Abstract

In this paper, a highly-sensitive distributed shape sensor based on a multicore fiber (MCF) and phase-sensitive optical time-domain reflectometry (φ-OTDR) is proposed and experimentally demonstrated. The implemented system features a high strain sensitivity (down to ∼0.3 µɛ) over a 24 m-long MCF with a spatial resolution of 10 cm. The results demonstrate good repeatability of the relative fiber curvature and bend orientation measurements. Changes in the fiber shape are successfully retrieved, showing detectable displacements of the free moving fiber end as small as 50 µm over a 60 cm-long fiber. In addition, the proposed technique overcomes cross-sensitivity issues between strain and temperature. To the best of our knowledge, the results presented in this work provide the first demonstration of distributed shape sensing based on φ-OTDR using MCFs. This high-sensitivity technique proves to be a promising approach for a wide range of new applications such as dynamic, long distance and three-dimensional distributed shape sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry

Xin Lu, Marcelo A. Soto, and Luc Thévenaz
Opt. Express 25(14) 16059-16071 (2017)

Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber

Yunli Dang, Zhiyong Zhao, Ming Tang, Can Zhao, Lin Gan, Songnian Fu, Tongqing Liu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(17) 20183-20193 (2017)

Distributed shape sensing using Brillouin scattering in multi-core fibers

Zhiyong Zhao, Marcelo A. Soto, Ming Tang, and Luc Thévenaz
Opt. Express 24(22) 25211-25223 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
    [Crossref]
  2. A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors (Taylor & Francis Group, 2017).
  3. Z. Yang, M. A. Soto, D. M. Chow, P. Ray, and L. Thevenaz, “Brillouin Distributed Optical Fiber Sensor Based on a Closed-Loop Configuration,” J. Lightwave Technol. 36(5), 1239–1248 (2018).
    [Crossref]
  4. A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor,” Opt. Lett. 42(10), 1903 (2017).
    [Crossref]
  5. I. Steinberg, L. Shiloh, H. Gabai, and A. Eyal, “Over 100 km long ultra-sensitive dynamic sensing via Gated-OFDR,” Proc. SPIE-24th Int. Conf. Opt. Fibre Sensors9634, 1–4 (2015).
  6. A. Li, Y. Wang, Q. Hu, and W. Shieh, “Few-mode fiber based optical sensors,” Opt. Express 23(2), 1139–1150 (2015).
    [Crossref]
  7. L. Zou, X. Bao, S. Afshar V, and L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29(13), 1485–1487 (2004).
    [Crossref]
  8. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, G. Badenes, and J. Villatoro, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
    [Crossref]
  9. Y. Lin, W. Jin, F. Yang, Y. Tan, and H. L. Ho, “Performance optimization of hollow-core fiber photothermal gas sensors,” Opt. Lett. 42(22), 4712–4715 (2017).
    [Crossref]
  10. L. Zhang, Z. Yang, Ł Szostkiewicz, K. Markiewicz, T. Nasilowski, and L. Thévenaz, “Fully distributed pressure sensing with ultra-high-sensitivity using side-hole fibers,” Proc. 26th Int. Conf. Opt. Fiber Sensors, 1–4 (2018).
  11. B. De Pauw, S. Goossens, T. Geernaert, D. Habas, H. Thienpont, and F. Berghmans, “Fibre bragg gratings in embedded microstructured optical fibres allow distinguishing between symmetric and anti-symmetric lamb waves in carbon fibre reinforced composites,” Sensors 17(9), 1948 (2017).
    [Crossref]
  12. Y. Lin, F. Liu, X. He, W. Jin, M. Zhang, F. Yang, H. L. Ho, Y. Tan, and L. Gu, “Distributed gas sensing with optical fibre photothermal interferometry,” Opt. Express 25(25), 31568–31585 (2017).
    [Crossref]
  13. A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
    [Crossref]
  14. Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
    [Crossref]
  15. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [Crossref]
  16. L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
    [Crossref]
  17. A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
    [Crossref]
  18. L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
    [Crossref]
  19. Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24(22), 25211–25222 (2016).
    [Crossref]
  20. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
    [Crossref]
  21. M. P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, Inc, 1976).
  22. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
    [Crossref]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier Inc., 2007).
  24. H. F. Martins, S. Martin-Lopez, P. Corredera, M. L. Filograno, O. Frazao, and M. Gonzalez-Herraez, “Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves,” J. Lightwave Technol. 31(23), 3631–3637 (2013).
    [Crossref]

