ( ρ c p w dT dz σα( T a 4 T 4 ) )= R j N( T a T )
μ=5.8× 10 8 exp( 515400 8.314T )
τ=3μ dw dz π( R j 2 r j 2 )
d dz ( r c 2 w )= d dz ( R c 2 w )=[ Δpγ( 1 r c + 1 R c ) ] r c 2 R c 2 μ( R c 2 r c 2 )

Metrics