2018 (1)

2017 (4)

2016 (1)

2015 (1)

2014 (1)

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

2013 (1)

2012 (2)

2009 (2)

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightwave Technol. 27(9), 1142–1146 (2009).
[Crossref]

2008 (2)

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
[Crossref]

2007 (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, G. Badenes, and J. Villatoro, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

2006 (1)

2004 (1)

2003 (1)

Afshar V, S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier Inc., 2007).

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, G. Badenes, and J. Villatoro, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Bao, X.

Barton, J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref]

Bennion, I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref]

Berghmans, F.

B. De Pauw, S. Goossens, T. Geernaert, D. Habas, H. Thienpont, and F. Berghmans, “Fibre bragg gratings in embedded microstructured optical fibres allow distinguishing between symmetric and anti-symmetric lamb waves in carbon fibre reinforced composites,” Sensors 17(9), 1948 (2017).
[Crossref]

Broczkowska, M.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Chen, L.

Chen, X.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Chow, D. M.

Corredera, P.

De Pauw, B.

B. De Pauw, S. Goossens, T. Geernaert, D. Habas, H. Thienpont, and F. Berghmans, “Fibre bragg gratings in embedded microstructured optical fibres allow distinguishing between symmetric and anti-symmetric lamb waves in carbon fibre reinforced composites,” Sensors 17(9), 1948 (2017).
[Crossref]

Do Carmo, M. P.

M. P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, Inc, 1976).

Dominguez-Lopez, A.

Eyal, A.

I. Steinberg, L. Shiloh, H. Gabai, and A. Eyal, “Over 100 km long ultra-sensitive dynamic sensing via Gated-OFDR,” Proc. SPIE-24th Int. Conf. Opt. Fibre Sensors9634, 1–4 (2015).

Fender, A.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Filograno, M. L.

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, G. Badenes, and J. Villatoro, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Flockhart, G. M. H.

Frazao, O.

Gabai, H.

I. Steinberg, L. Shiloh, H. Gabai, and A. Eyal, “Over 100 km long ultra-sensitive dynamic sensing via Gated-OFDR,” Proc. SPIE-24th Int. Conf. Opt. Fibre Sensors9634, 1–4 (2015).

Geernaert, T.

B. De Pauw, S. Goossens, T. Geernaert, D. Habas, H. Thienpont, and F. Berghmans, “Fibre bragg gratings in embedded microstructured optical fibres allow distinguishing between symmetric and anti-symmetric lamb waves in carbon fibre reinforced composites,” Sensors 17(9), 1948 (2017).
[Crossref]

George, D. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Gonzalez-Herraez, M.

Goossens, S.

B. De Pauw, S. Goossens, T. Geernaert, D. Habas, H. Thienpont, and F. Berghmans, “Fibre bragg gratings in embedded microstructured optical fibres allow distinguishing between symmetric and anti-symmetric lamb waves in carbon fibre reinforced composites,” Sensors 17(9), 1948 (2017).
[Crossref]

Gu, L.

Habas, D.

B. De Pauw, S. Goossens, T. Geernaert, D. Habas, H. Thienpont, and F. Berghmans, “Fibre bragg gratings in embedded microstructured optical fibres allow distinguishing between symmetric and anti-symmetric lamb waves in carbon fibre reinforced composites,” Sensors 17(9), 1948 (2017).
[Crossref]

Hartog, A. H.

A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors (Taylor & Francis Group, 2017).

He, X.

Ho, H. L.

Hogari, K.

Holdynski, Z.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Howden, R. I.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Hu, Q.

Imahama, M.

Jin, W.

Jones, B. J. S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Jones, J. D. C.

Kokubun, Y.

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[Crossref]

Koshiba, M.

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[Crossref]

Koyamada, Y.

Kubota, K.

Li, A.

Lin, Y.

Liu, F.

Liu, Z.

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
[Crossref]

L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
[Crossref]

MacPherson, W. N.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref]

Maier, R. R. J.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Makara, M.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Markiewicz, K.

L. Zhang, Z. Yang, Ł Szostkiewicz, K. Markiewicz, T. Nasilowski, and L. Thévenaz, “Fully distributed pressure sensing with ultra-high-sensitivity using side-hole fibers,” Proc. 26th Int. Conf. Opt. Fiber Sensors, 1–4 (2018).

Martin-Lopez, S.

Martins, H. F.

McCulloch, S.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Mergo, P.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, G. Badenes, and J. Villatoro, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Moore, J. P.

Murawski, M.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Napierala, M.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Nasilowski, T.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

L. Zhang, Z. Yang, Ł Szostkiewicz, K. Markiewicz, T. Nasilowski, and L. Thévenaz, “Fully distributed pressure sensing with ultra-high-sensitivity using side-hole fibers,” Proc. 26th Int. Conf. Opt. Fiber Sensors, 1–4 (2018).

Ostrowski, L.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Pawlik, K.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Poturaj, K.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Pruneri, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, G. Badenes, and J. Villatoro, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Ray, P.

Rogge, M. D.

Shieh, W.

Shiloh, L.

I. Steinberg, L. Shiloh, H. Gabai, and A. Eyal, “Over 100 km long ultra-sensitive dynamic sensing via Gated-OFDR,” Proc. SPIE-24th Int. Conf. Opt. Fibre Sensors9634, 1–4 (2015).

Slowikowski, M.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Smith, G. W.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Soto, M. A.

Stanczyk, T.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Steinberg, I.

I. Steinberg, L. Shiloh, H. Gabai, and A. Eyal, “Over 100 km long ultra-sensitive dynamic sensing via Gated-OFDR,” Proc. SPIE-24th Int. Conf. Opt. Fibre Sensors9634, 1–4 (2015).

Stepien, K.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Sun, J.

Suo, R.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

Szostkiewicz, L

L. Zhang, Z. Yang, Ł Szostkiewicz, K. Markiewicz, T. Nasilowski, and L. Thévenaz, “Fully distributed pressure sensing with ultra-high-sensitivity using side-hole fibers,” Proc. 26th Int. Conf. Opt. Fiber Sensors, 1–4 (2018).

Szostkiewicz, L.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Szymanski, M.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Tan, Y.

Tang, M.

Tenderenda, T.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Thevenaz, L.

Thévenaz, L.

Z. Zhao, M. A. Soto, M. Tang, and L. Thévenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24(22), 25211–25222 (2016).
[Crossref]

L. Zhang, Z. Yang, Ł Szostkiewicz, K. Markiewicz, T. Nasilowski, and L. Thévenaz, “Fully distributed pressure sensing with ultra-high-sensitivity using side-hole fibers,” Proc. 26th Int. Conf. Opt. Fiber Sensors, 1–4 (2018).

Thienpont, H.

B. De Pauw, S. Goossens, T. Geernaert, D. Habas, H. Thienpont, and F. Berghmans, “Fibre bragg gratings in embedded microstructured optical fibres allow distinguishing between symmetric and anti-symmetric lamb waves in carbon fibre reinforced composites,” Sensors 17(9), 1948 (2017).
[Crossref]

Villatoro, J.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, G. Badenes, and J. Villatoro, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, G. Badenes, and J. Villatoro, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Wang, Y.

Wysokinski, K.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Yang, F.

Yang, J.

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
[Crossref]

L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
[Crossref]

Yang, Z.

Z. Yang, M. A. Soto, D. M. Chow, P. Ray, and L. Thevenaz, “Brillouin Distributed Optical Fiber Sensor Based on a Closed-Loop Configuration,” J. Lightwave Technol. 36(5), 1239–1248 (2018).
[Crossref]

L. Zhang, Z. Yang, Ł Szostkiewicz, K. Markiewicz, T. Nasilowski, and L. Thévenaz, “Fully distributed pressure sensing with ultra-high-sensitivity using side-hole fibers,” Proc. 26th Int. Conf. Opt. Fiber Sensors, 1–4 (2018).

Yuan, L.

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
[Crossref]

L. Yuan, J. Yang, Z. Liu, and J. Sun, “In-fiber integrated Michelson interferometer,” Opt. Lett. 31(18), 2692–2694 (2006).
[Crossref]

Zhang, L.

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref]

L. Zhang, Z. Yang, Ł Szostkiewicz, K. Markiewicz, T. Nasilowski, and L. Thévenaz, “Fully distributed pressure sensing with ultra-high-sensitivity using side-hole fibers,” Proc. 26th Int. Conf. Opt. Fiber Sensors, 1–4 (2018).

Zhang, M.

Zhao, Z.

Ziolowicz, A.

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

Zou, L.

Appl. Phys. Lett. (2)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, G. Badenes, and J. Villatoro, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

A. Ziolowicz, M. Szymanski, L. Szostkiewicz, T. Tenderenda, M. Napierala, M. Murawski, Z. Holdynski, L. Ostrowski, P. Mergo, K. Poturaj, M. Makara, M. Slowikowski, K. Pawlik, T. Stanczyk, K. Stepien, K. Wysokinski, M. Broczkowska, and T. Nasilowski, “Hole-assisted multicore optical fiber for next generation telecom transmission systems,” Appl. Phys. Lett. 105(8), 081106 (2014).
[Crossref]

IEEE Sens. J. (2)

A. Fender, W. N. MacPherson, R. R. J. Maier, J. S. Barton, D. S. George, R. I. Howden, G. W. Smith, B. J. S. Jones, S. McCulloch, X. Chen, R. Suo, L. Zhang, and I. Bennion, “Two-axis accelerometer based on multicore fibre Bragg gratings,” IEEE Sens. J. 8(7), 1292–1298 (2008).
[Crossref]

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8(7), 1114–1117 (2008).
[Crossref]

IEICE Electron. Express (1)

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (4)

Opt. Lett. (5)

Sensors (2)

X. Bao and L. Chen, “Recent Progress in Distributed Fiber Optic Sensors,” Sensors 12(7), 8601–8639 (2012).
[Crossref]

B. De Pauw, S. Goossens, T. Geernaert, D. Habas, H. Thienpont, and F. Berghmans, “Fibre bragg gratings in embedded microstructured optical fibres allow distinguishing between symmetric and anti-symmetric lamb waves in carbon fibre reinforced composites,” Sensors 17(9), 1948 (2017).
[Crossref]

Other (5)

A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors (Taylor & Francis Group, 2017).

I. Steinberg, L. Shiloh, H. Gabai, and A. Eyal, “Over 100 km long ultra-sensitive dynamic sensing via Gated-OFDR,” Proc. SPIE-24th Int. Conf. Opt. Fibre Sensors9634, 1–4 (2015).

L. Zhang, Z. Yang, Ł Szostkiewicz, K. Markiewicz, T. Nasilowski, and L. Thévenaz, “Fully distributed pressure sensing with ultra-high-sensitivity using side-hole fibers,” Proc. 26th Int. Conf. Opt. Fiber Sensors, 1–4 (2018).

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier Inc., 2007).

M. P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, Inc, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Cross-section of the 7-core MCF used in the experiment. The colored circles indicate the three cores selected for this analysis: red (bottom right): Core 2; blue (top left): Core 4; green (top right) Core 5. (b) Analytical drawing of the MCF in two different scenarios: bottom: origin position with all the cores within the XY plane; top: position subjected to a bend with the cores displaced within a plane tilted by a certain angle with respect to the reference position. Points C1, C2, C3 represent the fiber cores coordinates in fiber cross section (XY plane). Points P0, P1, P2, P3 represent the fiber cores coordinates (XY plane) and the measured strain value in each core. Vector $\vec{n}$ is a normal vector to a plane fitted to the measured coordinates of P1, P2, P3. Point P represents the coordinates of a fictive core positioned in the bending direction. ${\theta _b}$ is the bending orientation of the fiber which is in line with the projection of the $\vec{n}$ vector on the XY axis.
Fig. 2.
Fig. 2. Experimental setup of the phase-sensitive OTDR. DFB: distributed-feedback laser; EOM: electro-optical modulator; AWG: arbitrary waveform generator; EDFA: erbium-doped fiber amplifier; VOA: variable optical attenuator; OS: optical switch; Fi/o: fan-in/fan-out; MCF: multi-core fiber; BPOF: band-pass optical filter; PD: photodiode.
Fig. 3.
Fig. 3. Displacement setup. The MCF is attached to the base at point A, and from there ∼ 60 cm of fiber are suspended in the air up to point B, fixed to a vertical translation stage.
Fig. 4.
Fig. 4. (a) Example of the measured time trace for one of the cores of the MCF (blue line) and the calculated visibility for it (green line). (b) Example of the calculated cross-correlation spectrum between two different measurements corresponding to two different heights of the moving stage for one core.
Fig. 5.
Fig. 5. (a) and (c) Accumulated strain due to vertical displacement, estimated as the summation of the computed strain for each pair of vertical positions for three cores of the fiber. (b) and (d) 2D view of the accumulated strain as a function of the fiber length for a vertical displacement of 18 mm. In the upward displacement [(a) and (b)] the first reference sweep is carried out at the lowest point (set at 0 mm of relative vertical displacement) and consecutive measurements are obtained with upward displacements. In the downward displacement [(c) and (d)] the first measurement is obtained at the highest position (+20 mm of relative vertical displacement), while measurements are obtained with downward displacements.
Fig. 6.
Fig. 6. (a) Measured relative curvature as a function of the fiber length for several positions of the moving stage, starting at the bottom (0 mm elevation), shifting upwards to 20 mm (continuous lines), and going back down to the original position (dotted lines). (b) Estimated curvature error as a function of the measurement iterations (the last iteration corresponds to the 2 mm vertical displacement in downward direction. This error was quantified from the difference of the upward and downward pair of measurements at a fixed fiber length of 23.25 m) .
Fig. 7.
Fig. 7. Bend orientation as a function of the fiber length for several relative vertical positions of the moving stage, starting at 0 mm, shifting upwards to 20 mm (continuous lines), and going back down to the original position (dotted lines).
Fig. 8.
Fig. 8. (a) 3D illustration of the retrieved shape of the fiber for different vertical positions in steps of 2 mm (positive sign: upward displacement; negative sign: downward displacement). (b) and (c) shape of the fiber as a function of the vertical displacement and the offset respectively. The offset axis corresponds to a change in the fiber-end-position in an additional dimension caused by instabilities in the setup.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P i = ( d c o s θ i , d s i n θ i , ε i ) ,
θ b = a r c t a n n y n x .
0 = n x d c o s θ b + n y d s i n θ b + n z ε b .
ε b = n x n z d c o s θ b n y n z d s i n θ b ,
k = | ε b / d | .
V i s i b i l i t y = I m a x I m i n I m a x + I m i n ,

Metrics